
NCT2xx
NCT3xx

Machine Tool Controls

PLC Programming

From software version n.14.9

 Manufacturer and developer: NCT Ipari Elektronikai kft.

H1148 Budapest Fogarasi út 7
: Address: 1631 Bp. pf.26
F Phone: (+36 1) 467 63 00
F Fax:(+36 1) 467 63 09

E-mail: nct@nct.hu
Home page: www.nct.hu

2

mailto:nct@nct.hu

Contents

1 The PLC Programming Language.. 8
1.1 Sampling and Handling of Inputs and Outputs. 9
1.2 The Order of Execution of a PLC Program. 9
1.3 Editing PLC Programs. 10

2 Memory Used by the PLC Program. 11
2.1 Addressing of Double Words (DWORD). 13
2.2 Indexed Addressing of Double Words (DWORD) with Operator “,”. 13
2.3 Direct Addressing of Bits with Operator “.”. 15
2.4 Indirect Addressing of Bits with Operator “:”. 17
2.5 Indexed Addressing of Bits with Operator “,”.. 18
2.6 Addressing Floating-point Numbers (double). 19
2.7 Indexed Addressing of Floating-point Numbers (double) with Operator “,”. 20

3 Modules of the PLC Program.. 21
3.1 The Main Program. 21
3.2 The Int0 Module. 21
3.3 Updating the PLC Memory. 21

4 Data Managed by the PLC Program. 23
4.1 Managing Bit-type Data.. 23
4.2 Query of Rising Edge of Memory Bits with Operator “@”.. 23
4.3 Query of Falling Edge of Memory Bits with Operator “%”. 23
4.4 Immediate Query of Inputs, Immediate Issue of Outputs with Operator “!”. 24
4.5 Definition of Decimal, Signed Number with Operator “#”. 24
4.6 Definition of Hexadecimal Number With Operator “#$”. 25
4.7 Definition of BCD Number without Sign with Operator “#$”. 25
4.8 Definition of Floating-point Number with Operator “*”. 25
4.9 Double Precision Representation of Floating-point Numbers in IEEE754 Standard. . 26

5 Status Bits Set by PLC Instructions.. 28
5.1 FL_ER Error Flag. 28
5.2 FL_UF Underflow Flag. 28
5.3 FL_OF Overflow Flag. 28
5.4 FL_CY Carry Flag. 28
5.5 FL_GT Greater than Flag.. 28
5.6 FL_EQ Equal Flag. 29
5.7 FL_LT Lower than Flag.. 29

6 Instructions of the PLC Program.. 30
6.1 Bit Operation Instructions. 30

6.1.1 Open Contact: Input of a Memory Bit. 30
6.1.2 Open Contact: Query of a Double Word. 31
6.1.3 Closed Contact: Input Not of a Memory Bit. 32
6.1.4 Closed Contact: Query Not of a Double Word. 33

3

6.1.5 Relay Coil: Output to a Memory Bit. 34
6.1.6 Negated Relay Coil: Output Not to a Memory Bit. 35
6.1.7 Setting a Memory Bit: the SET Instruction. 36
6.1.8 Resetting a Memory Bit: the RST Instruction. 36
6.1.9 Pulse Generation for Rising Edge: the DIFU Instruction. 37
6.1.10 Pulse Generation for Falling Edge: the DIFD Instruction. 38
6.1.11 Bit Operation Instructions and the Operator “!” in the Two Modules. 39

6.2 Basic Rules of Connections of Ladder Network. 41
6.2.1 Connecting elements. 42
6.2.2 Commenting the Logic Sectors of a Ladder Diagram: the SEC Instruction. 43

6.3 Data Movement Instructions. 44
6.3.1 Movement of Double Words: the MOV and the MVN Instructions. 45
6.3.2 Movement of Floating-point data: the MOVF Instruction. 46

6.4 Timers. 47
6.4.1 On-delay Timer: TOND. 48
6.4.2 Off-delay Timer: TOFFD. 49
6.4.3 Programmable Pulse Width: TPULSE. 50

6.5 Counters. 51
6.5.1 Simple Counter CNT.. 52
6.5.2 Up-down Counter CNTR. 54

6.6 Rotation Control Instruction: ROT. 56
6.7 Data Shift Instructions.. 60

6.7.1 Shift Register: SHTR.. 60
6.7.2 Shift Instructions: ASHL, ASHR. 61
6.7.3 Rotate Instructions: ARTL, ARTR. 63

6.8 Logic Instructions. 66
6.8.1 Complement Instruction: NEG. 66
6.8.2 Two-operand Instructions: AND, OR, XOR. 67

6.9 Integer Arithmetic Instructions. 70
6.9.1 Signed, Integer Addition, without Carry: ADD.. 71
6.9.2 Signed, Integer Subtraction, without Carry: SUB. 72
6.9.3 Signed, Integer Multiplication: MUL. 73
6.9.4 Signed, Integer Division: DIV.. 74

6.10 Floating-point Mathematical Instructions. 75
6.10.1 Floating-point Addition: +F. 76
6.10.2 Floating-point Subtraction: -F. 77
6.10.3 Floating-point Multiplication: *F. 78
6.10.4 Floating-point Division: /F. 79
6.10.5 Exponential Power: PWR. 80
6.10.6 Square Root: SQRT.. 81
6.10.7 Sine: SIN. 82
6.10.8 Cosine: COS. 83
6.10.9 Tangent: TAN. 84
6.10.10 Arc Sine: ASIN. 85
6.10.11 Arc Cosine: ACOS. 86
6.10.12 Arc Tangent: ATAN. 87
6.10.13 Natural Exponent: EXP. 88
6.10.14 Natural Logarithm: LOG. 89

6.11 Conversion Instructions.. 90

4

6.11.1 BCD to Binary Conversion: BIN. 91
6.11.2 Binary to BCD Conversion: BCD. 92
6.11.3 Signed Integer to Floating-point Conversion: FLT. 93
6.11.4 Floating-point to Signed Integer Conversion: FIX.. 94
6.11.5 Radian to Degree Conversion: DEG. 95
6.11.6 Degree to Radian Conversion: RAD. 96

6.12 Comparison Instructions. 97
6.12.1 The CMP and the FCMP Instructions. 97
6.12.2 Contact Type Comparison Instructions. 98

6.13 Messages Sent from the PLC Program. 100
6.13.1 Instructions Sending Messages: MSG, MSGF, ALR, ALRF, REM, REMF. . . 102

6.14 Program Control Instructions.. 106
6.14.1 End of Module Instruction: END.. 106
6.14.2 Conditional Branch: the JMP and JME Instructions. 107
6.14.3 Subroutine Call: the SBS, SBN and RET instructions.. 108

6.15 Axis Control Instruction: MOVCMD. 110
6.16 Read and Write of Common Macro Variables. 114

6.16.1 Read of Common Macro Variables: the MACR Instruction. 114
6.16.2 Write of Common Macro Variables: the MACW Instruction. 115

6.17 Query of the Internal Variables of the NC: the SCP Instruction. 116
6.18 Reading and Writing NC Memory Arrays. 123

6.18.1 NC Memory Array Read: the MR Instruction. 123
6.18.2 NC Memory Array Write: the MW Instruction. 124

6.19 Transferring Data between Non-volatile Memory and PLC. 127
6.19.1 PLC Data Read from Non-volatile Memory. 127
6.19.2 PLC Data Write to Non-volatile Memory. 129

6.20 Reading and Writing Parameters from the PLC Program. 131
6.20.1 Reading the DWORD-type Parameters. 131
6.20.2 Reading the Double-type Parameters. 133
6.20.3 Writing the DWORD-type Parameters. 135
6.20.4 Writing Double-type Parameters. 137

6.21 Assigning a Program for Execution.. 139
6.21.1 Assigning a Program Specified with its Program Number for Automatic Execution

. 139
6.22 Network Communication Instructions.. 140

6.22.1 Opening the Network Connection. 140
6.22.2 Closing the Network Connection. 141
6.22.3 Receiving the Network Data Packet. 142
6.22.4 Sending the Network Data Packet. 143

6.23 Opening a Window in the Screen of the Control.. 145
6.24 Dumping the Drive Data. 149
6.25 Writing the Position Data. 151
6.26 Reading and Writing Data of Tool Management Table.. 153

6.26.1 The Tool Management Table. 153
6.26.2 The Cartridge Management Table. 158
6.26.3 The Tool Pattern Table. 160
6.26.4 Exchange of Data Numbers in Cartridge Table. 164
6.26.5 Search of Empty Pot.. 165
6.26.6 Register New Tool Data in Tool Management Table. 167

5

6.26.7 Writing Each Tool Management Data of a Tool. 171
6.26.8 Reading Each Tool Management Data of a Tool. 176
6.26.9 Deletion of All Tool Management Data of a Tool. 179
6.26.10 Writing a Tool Management Data of a Tool. 180
6.26.11 Reading a Tool Management Data of a Tool.. 183
6.26.12 Searching a Tool by User Data. 185

6.27 Writing and Reading the Data of the Pallet Management Table.. 188
6.27.1 The Pallet Management Table. 188
6.27.2 Data Interchange Between Two Different Places of Two Different Pallet Magazines

. 193
6.27.3 Rewriting the Pallet Data.. 195
6.27.4 Reading the Data of the Pallet. 198
6.27.5 Rewriting a Pallet Management Data of the Pallet. 200
6.27.6 Reading a Pallet Management Data of the Pallet. 202
6.27.7 Searching a pallet by its data number value. 204
6.27.8 Reading out the pallet magazine’s values of given data number.. 206
6.27.9 Assigning a program accessible by its pallet identifier for automatic execution

. 208
6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

. 211
6.28.1 Reading the Data of the EtherCAT Mailbox. 211
6.28.2 Writing the Data of the EtherCAT Mailbox. 218

6.29 Codes of Execution of MR, MW Instructions.. 224

7 Communication between the PLC Program and the NC. 228
7.1 NCT Machine Control Panels. 230
7.2 NCT Handwheels. 237
7.3 Two-state, 24V Interface In- and Outputs. 240
7.4 In- and Outputs of NCT Probe Interface Cards.. 242
7.5 NCT Sensor Inputs. 244
7.6 NCT Analog Inputs. 246
7.7 In- and Outputs of EtherCAT NCT Drives. 247
7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards. 256
7.9 Function Buttons Accessible from the PLC. 262
7.10 Position Switches. 263
7.11 Access to Parameter Group PLC Constants. 265
7.12 Common Variables. 269

7.12.1 Bit-type Common Variables. 269
7.12.2 DWORD-type Common Variables. 275

7.13 Axis Control Variables. 277
7.13.1 Bit-type Axis Control Variables. 277

7.14 Spindle Control Variables. 294
7.14.1 Bit-type Spindle Control Variables. 294
7.14.2 DWORD-type Spindle Control Variables. 306
7.14.3 Double-type Spindle Control Variables. 309

7.15 Channel Control Variables. 310
7.15.1 Bit-Type Channel Control Variables. 310
7.15.2 DWORD-type Channel Control Variables. 343
7.15.3 Double-type Channel Control Variables. 355

6

Index in Alphabetical Order. 358

19.11.28

7

1 The PLC Programming Language

1 The PLC Programming Language

The PLC programming language has ladder diagram format.
The ladder diagram is an approxi-
mate form of relay circuit
diagram which is used in control
technique.
The attached figure shows an
example for representing logic
circuit in ladder diagram: A and C
are normally open and B is closed
contacts, R is a relay.
The wires (logic lines) start from
reference wire on the left side of
ladder diagram followed by the
contacts. They can be controlled by inputs/outputs, or they can be the open or closed contacts
belonging to internal auxiliary relays, holding relays, timing relays. On the right end of logic line
there are “coils” of outputs, timers, counters or instructions.
Rung is the name of contacts and wires which belong to an output.
Important rule, that each output, relay, timer, counter, etc. can appear only once in ladder diagram
and the associated program. The contacts of these devices can be used as many times as required.
There are significant differences between the function of hardware connected logic circuits and
PLC ladder programs executed by software..

8

1 The PLC Programming Language

1.1 Sampling and Handling of Inputs and Outputs

PLC PLCThe PLC program runs by T intervals, where T is called as sampling interval.
Stay at the example of the previous figure. The PLC program samples from A, B and C signals
(PLC inputs) and saves into the memory at addresses A’, B’ and C’ before starting to execute the
instructions.
After then PLC program starts running, calculates the R’ value from A’, B’, C’ values. The
value of R’ can be saved in memory at address R’ after the execution of instruction.
After the PLC program ran to the end, the outputs are updated from memory, so the value of
R’ is written from the RAM to the output.
On the other hand, the circuit realized in hardware responds for the changes immediately. It
means that the signals of A, B, or C contacts can activate R relay promptly.

1.2 The Order of Execution of a PLC Program

The ladder diagram PLC program, as any other sequence
program written for a computer, is executed in the sequence of
rungs.
In the attached figure, PLC sets the value of R1 relay depending
on the state of contacts A and B (1. Rung) first, then sets the
value of R2 relay depending on the state of C and D contacts.
The execution always follows the order of rungs.
In the hardware built by relays, there is no operation precedence,
every relay works about in the same time.
The ladder diagram does not correspond to the wired relays be-
cause of this feature. Let us take the following example.

9

1 The PLC Programming Language

 – In case of wired relays: If the two cases in the figure above are realized by wired relays, then
each case works the same way. If contact “A” closes, R1 and R2 relays will be switched
on for a moment, then R1 will be switched off after R2 closes.

 – In case of ladder diagram:
In the 1st case contact “A” closes, R1 is switched on, because R2 is not switched on. Then

PLCR2 is also switched on. R1 relay is switched off in the following PLC cycle, after T

PLCinterval, because R2 has already operated. So R1 and R2 are also switched on for T
interval.
In the 2nd case, if contact “A” closes, R2 is switched on, therefore R1 relay is not
switched on, because contact R2 is already open.

The above example shows that hard wired circuits must be converted into ladder PLC program,
after some consideration.

In the PLC program, it is possible to change the operation sequence with conditional subroutine
call or jump.

1.3 Editing PLC Programs

Ladder diagram based PLC program can be edited graphically, therefore you have to use a special
software developed for this purpose. The description of PLC program editor is not subject of this
manual.

10

2 Memory Used by the PLC Program

2 Memory Used by the PLC Program

Memory used by PLC program is a 10000 double word long coherent storage space. Double word
(DWORD) is a 32 bit memory unit.

PLC storage space distributed to 4 main parts:
– Status bits: handled by the instructions of PLC program, mapped at address 0000, with the

symbol FLAGS,
– Memory space for communication between PLC program and output, input hardware devices,

as well as the system,
– Users’ memory of the PLC program to be backed up after switch off, with the symbolic name

PLCNVRAM as the starting address of nonvolatile variables,
– Users’ memory of the PLC program, with the symbolic name PLCRAM as the starting address

of volatile variables.
The limits of each parts title change by types.

11

2 Memory Used by the PLC Program

PLC programmer has to map every variables of instructions in this storage space. For example,
if a timer is necessary in PLC program, the variable of timer, which counts the passing of time,
must be declared in this memory.
The meanings of status bits are described in this manual in another chapter.
The flags and registers of storage space which communicate between PLC program and I/O
devices as well as between PLC program and system, are described later.
The basic unit of memory is double word (DWORD, 32 bit). Addressing smaller units, like word
(WORD, 16 bit) or byte (8 bit), is not possible. Every part of memory is available by bits.
PLC program provides wide possibilities for symbolic access to memory. Every part of memory
which can be accessed by addressing, also can be accessed symbolically.

12

2 Memory Used by the PLC Program

2.1 Addressing of Double Words (DWORD)

You can address the arbitrary double word of memory also by
numeral and
symbol.

You have to specify an address by 4 decimal numbers with leading zeros when referring to it by
a numeral.
You have to declare the symbol in symbol storage before referring an address symbolically.

In the above example you can refer to memory space 56 by writing also
0056 or
APPLE.

2.2 Indexed Addressing of Double Words (DWORD) with Operator “,”

Indexed address contains two parts:
base address and
offset.

The two parts are separated by operator
, (comma) .

The address is calculated by adding to the base address the offset value:
address=base address+offset

The rules of addressing of double word are valid for base address:
defined by 4 decimal numbers, or
symbol.

Offset value can be defined by
directly: with numeral or with constant symbol, or
indirectly: by register reference.

– In case of defining direct offset you have to use operator “#” entering decimal number. If you
want to offset address BASE by 3 than then write

0056,#3, or
BASE,#3, or

if BASE symbol is declared to address 0056.

13

2 Memory Used by the PLC Program

You get the same result, if you declare BIAS symbol as constant symbol in symbol chart:
BIAS #3. This time you have to write

BASE,BIAS
reference in program.

 – In case of reference indirect offset (through register) you have to write the address of register
which contains offset value after “,” (comma) operator.
The addressing rules are valid for address which contains offset: you can define by
number and also by symbol.
If you declare a BIAS register for segment address BASE, you can define an address by
the reference:

BASE,BIAS or
0056,0057.

Where symbol BASE is declared to address 0056, and symbol BIAS is declared to address
0057. Offset value is taken from register at address BIAS (0057).

14

2 Memory Used by the PLC Program

2.3 Direct Addressing of Bits with Operator “.”

You can address any bit of PLC memory space. You can refer to bits by using “.” (dot) operator
or by using a symbol declared to that bit.
When using “.” operator, bit address contains two parts:

a double word address and
a bit address inside the double word

The two parts are separated by
. (dot)

operator from each other.
You can refer to a double word address by

4 decimal numbers,
or also by symbol.

You can refer to a bit address by a value after the operator “.”. You always have to define two
numbers after “.” , so you also have to write leading zeros. The range of a bit address is:

00 ... 31
For example, if you want to refer the 17 bit of the double word at address 0056, then you alsoth

can use the reference
0056.17 or
MYREG.17

Where MYREG is declared beforehand at address 0056.

15

2 Memory Used by the PLC Program

If you have a declared symbol for a bit address, then you can refer directly to bit by symbol. For
example, if you have declared DRV_RDY symbol to bit address 0117.09, then you can reach the
bit 0117.09 directly by

DRV_RDY
symbol.

16

2 Memory Used by the PLC Program

2.4 Indirect Addressing of Bits with Operator “:”

When the operator “:” is used, bit address contains two parts:
double word address and
bit address in double word

The two parts separated by the operator
: (colon).

You can refer to double word address by
4 decimal numbers,
or also by a symbol.

You can refer to bit address after “:” operator
by numeral address defined by 4 decimal numbers or
by the symbol declared to the register.

For example the reference
0056:0058

refers to that bit of register 0056, which is specified by the content of register 0058.
If

symbol MYREG declared at address 0056, and
symbol MYBIT declared at address 0058,

then you can also specify
MYREG:MYBIT.

17

2 Memory Used by the PLC Program

2.5 Indexed Addressing of Bits with Operator “,”

Indexed addressing of bit is similar to indexing double word. The address contains two parts:
base address of bit (base.bit) and
offset.

The base address of bit is referred to a bit of a double word (base). The offset always shifts the
address of double words.
The two parts are separated by the operator

, (comma).
The address is calculated by adding the offset to the base address:

bit address=(base+offset).bit
The rules of bit addressing are valid for base address of bit:

symbol
defined by operator “.” dot, or
indirectly with operator “:”.

The offset value can be defined
directly with numeral, or
indirectly with register reference.

If you want to offset bit addressed to 0056.17 with 3, you can do it the way shown on the figure
below:

18

2 Memory Used by the PLC Program

2.6 Addressing Floating-point Numbers (double)

Instructions of PLC program handle 64 bit floating-point numbers (double). The floating-point
numbers reserve two subsequent registers (DWORD) of memory space.

You can address a floating-point number by
numeral and also by
symbol.

In case of addressing it by numeral, you always have to specify 4 decimal numbers with leading
zeros.
Beforehand referring to it by a symbol, you always have to declare the symbol in the symbol table.
In case of referring to a memory space containing floating-point number, you have to give the
address of first word (it contains the lower 32 bits of floating-point number).
You can refer to floating-point number in the above example:

0341 or
FLOAT.

19

2 Memory Used by the PLC Program

2.7 Indexed Addressing of Floating-point Numbers (double) with Operator “,”

The rules of indexed addressing of DWORD registers are valid for indexed addressing of
floating-point numbers.
L Attention!

Floating-point numbers always have to be indexed by even numbers, because they reserve
two subsequent registers!

20

3 Modules of the PLC Program

3 Modules of the PLC Program

The PLC program contains 2 modules:
the main program and
the Int0 module.

Each module is written by ladder diagram and they are independent from each other. The
connection between the two modules is possible via PLC memory.
The difference between the two modules is the frequency of runs.

3.1 The Main Program

PLCThe main program runs by T cycle time. The value of cycle time depends on control type.
The value of cycle time can be read in the PlcPeriod line in msec unit of Diagnostics window of
NCT201 control (for example: 10msec). All PLC activities are written in this module, except for

PLCwhich need faster reaction than T cycle time.

3.2 The Int0 Module

PLCThe Int0 module runs higher frequency than T cycle time. The value of this cycle time can be
read in the TimeSlice line in ìsec unit of Diagnostics window of NCT201 control (for example:
2000 ìsec). Only PLC activities are allowed in this module, which need fast reaction, for example
an interface output has to be switched on quickly after an interface input signal has been changed.
If you overload this module, then it sends an error message “PLC timeout”.

3.3 Updating the PLC Memory

The memory space which communicates between the interface inputs and outputs, as well
as PLC program and system is read and written by the frequency of Int0 module, namely the
TimeSlice time. This memory space starts from the address 0002 and continues up to
PLCNVRAM-1 address.

The physical inputs (for example interface input signals) are read in RAM, the physical outputs
(for example interface output signals) are written out from RAM to hardware. PLC program can
read or write this RAM storage updated by TimeSlice frequency, the TimeSlice memory only
by special instructions. These instructions are only used in module Int0!

PLC input memory space available by normal PLC instructions updated from TimeSlice
memory, that is synchronized before running PLC main program. PLC main program can run
for several TimeSlice cycles, so it works from a RAM where inputs are not changed while the
main program is running. Outputs controlled by normal instructions of PLC program updated
in TimeSlice memory after running PLC main program.

Normal instructions of each module, the Main program and Int0 use the same synchronized
memory space.

21

3 Modules of the PLC Program

22

4 Data Managed by the PLC Program

4 Data Managed by the PLC Program

The PLC program can manage fixed-point, floating-point and bit-type data.
Fixed-point data stored in memory can be also in binary and in BCD (binary coded decimal) form.
Bit-type data can be also queried for variation.

4.1 Managing Bit-type Data

Bit-type data is the most frequently used data unit of a PLC program. You can query any bit of
the whole memory space of PLC, so you can define a contact at bit addresses and write any output
bit, so it can be used as a relay coil for example. In addition, you can start variation verification
for any bit of the whole memory space.

4.2 Query of Rising Edge of Memory Bits with Operator “@”

Change from 0 to 1 of any bit of memory available for a PLC program can be queried, if you write
“@” operator before address of memory bit:

@bit address: query of rising edge
Bit address can be defined by all possible methods: directly, or indirectly, symbolical or also
indexed.
The queried data can be TRUE for 1 PLC cycle:

4.3 Query of Falling Edge of Memory Bits with Operator “%”

Change from 1 to 0 of any bit of memory available for a PLC program can be queried, if you write
“%” operator before address of memory bit:

%bit address: query of falling edge
Bit address can be defined by all possible methods: directly or indirectly, symbolical or also
indexed.
The queried data can be TRUE for 1 PLC cycle:

23

4 Data managed by PLC program

4.4 Immediate Query of Inputs, Immediate Issue of Outputs with Operator “!”

Any bit of memory available for PLC program can be queried immediately from TimeSlice
memory, or issued immediately to TimeSlice memory if you write “!” operator before memory
bit address:

!bit address: bit-type reading and writing of TimeSlice memory
Bit address can be defined by all possible methods: directly, or indirectly, symbolical or also
indexed. It should be used in cases which need fast reaction in Int0 module.
L Attention! The immediately refreshing operator “!” must not be used together with @, or %

edge query operators!

4.5 Definition of Decimal, Signed Number with Operator “#”

Decimal, signed constant can be defined with # operator in
!2147483648#constant#2147483647

range. PLC editor indicates error, if entered data is out of range.
The entered data can is stored in memory in binary coded, two’s complement format.
The bit no.31 is the sign bit. The + (positive) sign should not be specified.
So, if you want to write +14 in memory, you write

#14,
if you want to write !25, then you write

#!25.

24

4 Data Managed by the PLC Program

4.6 Definition of Hexadecimal Number With Operator “#$”

Max. 8 digit hexadecimal constant can be defined with “#$“ operator in
0#constant#FFFFFFFF

range. PLC editor indicates error, if entered data is out of range. The leading zeros can be
neglected.
For example, if you would like to write 0AB4C9E6 hexadecimal value in memory, then write

#$AB4C9E6.

4.7 Definition of BCD Number without Sign with Operator “#$”

Max 8 digit BCD (binary coded decimal) constant without sign can be defined with #$ operator
in

0#constant#99999999
range. So, if you would write BCD data in memory, then it is managed as a hexadecimal number,
but only 0, 1, ..., 9 digits used. The leading zeros can be neglected.
For example, if you would like to write 9367 decimal number in memory in BCD coding, you
write

#$9367.

4.8 Definition of Floating-point Number with Operator “*”

Representation of floating-numbers in a PLC program follows the double precision representation
of floating-point number of IEEE754 standard. These numbers are represented in 64 bits. So, if
you would write a floating-point data in memory, it always reserves

two double words (64 bits)
space. If the floating-point data is written to address n, the data is stored at the addresses

n and n+1.
A floating-point number must not be written to address 9999!
Floating-point numbers with * operator can be represented about in the range

from ±5.0 × 10 to ±1.7 × 10!324 308

and 0 with a precision of 15-16 digit. You have to use a decimal point (.) when specifying them.

25

4 Data managed by PLC program

For example, if you would like to input !124.753 number, then you have to write
*!124.753

You need not specify neither leading nor trailing zeros. The + (positive) sign can be neglected.

4.9 Double Precision Representation of Floating-point Numbers in IEEE754 Standard

We describe briefly the structure of IEEE754 double precision floating point format for
information, but PLC programmer need not deal with it absolutely.

The double precision floating-point number contains three parts:
 – Sign bit (s): If its value is 0 then the number is positive, if its value is 1 then the number is

negative.
 – Exponent (e): 11 bits long, and its base is 2. Positive and negative exponents also have to be

represented in this space. To manage it, you have to define offset for the effective
exponent, its value is 1023. So, if the value of a stored exponent is e=1201, the effective
exponent received from the equation 1201!1023=178. The full 0 (000h) and full 1 (7FFh)
exponent values are reserved for special application.

 – Mantissa: The mantissa is 53 bits long. It consists of two parts: a one-bit integer part and a
fraction part (f), which is 52 bits long. The value of integer part is 1 in case of norma-
lized form numbers, and 0 in case of denormalized numbers. Therefore the mantissa is 53
bits long, but it reserves only 52 bits space representing numbers, because we represent
only the fraction part.

The value of exponent (e) and fraction part of mantissa (f) affects the representation:
 – Normalized number: if the exponent is not full of 0 (e�000h) and not full of 1 (e�7FFh) the

number is normalized. Then we assume 1 for integer part of mantissa, and the number
received from the following relation:

(!1) ×1.f×2 , where “s” is the sign bit, “f” is the fraction part of mantissa, “e”s e!1023

is the exponent.
Substitute 1.f=2!2 , the biggest absolute value can be represented:!52

(!1) ×(2!2)×2 .±1.7 × 10s !52 1023 308

 – Overflow: If the result of a floating-point operation could not be represent, because the result
overflows the maximal value can be represented, the operation sets the FL_OF overflow

26

4 Data Managed by the PLC Program

status bit.
 – Subnormal or denormalized number: if the exponent is full of 0 (e=000h) but the fraction

part of mantissa is not 0, f�0, the number is in subnormal form. We use this format
representing very small numbers. This time we assume 0 for integer part of mantissa, and
the number received from the following relation:

(!1) ×0.f×2 , where “s” is th sign bit, “f” is the integer part of mantissa.s !1022

Substitute 0.f=2 , the smallest absolute value can be represented: !52

(!1) ×2 ×2 = (!1) ×2 .±5.0 × 10s !52 !1022 s !1074 !324

 – Underflow: If the result of a floating-point operation could not be represent, because the result
smaller than the minimal value can be represented, the operation sets the FL_UF under-
flow status bit.

 – Zero: that number is zero, which value of exponent and fraction part of mantissa also equal 0:
e=0 and f=0

The standard distinguishes +0 and -0 in function of sign bit (s=0, or s=1). So the zero is
a special, subnormal form number.

 – Infinity: If the exponent is full of 1 and the fraction part of mantissa is 0
e=2047(=7FFh) and f=0

the number is ±4, in function of s sign bit.
 – Not a Number, NaN: the represented value is not considered as valid number, if the exponent

is full of 1 and the fraction part of mantissa is not 0:
e=2047(=7FFh) and f�0

 – Error signal for Not a Number value: If any number in floating-point operation is Not a
Number (NaN), for example because of a missed initialization, the control sets FL_ER
status bit.

Location of floating point number in memory
The lower 32 bits of a floating-point number is located at the address defined, but the upper 32
bits reserves the double word after the address defined:

27

5 Status bits Set by PLC Instructions

5 Status Bits Set by PLC Instructions

Flags switched by PLC instructions used for indicate the result or error or status of an operation.
The status bits can be reached at the address 0000 or on symbol FLAGS. This word is read only
for the PLC program.

5.1 FL_ER Error Flag

The system sets this flag, if found an error in the executed PLC instruction. These can be the
following errors:

the defined address is out of range 0000....9999,
the defined data is out of possible range of the value,
the defined data is not in proper format,
one of the data of a floating-point operation is NaN (Not a Number)
the input parameters of an instruction are failed,
the instruction could not be executed.

We deal separately the managing of FL_ER flag when describing each instructions.

5.2 FL_UF Underflow Flag

The system sets this flag, if:
 – the result of a fixed-point addition of two negative numbers falls in the range of positive

numbers 00000000 ... 07FFFFFF, else 0,
 – the result of a fixed-point subtraction of a positive number from a negative number falls in the

range of positive numbers 00000000 ... 07FFFFFF, else 0,
 – the result of a floating-point operation is so small that it cannot be represented by double

precision floating-point number format.

5.3 FL_OF Overflow Flag

The system sets this flag, if:
 – the result of a fixed-point addition of two positive numbers falls in the range of negative

numbers, 80000000...FFFFFFFF else 0,
 – the result of a fixed-point subtraction of a negative number from a positive number falls in the

range of negative numbers 80000000 ... FFFFFFFF, else 0,
 –the result of a floating-point operation is so big that it cannot be represented by double precision

floated-point number format.

5.4 FL_CY Carry Flag

The system sets this flag, if:
 – carry is generated in a fixed-point addition, so the result does not fit in 32 bits,
 – borrow is generated in a fixed-point subtraction, else 0.

5.5 FL_GT Greater than Flag

The system sets this flag, when,
 – comparing two numbers, and value on left side is greater than value on right side: A>B.

28

5 Status bits Set by PLC Instructions

5.6 FL_EQ Equal Flag

The system sets this flag, when,
 – comparing two numbers, and the two values equal to each other: A=B.

5.7 FL_LT Lower than Flag

The system sets this flag, when,
 – comparing two numbers and value on left side is lower than value on right side: A<B.

29

6.1 Bit Operation Instructions

6 Instructions of the PLC Program

6.1 Bit Operation Instructions

Bit operation instructions use two values, 0 and 1. Consider value 0 as FALSE state, and the value
1 as TRUE state. Bit operations realize different Boolean algebraic operations, like AND, OR and
EXCLUSIVE OR. The inputs of logic operations always apply to corresponding bits of memory,
the results of operations write the corresponding bits of memory.

6.1.1 Open Contact: Input of a Memory Bit

The symbol of normally open contact is:

Input parameter of open contact:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed addressing is possible.
Possible modifiers:

Before address: managing @ rising edge or % falling edge,
After address: “,” indexing operator.

Operation of open contact:
The current flows through contact (the contact is closed), if value of memory bit is TRUE (1) and
current does not flow (the contact is open), if value of memory bit is FALSE (0). The relay coil
connected after contact is energized or released accordingly.

Operation of open contact with the operator of rising edge @
If you write operator @ before open contact address, current flows for 1 PLC cycle after the rising

PLCedge of signal (memory bit changes from 0 to 1), so relay R is energized for 1 T interval.

30

6.1 Bit Operation Instructions

Operation of open contact with falling edge % operator
If you write % operator before open contact address, current flows for 1 PLC cycle after the

PLCfalling edge of signal (memory bit changes from 1 to 0), so relay R is energized for 1 T inter-
val.

Operation of open contact with immediately refreshing ! operator
If you write operator ! before open contact address, it takes the state of contact from the
TimeSlice memory.

Example for application of open contact
The series-connected open contacts realize logic AND
operation, parallel-connected open contacts realize logic
OR operation.
The attached figure shows the following logic operation:

(A AND B) OR C = R

6.1.2 Open Contact: Query of a Double Word

The symbol of normally open contact is:

Input parameter of open contact:
 – Address of Bit:

Range of the value: n=0000...9999
Double word address can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

Before address: managing @ rising edge or % falling edge,
After address: “,” indexing operator.

Operation of open contact:
The current flows through contact (the contact is closed) if value of double word>0, and current
does not flow (the contact is open) if value of double word=0. The relay coil connected after
contact is energized or released accordingly.
The instruction can be used for query of timers, counters. For example, to check if the timer is
still working (>0), so current flows through the contact, or it has been expired (=0), so current
does not flow through the contact.

31

6.1 Bit Operation Instructions

6.1.3 Closed Contact: Input Not of a Memory Bit

The symbol of normally closed contact is:

Input parameter of closed contact:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed addressing is possible.
Possible modifiers:

Before address: managing @ rising edge or % falling edge,
After address: “,” indexing operator.

Operation of closed contact:
The current flows through contact (the contact closed), if value of memory bit is FALSE (0), and
current does not flow (the contact open), if value of memory bit is TRUE (1). The relay coil
connected after contact is energized or released accordingly.

Operation of closed contact with rising edge @ operator
If you write operator @ before closed contact address, current does not flow until 1 PLC cycle

PLCtime after rising edge of signal (memory bit changes from 0 to 1), so relay R is released for 1 T
interval.

32

6.1 Bit Operation Instructions

Operation of closed contact with falling edge % operator
If you write operator % before closed contact address, current does not flow until 1 PLC cycle

PLCtime after falling edge of signal (memory bit changes from 1 to 0), so relay R is released for 1 T
interval.

Operation of closed contact with immediately refreshing ! operator
If you write operator ! before closed contact address, it takes the state of closed contact from the
TimeSlice memory.

Example for application of closed contact
You can realize EXCLUSIVE OR operation by using
open and closed contacts.
EXCLUSIVE OR operation can be specified in the
following form:
A XOR B = (A AND (NOT B)) OR ((NOT A) AND B)
The figure to the right shows this function realized with
open and closed contacts.

6.1.4 Closed Contact: Query Not of a Double Word

The symbol of normally closed contact is:

Input parameter of closed contact:
 – Address of Bit:

Range of the value: n=0000...9999
Double word address can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

Before address: managing @ rising edge or % falling edge,
After address: “,” indexing operator.

Operation of closed contact:
The current flows through contact (the contact is closed), if the value of double word=0, and
current does not flow (the contact is open), if the value of double word >0. The relay coil,
connected after contact is energized or released accordingly.
The instruction can be used for query of timers, counters. For example, to check if the timer is
still working (>0), so current flows through the contact, or it has been expired (=0), so current
does not flow through the contact.

33

6.1 Bit Operation Instructions

6.1.5 Relay Coil: Output to a Memory Bit

The symbol of relay coil is:

Input parameter of relay coil:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

After address: “,” indexing operator.
– Remark:

Remark: text written in Remark will be the comment of rung.

Operation of relay coil with immediately refreshing ! operator
If you write operator ! before relay coil address, it outputs the state of relay coil to TimeSlice
memory.

Operation of relay coil
If current flows in the input of relay coil, so all conditions before coil are in TRUE state, the relay
is energized, so the instruction sets memory bit to 1.
Inversely, if current does not flow in the input of relay coil, so the condition before coil is in
FALSE state, the relay is released, so the instruction resets memory bit to 0.
The relay coil is a component that closes the rung, so it has not output, nothing can be connected
after it.

34

6.1 Bit Operation Instructions

6.1.6 Negated Relay Coil: Output Not to a Memory Bit

The symbol of negated relay coil is:

Input parameter of negated relay coil:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

After address: “,” indexing operator.
– Remark:

Remark: text written in Remark will be the comment of rung.

Operation of negated relay coil with immediately refreshing ! operator
If you write operator ! before negated relay coil address, it outputs the inverse state of relay coil
to TimeSlice memory.

Operation of negated relay coil
If current flows in the input of negated relay coil, so all conditions before coil are in TRUE state,
the relay is released, so the instruction resets memory bit to 0.
Inversely, if current does not flow in the input of negated relay coil, so the conditions before coil
is in FALSE state, the relay is energized, so the instruction sets memory bit to 1.
The negated relay coil is a component that closes the rung, so it has not output, nothing can be
connected after it.

35

6.1 Bit Operation Instructions

6.1.7 Setting a Memory Bit: the SET Instruction

The symbol of SET instruction is:

Input parameter of SET instruction:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

After address: “,” indexing operator.
– Remark:

Remark: text written in Remark will be the comment of rung.

Operation of SET instruction with immediately refreshing ! operator
If you write operator ! before SET instruction address, bit is set in TimeSlice memory.

Operation of SET instruction
If all conditions before the instruction is in TRUE state, the instruction sets the corresponding
memory bit to 1.
If all conditions before the instruction assume FALSE state after then, the memory bit remains
the same value.
The SET instruction is a component that closes the rung, so it has not output, nothing can be
connected after it.

6.1.8 Resetting a Memory Bit: the RST Instruction

The symbol of RST instruction is:

Input parameter of RST instruction:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

After address: “,” indexing operator.
– Remark:

Remark: text written in Remark will be the comment of rung.

Operation of RST instruction with immediately refreshing ! operator
If you write operator ! before RST instruction address, bit is reset in TimeSlice memory.

36

6.1 Bit Operation Instructions

Operation of RST instruction
If all conditions before the instruction is in TRUE state, the instruction resets the corresponding
memory bit to 0.
If all conditions before the instruction assume FALSE state after then, the memory bit remains
the same value.
The RST instruction is a component that closes the rung, so it has not output, nothing can be
connected after it.

6.1.9 Pulse Generation for Rising Edge: the DIFU Instruction

The symbol of DIFU instruction is:

Input parameter of DIFU instruction:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

After address: “,” indexing operator.
– Remark:

Remark: text written in Remark will be the comment of rung.

Operation of DIFU instruction
If all conditions before instruction turn from FALSE (0) state to TRUE (1) state, the instruction

PLCsets the corresponding memory bit to 1 for 1 PLC cycle (T time), so it differentiate for the
rising edge of signal.
The DIFU instruction is a component that closes the rung, so it has not output, nothing can be
connected after it.

Application of DIFU instruction
The following example shows the difference between the application of DIFU instruction and the
@ operator. If you differentiate the result of logic operation A OR B by DIFU instruction, you get
a different result than when the rising edge of A connected to the rising edge of B with logic
operation OR and the result is stored in relay R.

37

6.1 Bit Operation Instructions

6.1.10 Pulse Generation for Falling Edge: the DIFD Instruction

The symbol of DIFD instruction is:

Input parameter of DIFD instruction:
 – Address of Bit:

Range of the value (n.i): for double word address: n=0000...9999, for bit address: i=00..31
The address of bit can be a numeral or a symbol. Indexed definition is possible.
Possible modifiers:

After address: “,” indexing operator.
– Remark:

Remark: text written in Remark will be the comment of rung.

Operation of DIFD instruction
If all conditions before instruction turn from TRUE (1) state to FALSE (0) state, the instruction

PLCsets the correspond memory bit to 1 for 1 PLC cycle (T time), so it differentiate for the falling
edge of signal.
The DIFD instruction is a component that closes the rung, so it has not output, nothing can be
connected after it.

38

6.1 Bit Operation Instructions

Application of DIFD instruction
The following example shows the difference between the application of DIFD instruction and the
% operator. If you differentiate the result of logic operation A OR B by DIFD instruction, you get
a different result than when the falling edge of A connected to the falling edge of B with OR logic
operation and the result is stored in relay R.

6.1.11 Bit Operation Instructions and the Operator “!” in the Two Modules

Observe the difference of bit operation instructions in modules Main program and Int0 in the
following two program details.

Input called INPUT
– Main program reads it from PLC memory,
– while Int0 module reads it from TimeSlice memory at address !INPUT.

39

6.1 Bit Operation Instructions

The MAIN output
– is written by the Main program to PLC memory,

while the INT0 output
– is written by the Int0 module to TimeSlice memory to address !INT0.

The DIFU, DIFD instructions are used in both modules.
The outputs are stored in Main program at addresses MAIN_DU, MAIN_DD, and in module Int0
at addresses INT0_DU, INT0_DD.
The timing chart of individual signals can be seen in the diagram below.
The signal INPUT is updated from the PLC memory, while the signal INT0 receives its input and
writes its output also from and to TimeSlice memory. Therefore, signal INT0 precedes in time
signal INPUT.
On the outputs of DIFU, DIFD instructions can be seen, that module Int0 runs on higher
frequency than the Main program, therefore the outputs INT0_DU, INT0_DD are set for a shorter
interval than outputs MAIN_DU, MAIN_DD.
There is no difference between MAIN_INT0 and INT0_MAIN signals. The signal MAIN_INT0

PLCis updated from PLC memory by the instruction INT0, which is updated for T interval. It is
unnecessary to update signal INT0_MAIN to TimeSlice memory, and to receive input from

PLCTimeSlice memory, because the signal MAIN is updated by T interval, therefore MAIN_INT0
and INT0_MAIN signals have identical timing.

40

6.2 Basic Rules of Connections of Ladder Network

6.2 Basic Rules of Connections of Ladder Network

Contacts and instructions of a ladder diagram network must be connected. The connecting
elements are not instructions, they have not got any input or output parameters, only “wires” for
showing “circuit”, graphic elements, their space is one cell. These elements are shown in the
following picture, where one cell belongs to one row and one column.
The graphic elements arranged in rows and columns. One rung is a logic unit, which consist of
one or more rows. In the PLC program the

number of rungs,
in a rung the

number of rows
in a row the

number of columns
so the graphic elements (lines, contacts, instructions) written in a row is not limited.

Most of the instructions, except some of them, must not be written directly to the first
column, only after a contact. So, for example, relay coil or SET instruction could not be
connected directly to the left side vertical wire.

The last element of a rung, the far right instruction is not connected anywhere. The last element
called as

closing element.
Closing element could not be graphic element, contact, or instruction which have output.

41

6.2 Basic Rules of connections of Ladder Network

In case of a closing element, you can always
define comment by filling Remark parameter.
The comment is written in the row of closing
element, from the column following the closing
element.

6.2.1 Connecting elements
The connecting elements are not instructions, they have not got any input or output parameters,
only “wires” for showing “circuit”, graphic elements, the space occupied by them is one cell.
A ladder diagram PLC uses the following connecting elements:

Vertical-Right:

Horizontal-Downwards:

Left-Vertical:

Horizontal-Upwards:

Vertical:

Horizontal:

Upwards-Right:

Left-Upwards:

42

6.2 Basic Rules of Connections of Ladder Network

6.2.2 Commenting the Logic Sectors of a Ladder Diagram: the SEC Instruction

Comment can be written after closing elements. There is an instruction especially for defining
comments.

The symbol of SEC instruction is:

L Attention! The SEC instruction can be written in only the 1. column, even it is closing
element!

Input parameter of SEC instruction:
– Remark:

Remark: the text written in Remark will be the comment of logic sector.

Description of SEC instruction
The SEC instruction does not perform any operation, it is only used for to separate logic sectors
of PLC program from each other. Only comment text can be the input parameter.

43

6.3 Data Movement Instructions

6.3 Data Movement Instructions

With data movement instructions, you can define a value for any register of PLC memory, or any
register can be copied to another address.
You always have to specify the format of data to be defined:

#: signed decimal integer number,
#$: hexadecimal number, or
*: floating-point number.

Rules of addressing registers (by symbol, numeral, or indexed) are valid from the earlier.

The inputs and outputs of data movement instructions
Each data movement instruction has its own

enable input.
The movement is executed in the true state of the enable input.
You can configure data movement instructions to have an

output.
The output is in TRUE state, if the input of instruction is TRUE and movement has been
executed. The output changes into FALSE state, if the input of instruction is FALSE, or
instruction cannot be executed, so instruction sets the error flag FL_ER.
You can connect further data movement instructions to its output.
All data movement instructions have common input parameters.

Input parameters of data movement instructions
– Address of Result:

Range of the value: n...9999 (n: where starts user addresses)
The address of the destination register (result) can be a numeral or a symbol. Indexed
addressing is possible.
The defined value, or content of register to be moved gets to this address.

– Operand:
The value of data or the address of the source register to be moved.
If you define data, you always have to specify data corresponding to the format of
instruction.
The address of the source can be a numeral or a symbol. Indexed addressing is possible.

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

– Remark:
If the output is disabled, then the remark written here is displayed as a comment. If you
have not written here any remark, the comment of the symbol defined at address of result
box is written here.

44

6.3 Data Movement Instructions

6.3.1 Movement of Double Words: the MOV and the MVN Instructions

The
MOV

instruction moves a DWORD long source to the destination register, if condition is satisfied in
its input. The source can be:

a signed decimal number defined by # operator, or
a hexadecimal number defined by #$ operator, or
a register.

The
MVN

instruction moves the complement of a DWORD source to the destination register, if condition
satisfied in its input. The source can be:

a hexadecimal number defined by #$ operator, or
a register.

You can write further instructions after this, if the parameter “Output” of instruction is enabled.

45

6.3 Data Movement Instructions

6.3.2 Movement of Floating-point data: the MOVF Instruction

The
MOVF

instruction moves two DWORD long double source to the destination register, if condition is
satisfied in its input. The source can be:

double long floating point number defined by * operator, or
contents of 2 DWORD long registers.

L Attention! You have to reserve 2 DWORD long registers also for Address of Result and
Operand.

You can write further instructions after this, if the parameter “Output” of instruction is enabled.

46

6.4 Timers

6.4 Timers

You can set different type of delays and different width of pulses in a PLC program with timers.

Input and output of timers
Each timer has its own

enable input.
The enable input triggers the operation of timer.
Each timer has its own

output.
The signal appears with delay in the output based on the operation of timer.
Each timers have common input parameters.

Input parameters of timers
– Address of Timer:

Range of the value: n...9999 (n: where starts user addresses)
The address of the timer can be a numeral or a symbol. Indexed addressing is possible.
The programmer has to define the timer in the users’ memory space.
The address of timer points to the register which contains the actual value of the timer,
where the timer is counting. You can read the actual value of a timer.
When the timer is triggered that is it receives a rising edge on its enable input, value
defined by Set Value and Time Basis parameters is written into this register. This register
can be overwritten anytime, even if the timer is working.
Always the value written in this register in milliseconds is counted down. If counting
down is performed, then value of register will be 0 until it is triggered again.

L Attention: The address, or symbolic name of a timer can be used as a contact. The value of
condition is

TRUE: if the value read at address �0,
FALSE: if the value read at address =0.

– Set Value:
Range of the value: 0...231

The value of timing.
It is an integer constant, or register reference. Indexed addressing is possible.
If the timer is triggered, this number is written in register defined in Address of Timer
parameter.

– Time Basis:
Range of the value: 0, 1, 2, 3
It determines the interpretation of the Set Value parameter:

0: msec (millisecond)
1: sec (second)
2: min (minute)
3: hours (hour)

It is an integer constant, or a constant symbol (for example MSEC #0, SEC #1, MIN #2,
HOURS #3), but it also can be a register reference. Indexed addressing is possible.
Range of the value of Set Value parameter refers to timings defined in msec unit. The
timers always count with msec time base defined in Address of Timer register. If the value
defined in parameter Time Basis deviate from msec, then you can define the following Set
Value ranges:

=1 sec: 2147483

47

6.4 Timers

=2 min: 35791
=3 hours: 596

– Remark:
Not used.

6.4.1 On-delay Timer: TOND

If a TRUE value appears in its input, it appears delayed in the output.
When the input of the timer is triggered (its input is set to TRUE), then the timer starts to count
down. After counting down, the output will be set to TRUE.
If the value of input is set to FALSE, the value specified in Set Value and Time Basis parameters
is reloaded in the timer. The output of the timer is set to FALSE.
You can use the register Address of Timer as a contact. If the value of timer

�0 the condition is TRUE (the contact is closed),
=0 the condition is FALSE (the contact is open).

48

6.4 Timers

6.4.2 Off-delay Timer: TOFFD

If a FALSE value appears in its input, it appears delayed in the output.
When the input of the timer is triggered (its input is set to FALSE), then the timer starts to count
down. After counting down, the output will be set to FALSE.
If the value of input is set to TRUE, the value specified in Set Value and Time Basis parameters
is reloaded in the timer. The output of timer is set to TRUE.
You can use the register Address of Timer as a contact. If the value of timer

�0 the condition is TRUE (the contact is closed),
=0 the condition is FALSE (the contact is open).

49

6.4 Timers

6.4.3 Programmable Pulse Width: TPULSE

If a TRUE value appears in its input, its output goes TRUE immediately then after the delay set
goes to FALSE.
When the input of the timer is triggered (its input is set to TRUE), then the timer starts to count
down. After counting down, the output will be set to FALSE.
If the value of input is set to FALSE, the value specified in Set Value and Time Basis parameters
is reloaded in the timer. The output of the timer is set to FALSE.
You can use the register Address of Timer as a contact. If the value of timer

�0 the condition is TRUE (the contact is closed),
=0 the condition is FALSE (the contact is open).

50

6.5 Counters

6.5 Counters

You can count pulses in a PLC program with counters.

Inputs and output of counters
Each counter has its own

clock signal (CK),
up/down (U/D) and a
reset (R)

input.
– CK input: The rising edge of pulse in CK input operates the counter.
– U/D input: The pulse in CK input modifies the value of counter:

increases, if the U/D input is FALSE, or
decreases, if the U/D input is TRUE.

– R input: If R input is TRUE, the counter is reset. The precedence of R input is higher than CK
input: if its state is TRUE, the counter does not count, even if pulse received in CK input.

– output of counter is set TRUE, if the content of counter is equal to a pre-set number.

Each counters have common input parameters.

Input parameters of counters
– Address of Counter:

Range of the value: n...9999 (n: where starts user addresses)
The address of counter can be a numeral or a symbol. Indexed addressing is possible.
The programmer has to define the counter in the users’ memory space.
The address of counter points to the register which contains the actual value of the
counter, where the counter is counting. You can read the actual value of a counter.
When the input R of a counter is TRUE, the value defined in parameter Starting Value is
written in this register. This register can be overwritten anytime, even if the counter is
working.

L Attention: The address, or symbolic name of a counter can be used as a contact. The value
of condition is

TRUE: if the value read at address �0,
FALSE: if the value read at address =0.

– Starting Value:
Range of the value: 0...231

It is an integer constant, or register reference. Indexed addressing is possible.
The initial value of a counter, that is set when input R is TRUE. This is the lower limit
of rollover in ring counters.

– Ending Value:
Range of the value: 0...231

It is an integer constant, or register reference. Indexed addressing is possible.
Simple counters count until this value, this is the upper limit of rollover in ring counters.

– Compare Value:
Range of the value: 0...231

It is an integer constant, or register reference. Indexed addressing is possible.
The counter is in TRUE state, if the content of counter is equal to this value.

– Remark:
Note.

51

6.5 Counters

6.5.1 Simple Counter CNT

The simple counter counts until it reaches the value defined in parameter Ending Value. Then it
stops, even pulses received in CK input. If reset input is set to TRUE, the counter restarts.
There are two examples for using this counter.

Down counter
Set U/D input of the counter to TRUE by the flag N_ON (always TRUE). Then it counts down.
The counter starts from 4 by RESET signal, because the Starting Value is 4 and it counts to 0,
because Ending Value parameter is 0. It counts for the rising edge of CK input.
The output of the counter is set to TRUE, if its content becomes 0, because the Compare Value
parameter is set to 0.
The counter restarts for the RESET signal.
You can use the register Address of Counter as a contact. If the value of counter

�0 the condition is TRUE (the contact is closed),
=0 the condition is FALSE (the contact is open).

52

6.5 Counters

Up counter
Set U/D input of the counter to FALSE by the flag N_OFF (always FALSE). Then it counts up.
The counter starts from 0 by RESET signal, because the Starting Value is 0 and it counts up to
4, because Ending Value parameter is 4. It counts for the rising edge of CK input.
The output of the counter is set to TRUE, if its content becomes 4, because the Compare Value
parameter is set to 4.
The counter restarts for the RESET signal.
You can use the register Address of Counter as a contact. If the value of counter

�0 the condition is TRUE (the contact is closed),
=0 the condition is FALSE (the contact is open).

53

6.5 Counters

6.5.2 Up-down Counter CNTR

If the up-down counter reaches the value defined in the Ending Value parameter while counting
up, then it rolls over for the next pulse and continues counting from the value defined in the
Starting Value parameter.
Contrary, if the counter reaches the value defined in the Starting Value parameter while counting
down, then it rolls over for the next pulse and continues counting from the value defined in the
Ending Value parameter.
If the reset (R) input is set to TRUE, the counter is set to the value defined in the Starting Value
parameter.
The value defined in Compare Value parameter controls the output of counter. If the value of the
counter is equal to this parameter, then the output is set to TRUE.
The following figure shows the operation of the up-down counter:

54

6.5 Counters

Example for application of up-down counters
It is a frequently occurring task to move a rotating device into a determined position and record
this position in PLC program. This device can be a turret, magazine or indexing table.
For example, you have a rotating device with 8 positions. Number these positions from 1 to 8.
The Starting Value parameter of up-down counter is 1, the Ending Value parameter is 8. Let the
Compare Value parameter of the counter be the symbol TARGET, where the position to go is
written. The name of counter is ROTOR.
If PLC receives a new

, it overwrites the value of TARGET register. Since the value of counter is not equal to that of the
Compare Value (TARGET position), then the output is set to FALSE state, it turns on the M_ON
motor output. The output is turned on until the actual value of the counter becomes equal to value
defined in TARGET register.
Connect motor direction signal of M_DIR to the U/D input of the counter and connect position
switch of rotating device to the CK clock input.

55

6.6 Rotation Control Instruction ROT

6.6 Rotation Control Instruction: ROT

The ROT instruction calculates that how many steps and in which direction to be moved a
rotating device (for example turret, indexing table or magazine) to reach the destination defined
by input parameters and properly set inputs.

Inputs and output of ROT instruction
The ROT instruction has got 5 inputs. These are:
– EN input: According to the input parameters and inputs set, on the rising edge of the enable

(EN) input it calculates the value of position to go and sets the direction of rotation on its
output.

– BID input: If the BID (bidirectional) input is FALSE the value of position to go is calculated
according to the DIR input and the output is set in accordance with this input.
If the BID (bidirectional) input is TRUE the value of position to go is calculated in the
shorter direction and the output is reset, if the shorter movement is positive, and set, if the
shorter movement is negative.

 – DIR input: If BID input is FALSE, the output is set in accordance with this input: If DIR=0
then the output is also 0, else it is 1. The value of position to go is calculated in accor-
dance with the DIR input.

– INC input: If the input is FALSE, the value of position to go is calculated in absolute value,
if the input is TRUE, the value of position to go is calculated incrementally, so it deter-
mines, how many steps is the device to be rotated.

– PRE input: If the input is FALSE, the value of position to go is equal to the goal position in
INC=0 state, and in INC=1 state, the value of position to go is equal to the difference
between goal position and current position.
If the input is TRUE, the value of position to go is equal to the first position before the
goal position.

The ROT instruction has an output. The
– output shows in which direction is the rotor to be moved in function of state of BID and DIR

inputs and in function of the content of registers Current Position and Goal Position.
If the output is in FALSE state in positive,
If the output is in TRUE state in negative direction.

If the instruction cannot be executed, then the instruction sets the error flag FL_ER and the output
of instruction and the value of Position to Go register remain unchanged.

56

6.6 Rotation Control Instruction: ROT

Input parameters of ROT instruction
– Position to Go:

Range of the value: 0...9999
The address of Position to Go register can be a numeral or a symbol. Indexed addressing
is possible.
The programmer has to define it in the users’ memory space.
This register is the output register of the instruction.
If the BID input is TRUE, the position to go value is calculated in the shorter way.
If the INC input is TRUE, the position to go value is calculated incrementally, so it
determines, how many steps is the device to be rotated.
If the PRE input is TRUE, the value of position to go is equal to the first position before
the goal position.

– Current Position:
Range of the value: 0...9999
The address of Current Position register can be a numeral or a symbol. Indexed addressing
is possible.
The programmer has to define it in the users’ memory space.
The register contains the current position of the rotor.

– Goal Position:
Range of the value: 0...9999
The address of Goal Position register can be a numeral or a symbol. Indexed addressing
is possible.
The programmer has to define it in the users’ memory space.
The register contains the goal position. Usually it is a programmed value, for example a
T code received from the NC.
If both INC and PRE inputs are FALSE, the Position to Go output register becomes equal
to the value of Goal Position.

57

6.6 Rotation Control Instruction ROT

– Starting Value:
Range of the value: 0...231

It is an integer number, or a register reference. Indexed addressing is possible.
The starting or lowest position of the rotor, for example 1.

– Ending Value:
Range of the value: 0...231

It is an integer constant, or register reference. Indexed addressing is possible.
The end or highest position of the rotor, for example 12.

L Attention!
If the defined addresses are out of its range of the value, then the instruction sets the error
flag FL_ER and the output of instruction and the value of Position to Go register remain
unchanged.

Example for application of ROT instruction
You have got a 12-position turret which can be rotated in both directions.
The position to go is calculated by ROT instruction and is saved into Position to Go register
named TARGET.
The Current Position is the value of counter ROTOR.
The T code received from NC is saved in the Goal Position register named T_CODE.
The Starting and the Ending Values of the rotor are: #1 and #12.

The device rotates in both directions, so the BID input is TRUE.
You request the position to go value in absolute form, so INC input is FALSE.
You do not want to stop one position before the destination, so PRE input is FALSE.
The turret rotation starts after ROT_EN flag is written to 1. The value of position to go and the
direction of movement is calculated by ROT instruction, written to TARGET register, and set the
proper motor rotation direction M_DIR.
Since the value of Compare Value (TARGET) of ROTOR counter has changed, its output will
be FALSE, which turns on M_ON motor switch output. The motor starts to rotate in the direction
determined by M_DIR output, and it rotates until the content of ROTOR counter reaches the
TARGET value. Then the output of counter is turned to TRUE state, it turns off M_ON output,
which stops the motor.

58

6.6 Rotation Control Instruction: ROT

59

6.7 Data Shift Instructions

6.7 Data Shift Instructions

6.7.1 Shift Register: SHTR

You can move a bit pattern to the right or left by using shift register.

Inputs and output of SHTR instruction
A shift register has got the following inputs:

clock signal (CK),
left/right (L/R) and
data (D).

– CK input: The rising edge of the pulse received in CK input of register shifts the bit pattern
in register.

– L/R input: The pulse received in CK input of register shifts the bit pattern in register:
to the left by one bit, if L/R input is FALSE or
to the right by one bit, if L/R input is TRUE.

– D input: The state of data input (D) determines the value of the incoming bit. If the input is
FALSE then the incoming bit is 0, if it is
TRUE, then the incoming bit is 1.
Shifting left the rightmost bit (0),
shifting right the leftmost bit (31)

is replaced by the incoming data bit..
The
– ouput of the shift register becomes the value of the outgoing bit:

shifting left the leftmost bit (31),
shifting right the rightmost bit (0).

Its value is FALSE, if the value of leaving bit is 0, and TRUE, if the value of leaving bit is 1.

Input parameter of shift register
– Address of Shift Register:

Range of the value: 0...9999
The Address of Shift Register can be a numeral or a symbol. Indexed addressing is
possible.
The programmer has to define the shift register in users’ memory space.
The address of shift register shows the address containing the actual value of register. The
register works here, and you can read the actual value of register anytime. The same
correspond for any bit of the register. You can rewrite it anytime, also during the
operation of the register.

L Attention!
If the address defined in Address of Shift Register parameter is out of its range of the
value, then the instruction sets error flag FL_ER.

– Remark:
Note.

60

6.7 Data Shift Instructions

6.7.2 Shift Instructions: ASHL, ASHR

There are two arithmetic shift instructions: the ASHL shifts the bit pattern left, the ASHR shifts
the bit pattern right.
Each instruction has an

enable input, and an
output.

The selected operation is executed if the enable input is TRUE.
If the enable input is TRUE and the operation executed without error then the output of
instruction is set to TRUE, otherwise, the output will be FALSE. The output can be used for
enabling a following, for example an arithmetic operation.
You can assign a continuous array consisting of n pieces double words, by defining the starting
and the ending address of the array. In addition, you can determine that by how many bits the bit
pattern will be shifted simultaneously. The outgoing bits will be lost, and zeros will come in into
the empty spaces.
When shifting left, the outgoing bits are the upper bits of the double word specified on Ending
Address and the zeros will come in into the lower bits of the double word specified on Starting
Address.
When shifting right, the outgoing bits are the lower bits of the double word specified on Starting
Address and the zeros will come in into the upper bits of the double word specified on Ending
Address.

Input parameters of shift instructions
– Starting Address:

Range of the value: 0...9999
The Starting Address of the array can be a numeral or a symbol. Indexed addressing is
possible.

 – Ending Address:
Range of the value: 0...9999
The Ending Address of the array can be a numeral or a symbol. Indexed addressing is
possible.

61

6.7 Data Shift Instructions

L Attention!
The following condition must be true for the starting and ending address:

Starting Address#Ending Address
If the upper condition is not satisfied or the defined addresses are out of its range of the
value then the instruction sets error flag FL_ER and the output of instruction will be
FALSE.
If the values of starting and ending addresses are equal then the instruction is executed
only for a double word.

– Shift Value:
Range of the value: 0...231

It is an integer constant, or register reference. Indexed addressing is possible.
In this parameter you can specify by how many bits the bit pattern is to be shifted.

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

– Remark:
Note.

The operation of ASHL instruction (shift left by any bits):

62

6.7 Data Shift Instructions

The operation of ASHR instruction (shift right by any bits):

6.7.3 Rotate Instructions: ARTL, ARTR

The arithmetic rotate instructions rotate the assigned bit pattern, left (ARTL) or right (ARTR).
Each instruction has an

enable input, and an
output.

If the enable input is TRUE and the instruction executed without error then the output of
instruction will be TRUE, otherwise the output will be FALSE. The output can be used for
example enabling the next instruction (for example an arithmetic instruction).
You can assign a continuous array consisting of n pieces double words by defining the starting
and the ending address of the array. You can also define by how many bits the bit pattern is to be
rotated by the instruction. The outgoing bits in rotation will come in on the other side.
When rotating left, the outgoing bits are the upper bits of the double word specified on Ending
Address and they will come in into the lower bits of the double word specified on Starting
Address.
When rotating right, the outgoing bits are the lower bits of the double word specified on Starting
Address and they will come in into the upper bits of the double word specified on Ending
Address.

Input parameters of rotate instructions
– Starting Address:

Range of the value: 0...9999
The Starting Address of the array can be a numeral or a symbol. Indexed addressing is
possible.

– Ending Address:
Range of the value: 0...9999
The Ending Address of the array can be a numeral or a symbol. Indexed addressing is
possible.

63

6.7 Data Shift Instructions

L Attention!
The following condition must be true for the starting and ending address:

Staring Address#Ending Address
If the upper condition is not satisfied or the defined addresses are out of its range of the
value then the instruction sets error flag FL_ER and the output of instruction will be
FALSE.
If the values of starting and ending addresses are equal then the instruction is executed
only for a double word.

– Rotation Value:
Range of the value: 0...231

It is an integer constant, or register reference. Indexed addressing is possible.
In this parameter you can specify by how many bits the bit pattern is to be rotated .

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

– Remark:
Note.

The operation of ARTL instruction (rotate left by any bits):

64

6.7 Data Shift Instructions

The operation of ARTR instruction (rotating right by any bits):

65

6.8 Logic Instructions

6.8 Logic Instructions

You can execute logic and, or, exclusive or negation operations between 32 bit data by using logic
instructions.

6.8.1 Complement Instruction: NEG

The NEG instruction inverts each bit of a 32 bit register bit by bit. Turns all OFF bits ON and
turns all ON bits OFF.
The instruction has an

enable input, and an
output.

The output of instruction will be FALSE, if its input is FALSE, or the instruction cannot be
executed. Then the instruction sets error flag FL_ER.

Input parameters of NEG instruction
– Address of Result:

Range of the value: 0...9999
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.

– Operand:
The data to be complemented can be
a hexadecimal constant defined by #$ operator, or
a DWORD long register content.
If the Operand is a register, its address can be a numeral or a symbol. Indexed addressing
is possible.

L Attention!
If the defined addresses are out of their range of the value then the instruction set FL_ER
error flag and the output of instruction will be FALSE.

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

66

6.8 Logic Instructions

6.8.2 Two-operand Instructions: AND, OR, XOR

The
AND instruction realizes AND function between two 32 bit data, the
OR instruction realizes OR function between two 32 bit data, the
XOR instruction realizes EXCLUSIVE OR function between two 32 bit data

bit by bit.
The instructions have an

enable input, and an
output.

The output of instruction will be FALSE, if its input is FALSE, or the instruction cannot be
executed. Then the instruction sets error flag FL_ER.

Input parameters of instructions
– Address of Result:

Range of the value: 0...9999
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.

– 1st Operand:
The first operand of instruction.
The 1 Operand can only be a register. st

Its address can be a numeral or a symbol. Indexed addressing is possible.
– 2nd Operand:

The second operand of instruction.
 The 2 Operand can be nd

a hexadecimal constant defined by #$ operator, or
a DWORD long register content.
If the 2 Operand is a register, its address can be a numeral or a symbol. Indexednd

addressing is possible.
L Attention!

If the defined addresses are out of their range of the value then the instruction sets error
flag FL_ER and the output of instruction will be FALSE.

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

67

6.8 Logic Instructions

If the adequate bits of both operands are TRUE, then the resulting bit of AND instruction is
TRUE:

If the adequate bits any of the operands is TRUE, then the resulting bit of OR instruction is
TRUE:

68

6.8 Logic Instructions

If the adequate bits of both operands are different from each other, then the resulting bit of XOR
instruction is TRUE.

69

6.9 Integer Arithmetic Instructions

6.9 Integer Arithmetic Instructions

The integer arithmetic instructions are adding, subtracting, multiplying and dividing double word
numbers.
Each instruction has an

enable input, and an
output.

The output of instruction will be FALSE, if its input is FALSE, or the instruction cannot be
executed. Then the instruction sets error flag FL_ER.
Integer arithmetic instructions also set the following flags:

FL_UF: underflow
FL_OF: overflow
FL_CY: carry.

The input parameters of instructions
– Address of Result:

Range of the value: 0...9999
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.

– 1st Operand:
The first operand of instruction.
The 1 Operand can only be a register. st

Its address can be a numeral or a symbol. Indexed addressing is possible.
– 2nd Operand:

The second operand of instruction.
 The 2 Operand can be nd

a decimal or hexadecimal constant defined by # or #$ operator, or
a DWORD long register content.
If the 2 Operand is a register, its address can be a numeral or a symbol. Indexednd

addressing is possible.
L Attention!

If the defined addresses are out of their range of the value then the instruction sets error
flag FL_ER and the output of instruction will be FALSE.

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

70

6.9 Integer Arithmetic Instructions

6.9.1 Signed, Integer Addition, without Carry: ADD

Addition without carry means, the carry (FL_CY=1), generated before the execution of the
current ADD instruction, is not added to the addend of the current addition.
The

result saved in register defined at address of result, the
augend is the 1st Operand, the
addend is the 2nd Operand.

FL_CY carry flag is set if a carry is created by the addition, so the result cannot be stored in 32
bits, else its value is 0.

FL_OF overflow flag is set if the result of addition of two positive numbers (value of 31 bit isst

0 in each number) is in the range of negative numbers 80000000...FFFFFFFF, else its
value is 0.

FL_UF underflow flag is set if the result of addition of two negative numbers (value of 31 bitst

is 1 in each number) is in the range of positive numbers 00000000...07FFFFFF, else its
value is 0.

 7000000F
+FC000012

FL_CY=1 6C000021

 7FFFFFF0
 +000000FF

FL_CY=0, FL_OF=1 800000EF

 8000FC22
 +80F032A1

FL_CY=1, FL_UF=1 00F12EC3

71

6.9 Integer Arithmetic Instructions

6.9.2 Signed, Integer Subtraction, without Carry: SUB

Subtraction without carry means, the carry (FL_CY=1), generated before the execution of the
current SUB instruction, is not subtracted from the minuend of the current subtraction.
The

result is saved in register defined at address of result, the
minuend is the 1st Operand, the
subtrahend is the 2nd Operand.

FL_CY carry flag is set if a borrow is created by the subtraction, else its value is 0:

FL_OF overflow flag is set if the result of subtracting a negative number from a positive number
is in the range of negative numbers 80000000...FFFFFFFF, else its value is 0.

FL_UF underflow flag is set if the result of subtracting a positive number from a negative
number is in the range of positive numbers 00000000...07FFFFFF, else its value is 0.

 2A41FB53
-B145E681

FL_CY=1 78FC14D2

 7FFFFF00
 -FFFFF000

FL_CY=1, FL_OF=1 80000F00

 800000FF
 -0000A000

FL_CY=0, FL_UF=1 7FFF60FF

72

6.9 Integer Arithmetic Instructions

6.9.3 Signed, Integer Multiplication: MUL

The signed, integer multiplication (MUL) can be used when the result can be represented in 32
bits (DWORD). Else the instruction sets overflow flag FL_OF.
The

result is saved in register defined at address of result, the
multiplicand is the 1st Operand, the
multiplier is the 2nd Operand register.

FL_OF overflow flag is set if the result cannot be represented in 32 bits:

Because the MUL instruction is a signed operation, overflow is not generated in the following
case:

 7000000F
×0C000012

FL_OF=1 9400010E

 7000000F
×0C000012

FL_OF=1 9400010E

 FFFFFFFF
×00000002

FL_OF=0 FFFFFFFE

73

6.9 Integer Arithmetic Instructions

6.9.4 Signed, Integer Division: DIV

The signed, integer division (DIV) can be used when the remainder of division is not needed.
The

quotient saved in register defined at address of result, the
dividend is the 1st Operand, the
divisor is the 2nd Operand.

The result of division is equal to 0, if the divisor is larger than the dividend:

The result of division will be a negative number, either the divisor or the dividend is negative:

L Attention!
If the value of divisor is 0, the result of division will be 0 and the error flag FL_ER is set!

 0000002A
÷000000FF

 00000000

 00000002
÷FFFFFFFF
 FFFFFFFE

74

6.10 Floating-point Mathematical Instructions

6.10 Floating-point Mathematical Instructions

The instructions have an
enable input, and an
output.

The output of instruction will be FALSE, if its input is FALSE, or the instruction cannot be
executed. Then the instruction sets error flag FL_ER.
The floating-point instructions also set the following flags:

FL_UF: underflow
FL_OF: overflow

Input parameters of instructions
– Address of Result:

Range of the value: 0...9998
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.

 – Operands:
Floating-point instructions can be single-operand or two-operand instructions. For
example single-operand instruction is the square-root, two-operand instruction is the
addition.
The Operand can be
a floating-point constant defined by * operator, or
the content of two consecutive DWORD registers.
If the Operand is a register, its address can be a numeral or a symbol. Indexed addressing
is possible. Indexing always refer to the lower DWORD addresses.

L Attention!
If the defined addresses are out of their range of the value then the instruction sets error
flag FL_ER and the output of instruction will be FALSE.

– Output:
You can connect further instructions to the output of the instruction box, in case of its
enabled state.

Flags operated by the instructions
FL_OF overflow flag is set, if the absolute value of result is so high that it cannot be represented

as a double precision floating-point number.
FL_UF underflow flag is set, if the absolute value of result is so low that it cannot be represented

as a double precision floating-point number.

75

6.10 Floating-point Mathematical Instructions

6.10.1 Floating-point Addition: +F

The result saved in register defined at address of result.
– 1st Operand

The value of the augend.
The address of a register or a constant. Indexed addressing is possible.

– 2nd Operand
The value of the addend.
The address of a register or a constant. Indexed addressing is possible.

76

6.10 Floating-point Mathematical Instructions

6.10.2 Floating-point Subtraction: -F

The difference saved in register defined at address of result.
– 1st Operand

The value of the minuend.
The address of a register or a constant. Indexed addressing is possible.

– 2nd Operand
The value of the subtrahend.
The address of a register or a constant. Indexed addressing is possible.

77

6.10 Floating-point Mathematical Instructions

6.10.3 Floating-point Multiplication: *F

The multiplication saved in register defined at address of result.
– 1st Operand

The value of the multiplicand.
The address of a register or a constant. Indexed addressing is possible.

– 2nd Operand
The value of the multiplier.
The address of a register or a constant. Indexed addressing is possible.

78

6.10 Floating-point Mathematical Instructions

6.10.4 Floating-point Division: /F

The quotient saved in register defined at address of result.
– 1st Operand

The value of the dividend.
The address of a register or a constant. Indexed addressing is possible.

– 2nd Operand
The value of the divisor.
The address of a register or a constant. Indexed addressing is possible.

79

6.10 Floating-point Mathematical Instructions

6.10.5 Exponential Power: PWR

The result is saved in register defined at address of result.
– Base

The value of the base.
The address of a register or a constant. Indexed addressing is possible.

– Exponent
The value of the exponent.
The address of a register or a constant. Indexed addressing is possible.

L Attention: The following inequality must be met for the value of base:
Base $0

If the upper inequality is not met, the instruction cannot be executed and the error flag is
set FL_ER=1.

80

6.10 Floating-point Mathematical Instructions

6.10.6 Square Root: SQRT

The square root is saved in register defined at Address of Result.
– Operand

The address of a register or the constant of which the square root is to be calculated.
Indexed addressing is possible.

L Attention: The following inequality must be true for the value of Operand:
Operand $0

If the upper inequality is not met, the instruction cannot be executed and the error flag is
set FL_ER=1.

81

6.10 Floating-point Mathematical Instructions

6.10.7 Sine: SIN

The sine of the angle is saved in register defined at Address of Result.
– Operand

The value of the angle is to be specified in radians.
The address of a register or the constant of which the sine is to be calculated. Indexed
addressing is possible.

82

6.10 Floating-point Mathematical Instructions

6.10.8 Cosine: COS

The cosine of the angle is saved in register defined at Address of Result.
– Operand

The value of the angle is to be specified in radians.
The address of a register or the constant of which the cosine is to be calculated. Indexed
addressing is possible.

83

6.10 Floating-point Mathematical Instructions

6.10.9 Tangent: TAN

The tangent of the angle saved in register defined at Address of Result.
– Operand

The value of the angle is to be specified in radians.
The address of a register or the constant of which the tangent is to be calculated. Indexed
addressing is possible.

L Attention: If the value of Operand:
Operand = ð/2

then the instruction cannot be executed and the error flag is set FL_ER=1.

84

6.10 Floating-point Mathematical Instructions

6.10.10 Arc Sine: ASIN

The arc sine of the number is saved in register defined at address of result in radians.
– Operand

The address of a register or the constant of which the arc sine is to be calculated. Indexed
addressing is possible.

L Attention: The following inequalities must be true for the value of Operand:
-1 # Operand # 1

If the upper inequalities are not met, the instruction cannot be executed and the error flag
is set FL_ER=1.

The result is obtained in the following angle range:
-ð/2 # Result #ð/2

85

6.10 Floating-point Mathematical Instructions

6.10.11 Arc Cosine: ACOS

The arc cosine of the number saved in register defined at Address of Result in radians.
– Operand

The address of a register or the constant of which the arc cosine is to be calculated.
Indexed addressing is possible.

L Attention: The following inequalities must be true for the value of Operand:
-1 # Operand # 1

If the upper inequalities are not met, the instruction cannot be executed and the error flag
is set FL_ER=1.

The result obtained in the following angle range:
0 # Result #ð

86

6.10 Floating-point Mathematical Instructions

6.10.12 Arc Tangent: ATAN

The arc tangent of the number saved in register defined at Address of Result in radians.
– Operand

The address of a register or the constant of which the arc tangent is to be calculated.
Indexed addressing is possible.

The result is obtained in the following angle range:
-ð/2 # Result #ð/2

87

6.10 Floating-point Mathematical Instructions

6.10.13 Natural Exponent: EXP

The natural base (e=2.718282...) exponential of the number is saved in register defined at Address
of Result.
– Operand

The address of a register or the constant of which the natural base exponential is to be
calculated. Indexed addressing is possible.

The result is obtained in the following range:
0 < Result

88

6.10 Floating-point Mathematical Instructions

6.10.14 Natural Logarithm: LOG

The natural base (e=2.718282...) logarithm of the number is saved in register defined at Address
of Result.
– Operand

The address of a register or the constant of which the natural base logarithm is to be
calculated. Indexed addressing is possible.

L Attention: The following inequality must be true for the value of Operand:
0 < Operand

If the upper inequality is not met, the instruction cannot be executed and the error flag is
set FL_ER=1.

89

6.11 Conversion Instructions

6.11 Conversion Instructions

Data can be converted to another format by conversion instructions.

Input and output of conversion instructions
Each conversion instruction has an

enable input.
Data are converted when the enable input of the instruction is TRUE.
You can configure an

output for conversion instructions.
The output will be TRUE if the input of instruction is TRUE and the conversion can be executed.
The output will be FALSE if the input is FALSE or the instruction cannot be executed, so the
instruction sets the FL_ER error flag!
You can connect further instruction to its output.
All conversion instructions have common input parameters.

Input parameters of conversion instructions
– Address of Result:

Range of the value: 0...9999
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.
The converted data are saved in this register.

– Operand:
The address of a register or the constant to be converted.
The address of register can be a numeral or a symbol. Indexed addressing is possible.

– Output:
You can connect further instructions to the output in enabled state.

– Remark:
If output disabled, then the remark written here displayed as a comment, or if you did not
write here any remark, the comment of the symbol defined at Address of Result box is
written here.

90

6.11 Conversion Instructions

6.11.1 BCD to Binary Conversion: BIN

The operand of instruction has to be a BCD number.
The largest convertible BCD number is #$99999999, that is the largest number which can be
represented in 8 decimal digits.
L Attention:

If the number to be converted is not in BCD format, then the instruction cannot be
executed and error flag is set FL_ER=1. For example the

#$000002AF
number is not BCD!

91

6.11 Conversion Instructions

6.11.2 Binary to BCD Conversion: BCD

The largest binary number which can be converted to BCD: #$05F5E0FF.
This number corresponds to #$99999999 number of 8 decimal digits.
L Attention:

If the binary number cannot be converted to 8 digit BCD number, then the instruction sets
error flag FL_ER. For example the number

#$2FFFFFFF
cannot be converted!

92

6.11 Conversion Instructions

6.11.3 Signed Integer to Floating-point Conversion: FLT

L Attention!
The result is saved to

Address of Result and to
Address of Result+1

addresses!
Data defined in input parameter of Operand managed as signed, integer number, so the result has
got the correct sign. For example, the result of conversion of the integer number

#$FFFFFFFF
to floating-point number will be:

-1.0

93

6.11 Conversion Instructions

6.11.4 Floating-point to Signed Integer Conversion: FIX

L Attention!
The number to be convert is loaded from

Operand
Operand+1

addresses!
The range of floating numbers can be converted:

-2147483648.000... # Operand # 2147483647.000...
If the number to be converted is out of the range given, then the instruction cannot be executed
and sets error flag FL_ER.
The fixed-point number at Address of Result has got the correct sign. For example the result of
the conversion of the floating-point number

-1.000
to integer will be:

#$FFFFFFFF.

94

6.11 Conversion Instructions

6.11.5 Radian to Degree Conversion: DEG

L Attention!
The angle in radians is loaded from the addresses

Operand
Operand+1

as a floating-point number!
The result is saved in degrees at addresses

Address of Result
Address of Result+1

as a floating-point number!

95

6.11 Conversion Instructions

6.11.6 Degree to Radian Conversion: RAD

L Attention!
The angle in degrees is loaded from the addresses

Operand
Operand+1

as a floating-point number!
The result in radians is saved at addresses

Address of Result
Address of Result+1

as a floating-point number!

96

6.12 Comparison Instructions

6.12 Comparison Instructions

Two signed, 32 bit integer values or two, 64 bit floating-point values can be compared by using
comparison instructions.

6.12.1 The CMP and the FCMP Instructions

The
CMP instruction compares two signed, 32 bit integer values, the
FCMP instruction compares two, 64 bit floating-point values.

Each instruction has an
enable input.

None of them has output. The instructions must be specified at the end of the rung.
The result of comparison can be determined on the flags

FL_GT greater, than (>), the
FL_EQ equal (=), and the
FL_LT less, than (<).

Input parameters of CMP and FCMP instructions
– Address of Value:

Range of the value: 0...9999
The address of the left side value to be compared.
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.

– Data:
The right side value to be compared.
Data can be a register reference or a constant. Indexed addressing is possible.
In case of CMP instruction, it is a signed, integer number,
in case of FCMP instruction, it is a floating-point number.

L Attention:
Floating-point data are loaded from the Address of Value and from the Address of
Value+1 in case of FCMP instruction. It is also valid for the Data parameter, if you have
specified a register reference there.

L Attention!
If the defined addresses are out of their range of value, then the instruction sets error flag
FL_ER .

97

6.12 Comparison Instructions

The following figure shows how to evaluate the condition A$B using CMP instruction.

6.12.2 Contact Type Comparison Instructions

The instructions can be used similar to relay contacts. If the condition is TRUE for the data
specified, the contact is closed, else it is open. Any of the instructions can be the first element of
the rung.
Instructions used for comparing two, 32 bit, signed, integer numbers are:

CLT (<) less than
CLE (<=) less than, or equal to
CEQ (=) equal to
CNE (<>) unequal
CGE (>=) greater than, or equal to
CGT (>) greater than

Instructions used for comparing two, 64 bit floating-point numbers are:
FLLT (<) less than
FLLE (<=) less than, or equal to
FLEQ (=) equal to
FLNE (<>) unequal
FLGE (>=) greater than, or equal to
FLGT (>) greater than

Each instruction has an
enable input, and an
output.

The output is TRUE, if the input is TRUE and the condition is met.
The output will be FALSE if the input is FALSE or the instruction cannot be executed, so the
instruction sets the error flag FL_ER!

98

6.12 Comparison Instructions

Input parameters of instructions
– Address of Value:

Range of the value: 0...9999
The address of the left side value to be compared.
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.

– Data:
The right side value to be compared.
Data can be a register reference or a constant. Indexed addressing is possible.
In case of CLT, CLE, CEQ, CNE, CGE, CGT instructions, it is a signed, integer value.
In case of FLLT, FLLE, FLEQ, FLNE, FLGE, FLGT instructions, it is a floating-point
number.

L Attention:
Floating-point data is loaded from the Address of Value and the Address of Value+1 in
case of FLLT, FLLE, FLEQ, FLNE, FLGE, FLGT instructions. It is also valid for the
Data parameter, if you have specified a register reference there.

L Attention!
If the defined addresses are out of their range of the value, then the instruction sets error
flag FL_ER.

The following example shows that the coil M_CD_FND is activated if the following conditions
are met for the variable M_CODE:

11#M_CODE#18

99

6.13 Messages Sent from the PLC Program

6.13 Messages Sent from the PLC Program

Messages can be sent from the PLC program to the screen and to the log file. There are
instructions, which send messages only to the screen, there are instructions, which send messages
only to the log file, and there are instructions, which send messages to the screen and also to the
log file.
The messages sent to the screen are stored in a message buffer and they remain there until they
have been deleted by an intervention. This intervention can be using the cancel or start buttons
or ceasing the cause of the message.
The NC stores the most important events and errors in a log file. The messages and events sent
to the log file are stored for about one month. Messages can also be sent here by PLC program.
The PLC messages have codes and texts. In all 999 messages can be sent from the PLC program,
which are identified by a code and inside the code the number of the message. PLC messages
are part of common messages sent by the NC.

Order of appearing messages on the screen
Always the message sent last appears on the screen first: Last in, first out. If all messages are
displayed, the last message will be on the top, the first one on the bottom in the queue.

Message codes
All common messages are identified by an 8-digit decimal number. This number is called as
message code.
The structure of message codes is:

AABCCCDD
where:
AA: Channel index. In case of messages independent of a channel its value is 0, while in case

of messages dependent upon a channel its value is equal to the number of the channel.
In a PLC message the PLC programmer has to decide wether the message is channel-
independent or have to assign it to a channel. For example “Emergency state” is a
channel-independent message, so its index is AA=0, but “Please start the spindle”
message arrives from a dedicated channel, so its index is AA>0. This is important,
because the same message number can be sent from several channels, but the message
code has to uniquely identify the channel from which the message was sent.

B: Module index: index of the system module (measuring system, interpolator, block
interpreter, etc.) sends the message.
In case of PLC messages its value is B=0.

CCC: Message number. The message numbers are ranging from 1 to 999.
DD: Optional index: There can be axis-, spindle- etc. indexes in NC messages.

In case of PLC messages the PLC programmer decides it. For example there can be
spindle-, or turret indexes, so it codes that the message which spindle or turret refers to.
This is important, because the same message number can refer to several spindles or
turrets, but the message code has to uniquely identify which one it refers to.

100

6.13 Messages Sent from the PLC Program

Classifying of instructions sending messages
Instructions sending messages can be classified as follows:
 – Displayed on the screen or not:

Instructions displayed on the screen are: MSG, MSGF, ALR, ALRF
Instructions not displayed on the screen are: REM, REMF

 – Registered to the log file or not:
Instructions registered to the log file are: REM, REMF, ALR, ALRF
Instructions not registered to the log file are: MSG, MSGF

Writing PLC programs, take care which instruction to be used.
For example a “Door open” message has to be displayed to inform the operator why the
machining stopped. Because this message can appear several times in a day, but it only informs
the operator and it does not indicate error or problem, it is unnecessary to register it in log file.
So in this case the MSG instruction can be used.
If a message is sent to inform the operator on an error, for example a motor starter is off, the ALR
instruction can be used, because this message is displayed and registered to the log file.
REM instruction can be used, if the message is not to be displayed because the operator’s
intervention unnecessary, but is should be registered.
A numerical value also can be sent with a PLC message. The number can be an integer or a
floating-point one. Messages can be classified by if they are containing integers or floating-point
data:
 – Messages containing integers: MSG, ALR, REM,
 – Messages containing floating-point data: MSGF, ALRF, REMF.

Text of PLC messages
The PLC editor program eases editing message texts. They are saved in the file *.plc together
with the PLC program.
Message texts can be saved separately as *.mes files, using Export button of the PLC editor. The
*.mes message file also can be imported into an existing PLC program.
The encoding of *.mes text file is UTF8. It means that every currently known character can be
represented here.

Printing the content of a PLC variable in the message
The content of a register can be printed anywhere in the message text.
The PLC instruction specifies the number to be printed is an integer or floating-point one.
The number of digits after the decimal point to be printed can be specified in the editor in case
of floating-point numbers.
For example the following text is to print: “ Mount the tool No. n to the spindle ”, where “n” is
the value of a PLC register.
The following format will be in the exported message file:

Mount the tool No. {#0:F0} to spindle.
The string {#0:F0} means to convert the integer defined in instruction MSG, ALR, or REM to
decimal number and print it in the text. The symbol # means it is an integer number and F0 means
no decimal point is used when printing.
The following format will be in the exported message file if text contains a floating-point number:

The temperature of the spindle {*0:F1} °C
The {*0:F1}string means to convert floating-point number defined in MSGF, ALRF, or REMF
instruction to decimal number and print it in the text with a precision of one decimal digit.
Symbol * means it is a the floating-point number, F1 means that the precision is one decimal

101

6.13 Messages Sent from the PLC Program

digit.
Rules of formatting:

{ (start of formatting)
(fixed-point data), or * (floating-point data)
0 (required)
: (separator)
F
i (required number of decimal digits in case of floating-point representation, in case

of integers it is 0)
} (end of formatting)

6.13.1 Instructions Sending Messages: MSG, MSGF, ALR, ALRF, REM, REMF

PLC messages sent by MSG, MSGF, ALR, ALRF instructions are displayed on the screen, in
the message queue. The PLC programmer is to decide what intervention of the operator deletes
the message from the queue.
The messages of MSG, MSGF instructions are not registered in the log file.
The messages of ALR, ALRF instructions are always registered the in log file.
PLC messages sent by REM, REMF instructions are not displayed, but they are always
registered in the log file.
The optional input parameters of MSG, ALR, REM instructions are integers, while the optional
input parameters of MSGF, ALRF, REMF instructions are floating-point numbers.

Inputs and outputs of instructions
Each instruction has an

enable input, and an
output.

Each message instruction does the following operations if its input is enabled:
 – For the rising edge at the input it puts the message into the message buffer and registers it in

into the log file,
 – For the falling edge at the input it deletes the message from the message buffer of the screen.
These instructions have output: if the message appears on the screen or the message is stored in
the log file when using REM,REMF instruction.

102

6.13 Messages Sent from the PLC Program

Input parameters of MSG, MSGF, ALR, ALRF, REM, REMF instructions:
– Message Number:

Range of the value: 1,...999
The serial number of the message
It is an integer constant or register address. Indexed addressing is possible.

– Channel Index:
Range of the value: 0...99
The channel index of the message.
It is an integer constant or register address. Indexed addressing is possible.

– Arbitrary Index:
Range of the value: 0...99
It is the arbitrary index of the message.
It is an integer constant or register address. Indexed addressing is possible.
It is possible to define for example axis-, spindle- or turret number.

– Optional Variable:
In case of MSG, ALR, REM instructions it is an integer constant or register address.
In case of MSGF, ALRF, REMF instructions it is a floating-point constant or register
address.
Indexed addressing is possible.

– Remark:
Remark

Output and function of MSG, MSGF, ALR, ALRF instructions:
For the rising edge at the input the instruction puts the message into the message buffer to be
displayed.
For the falling edge at the input the instruction deletes the message from the message buffer to
be displayed.
If the ALR or ALRF instruction detects a rising edge at its input, it registers the text and code of
message also in the log file.
If the code and text of the message appear on the screen, the output of instructions will be TRUE.
The code of a message can be:

AA0CCCDD
where:
AA: Value of the Channel Index parameter,
0: Indicates that the message is sent by PLC,
CCC: Value of the Message Number parameter,
DD: Value of the Arbitrary Index parameter.

Output and function of REM, REMF instructions:
If the REM, REMF instruction detects a rising edge at its input, it registers the text and code of
message in the log file.
As soon as the message of the instruction has been registered in the log file, the output of the
instructions will be TRUE.

103

6.13 Messages Sent from the PLC Program

Examples:
Stopping error flag for spindle
with index S1:

S_STOP_ERR
Number of message is #20
The message is received from the
channel S1_C, where the register
S1_C stores the actual channel
number of spindle S1.
The message applies for spindle
number _S1, where _S1 is the
number of the spindle S1.
(In this case the index of the
spindle S1=0, the number of
spindle _S1=1)
Write the number of spindle also in the text of message: the value of optional variable: _S1.
The message is fully encoded by the number of channel and spindle. The number of spindle has
also taken to text of message to ensure transparency.
The identifier of text of message is 20. This text of message can used for 2 , 3 , etc. spindles,nd rd

it has not necessary to write the message again, you only have to change the number of spindle.
If TRUE state appears at the input of the message box, then the message is stored in the message
buffer and also in the log file.
If the message appears on the screen, the output of the ALR instruction will be TRUE. Then the
message can be deleted by N_CLRMSG flag which is controlled by CANCEL button. The
N_CLRMSG flag deletes S_STOP_ERR,S1 flag.

Send request for starting in CH1
channel with

ST_MB_REQ
flag.
The number of message is #06
The message requested from
channel number _CH1.
(In this case, the index of channel
CH1=0, the number of channel is
_CH1=1.)
The value of arbitrary index is #0.
The number of channel has also
written to text of message: _CH1.
The message is fully encoded by the number of channel. The number of channel has also taken
to text of message to ensure transparency.
The identifier of text of the message is 06. The text of the message can be used for further
channels, it is not necessary to write the message again, you only have to change the number of
the channel.
If TRUE state appears at the input of the message box, then the message is stored in the message
buffer, but it is not stored in the log file.
If the message appears on the screen, the output of MSG instruction will be TRUE. Then the

104

6.13 Messages Sent from the PLC Program

message can be deleted by the START button because the flag ST_MB_REQ,CH1 is reset.

The PLC stores in the log file the
temperature of spindle after a pre
determined interval: it sets the

LOG_TEMP
flag.
The number of message is #37.
The machine has only one
channel and spindle, so both
channel- and spindle indexes are
#0.
The temperature of spindle stored
in the register declared as
TEMPR in floating-point format.
Floating-point data is displayed
with the accuracy of one decimal
digit {*0:F1}. It is specified in the text of the message.
If TRUE state appears at the input of the message box, then the message is stored in the log file
and the output of the message box will be TRUE simultaneously. It deletes the log request flag.

105

6.14 Program Control Instructions

6.14 Program Control Instructions

6.14.1 End of Module Instruction: END

This instruction indicates the end of a cyclical PLC module. It can also be used in the Main
program and in the Int0 module.
A PLC program module is executed from the start of the ladder diagram till the END instruction

PLCand it is restarted after the cycle time elapsed (in case of Main program T , in case of Int0
TimeSlice).
The END instruction has a separation function. Bodies of subroutines used in a PLC program
module have to be specified after the END instruction. If subroutines are not used in the module,
the instruction does not have to be used.

L Attention! The END instruction has to be specified in the 1st column, although it is a closing
element.

Input parameter of END instruction:
– Remark:

Remark: text written in Remark will be the comment of logic unit.

106

6.14 Program Control Instructions

6.14.2 Conditional Branch: the JMP and JME Instructions

A sector of the PLC program module could be jumped over by using JMP and JME instructions.
The use of JMP instruction has a condition: if the condition is satisfied at the input, then the jump
is executed. The instruction jumps to the number (label) specified in the instruction.
JME instruction indicates the number (label), where JMP instruction transfers program control.

LAttention! Numbers used in JMP and JME instructions are ranging from 0 to 99. Each label
has to be individual, they must not match the numbers of SBS, SBN, RET instructions of
subroutines!

LAttention! By using JMP instruction you can jump only inside a module, you cannot jump into
another module!

Input of JMP instruction
It has got an

enable input.
JMP is executed if the enable input is in TRUE state.

Input parameters of JMP instruction
– Jump Number:

Range of the value: 0...99
Number of the target label, where the instruction transfers program control.

– Remark:
Remark: text written in Remark will be the comment of the logic unit.

Input of JME instruction
L Attention! The JME instruction has to be

specified in the 1st column, although
it is a closing element.

Input parameters of JME instruction
– Jump Number:

Range of the value: 0...99
Number of the target label, where
the JMP instruction transfers pro-
gram control.

– Remark:
Remark: Text written in Remark will
be the comment of the logic unit.

107

6.14 Program Control Instructions

6.14.3 Subroutine Call: the SBS, SBN and RET instructions

Subroutines can be called from a PLC program module by the SBS instruction. A condition has
to be defined for which the subroutine is called. A number (label) has to be specified where the
control is passed.
The body of a subroutine starts with SBN instruction with the proper number (label).
RET instruction defines the end of a subroutine. A return condition has to be defined at the input
of the instruction.
The bodies of subroutines that are the ladder part between the SBN and RET instructions always
have to be written after the END instruction of the module!
Multiple, nested subroutine call is possible. The depth of call only depends on the quantity of
available labels.

LAttention! Numbers (labels) used in SBS, SBN, RET instructions are ranging from 0 to 99.
Each number has to be individual, they must not match the numbers of JMP, JME
instructions of conditional branch!

LAttention! Subroutines are belonging to the module where they were specified. They could not
be called from another module!

Input of SBS instruction
It has got an

enable input.
Subroutine call is executed if the enable input is in TRUE state.

Input parameters of SBS instruction
– Subroutine Number:

Range of the value: 0...99
Number (label) of the subroutine to be called.

– Remark:
Remark: text written in Remark will be the comment of logic unit.

Input of SBN instruction
L Attention! The SBN instruction has to be specified in the 1st column, although it is a closing

element.

Input parameters of SBN instruction
– Subroutine Number:

Range of the value: 0...99
Number (label) of the subroutine called by the SBS instruction.

– Remark:
Remark: text written in Remark will be the comment of logic unit.

Input of RET instruction
It has got an

enable input.
If the enable input is in TRUE state, it returns from the subroutine.

Input parameters of RET instruction
– Remark:

Text written in Remark, will be the comment of the logic unit.

108

6.14 Program Control Instructions

109

6.15 Axis Control Instruction: MOVCMD

6.15 Axis Control Instruction: MOVCMD

Control of axes is basically the task of the NC.
Sometimes the PLC needs to request one or more axis from the NC, the PLC program moves
them with its own instructions then gives them back for the NC. For example, some axes have
to be moved to a certain position during tool- or palette-change. The request, giving back,
starting, etc. are controlled by axis control flags especially for this purpose.

L Attention! Such moves have to be done strictly by NC buffer emptying functions in the PLC.
These functions can be assigned by parameters. After the end of function NC has to
refresh the positions of axes moved by PLC and it continues machining from this new
position. This is the reason to stop buffering.

The other way of use is when an axis is controlled only by the PLC program. For example tool
turret or magazine is rotated by a servomotor. In this case the PLC requests the axis from NC in
the first cycle and never gives it back.

The axis control instructions are not written directly into the interpolator, but into the single-
block buffer of the axis control instruction. The interpolator takes the instruction from the
buffer after it executed the previous instruction. Interpolator is operated continuously by
continuously writing the buffer of the axis control instruction.

Input and output of the axis control instruction
The axis control instruction has an

enable input.
If the enable input is in TRUE state, then it waits until the single block buffer of the axis control
instruction is emptied then it writes the instruction into the buffer.
You can configure an

output for axis control instruction.
If the instruction has been written into the buffer, then the output will be TRUE. The output will
be FALSE if the input is FALSE or the instruction cannot be executed, so the instruction sets the
error flag FL_ER!
You can connect further instructions to its output.

Input parameters of axis control instruction
– Axis Address:

It is the index of the axis to be controlled. Range of the value: 0...31.
The address of a register or an integer constant. Indexed addressing is possible.

– Instruction Code:
The instruction code.
The address of a register or an integer constant. Indexed addressing is possible.
There is a chart in the following page for the interpretation and possible values of the
instruction code.

– Speed:
The feedrate of the movement.
The address of a register or a floating-point constant. Indexed addressing is possible.
Data is interpreted according to N0104 Unit of Measure parameter bit IND. Its unit:
mm/min, degree/min or inch/min. A floating-point number.

110

6.15 Axis Control Instruction: MOVCMD

– Distance:
The distance of travel.
The address of a register or a floating-point constant. Indexed addressing is possible.
Data is interpreted according to N0104 Unit of Measure parameter bit IND. Its unit: mm,
degree or inch. A floating-point number.

– Output:
You can connect further instructions to its output in enabled state.

– Remark:
If output is disabled, then the remark written here displayed as a comment, or if you did
not write here any remark, comment of symbol defined in Axis Address box written here.

It sets error flag FL_ER in the following cases:
The axis to be moved has not been requested by PLC,
The code of instruction is wrong (correct codes are in the following chart),
In case of movements, where the parameter Speed is necessary and the value of the
parameter is 0.

Interpretation of Instruction Code:

Com.
Code

Equivalent
NC code

Description Speed Distance

0 G00 G90 Rapid positioning Not used Absolute position
defined in the actual
coordinate system

1 G00 G91 Rapid positioning Not used Incremental movement

2 G01 G90 G94 Linear interpo-
lation

Feed per minute Absolute position
defined in the actual
coordinate system

3 G01 G91 G94 Linear interpo-
lation

Feed per minute Incremental movement

4 G01 G90 G95 Linear interpo-
lation

Feed per
revolution

Absolute position
defined in the actual
coordinate system

5 G01 G91 G95 Linear interpo-
lation

Feed per
revolution

Incremental movement

6 G53 Positioning in the
machine
coordinate system

Not used Absolute position
defined in the actual
coordinate system

7 G28 Automatic
reference point
return

Not used Not used

111

6.15 Axis Control Instruction: MOVCMD

Com.
Code

Equivalent
NC code

Description Speed Distance

8 G30 P2 Automatic return
to reference point
2

Not used Not used

9 G30 P3 Automatic return
to reference point
3

Not used Not used

10 G30 P4 Automatic return
to reference point
4

Not used Not used

11 G4 G94 Dwell Not used Dwell time in seconds

12 G4 G95 Dwell Not used Dwell time in spindle
revolutions

13 JOG
movement.
This instruction
is deleted by a
new instruction
or by the flag
AP_RES

AP_JOGP=1:
moves to positive
direction,
AP_JOGN=1:
moves to negative
direction

Feed per minute:
if its value=0:
then moves
according to
parameter
 0316 Jog F
Contr ,
if its value >0
then moves by
the defined feed

Not used

14 Handwheel
movement.
This instruction
deleted by a
new instruction
or by the flag
AP_RES

If one of P_HnAS
registers is
assigned to the
PLC axis, it is
controlled by the
appropriate
handwheel

Not used Not used

There is below an example of application of axis control by PLC. The MOVCMD instructions
follow each other. For the first, the example checks if reference-point has been returned on Z-axis.
If not, it issues the instruction for reference-point return, if returned, then it sends the axis to the
reference point 2 (change place 1) immediately. Then it starts a rapid, incremental positioning,
with DISTANCE1, then it starts linear interpolation to the absolute position DISTANCE2 by a
feedrate of SPEED2.

112

6.15 Axis Control Instruction: MOVCMD

The interpolator immediately takes off the command reference point return from the buffer,
therefore flag AN_BEPTY (buffer is empty) is not changed, so it indicates that the buffer is
empty.
The next instruction (move to change position 1.) issued after flag “reference point found” set
(AN_RPE=1). The interpolator takes off it immediately from the buffer (AN_BEPTY is still 1),
then G0 instruction is written into the buffer in the following PLC cycle. After one PLC cycle
delay, the state of AN_BEPTY=0 indicates that buffer is not empty: the interpolator moves into
change position 1 and G0 command is in the buffer. If the axis has arrived at change position 1,
then the interpolator takes off the instruction G0 from the buffer, G1 instruction is written
immediately, so the AN_BEPTY flag keeps the value 0. After finishing G0 command, the
interpolator takes off the G1 instruction from the buffer and AN_BEPTY=1 because there is no
more instruction.
If continuous movement is necessary, then PLC programmer does not have to inspect
AN_BEPTY flag, because MOVCMD instruction does it.

113

6.16 Read and Write of Common Macro Variables

6.16 Read and Write of Common Macro Variables

The values of common macro variables #100...#499 and #500...#599 can be written and read from
the PLC program.
Since these macro variables exist in each channels, always define the index of the channel when
using this instruction.

6.16.1 Read of Common Macro Variables: the MACR Instruction

Common macro variables of a channel (#100...#499 and #500...#599) can be read by using
MACR instruction. These variables are always floating-point types, so always have to reserve 2
double word space for them.

Input and output of MACR instruction
The MACR instruction has got an

enable input.
The read is done in the TRUE state of the input.
You can configure an

output for MACR instruction.
If the input is in TRUE state and reading has executed, then the output will be in TRUE state. The
output will be FALSE if the instruction cannot be executed, so the instruction sets the error flag
FL_ER .
You can connect further instructions to its output.

Input parameters of MACR instruction
– Address of Result:

Range of the value: n...9998 (n: where starts user addresses)
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.
The value read is stored at this address. You always have to reserve two double words
because the result is a floating-point value!

– Number of macro variable:
The Number of macro variable can be a register reference or a constant. Indexed
addressing is possible.
Character # is to be used in case of numerical specification.
Range of the value in numerical format: #100...#999.

– Channel:
Index of a channel where macro variable is to be read from. It can be also in numerical
or symbolic format.

– Output:
You can connect further instructions in its output in enabled state.

– Remark:
If the output is disabled, then the remark written here displayed as a comment. If you did
not write here any remark, comment of the symbol defined in the Address of Result box
is written here.

If the macro variable defined is out of range #100...#999, or the index of the specified channel
is wrong, the output will be FALSE and the flag FL_ER will be 1.

114

6.16 Read and Write of Common Macro Variables

6.16.2 Write of Common Macro Variables: the MACW Instruction

Common macro variables of a channel (#100...#499 and #500...#599) can be read by using
MACW instruction. These variables are always floating-point types, so always have to reserve
2 double word space for them in PLC memory.

Input and output of MACW instruction
The MACW instruction has got an

enable input.
The writing is done in the TRUE state of the input.
You can configure

output for MACW instruction.
If the input is in TRUE state and write is executed, then the output will be in TRUE state. The
output will be FALSE if the instruction cannot be executed, so the instruction sets the error flag
FL_ER.
You can connect further instructions to its output.

Input parameters of MACW instruction
– Number of macro variable:

The Number of macro variable can be a register reference or a constant. Indexed
addressing is possible.
Character # is to be used in case of numerical specification.
Range of the value in numerical format: #100...#999.

– Operand:
Range of the value: n...9998 (n: where starts user addresses)
The address of source PLC register can be a numeral or a symbol. Indexed addressing is
possible.
You always have to reserve two double words because the result is a floating-point value!

– Channel:
Index of a channel where macro variable is to be written to. It can be also in numerical or
symbolic format.

– Output:
You can connect further instructions to its output in enabled state.

– Remark:
If output is disabled, then the remark written here displayed as a comment. If you have not
written here any remark, comment of the symbol defined in the Number of macro variable
box written here.

If the macro variable defined is out of range #100...#999, or the index of the specified channel
is wrong, the output will be FALSE and the flag FL_ER will be 1.

115

6.17 Query of the Internal Variables of the NC: the SCP Instruction

6.17 Query of the Internal Variables of the NC: the SCP Instruction

The internal variables, which can be visualized by the oscilloscope function built in the NC, can
be queried by using the SCP instruction. These variables can be of several types: bit, double word
or floating-point type. Although the result is always floating-point type!

Input and output of SCP instruction
The SCP instruction has got an

enable input.
The query is executed if the enable input is in TRUE state.
You can configure an

output for MACW instruction.
If the input is TRUE and the query has been executed, the output will be in TRUE state.
You can connect further instructions to its output.

Input parameters of SCP instruction
– Address of Result:

Range of the value: n...9998 (n: where starts user addresses)
The Address of Result can be a numeral or a symbol. Indexed addressing is possible.
The value queried is stored at this address. You always have to reserve two double words
because the result is a floating-point value!

– Scope Symbol:
Select the symbol of data to be queried from the drop-down menu. The description of the
symbols is in the following chart.

– Id:
ID number of symbol selected from menu. It need not be specified.

– Param1:
Value of the 1st parameter belonging to the selected symbol: #<number>. The rules of
definition are in the following chart.

– Param2:
Value of the 2nd parameter belonging to the selected symbol: #<number>. The rules of
definition are in the following chart.

– Output:
You can connect further instructions to its output in enabled state.

– Remark:
If the output is disabled, then the remark written here displayed as a comment. If you have
not written here any remark, comment of the symbol defined in the Address or Result box
is written here.

NC variables defined by the following symbols can be queried by using SCP instruction:

116

6.17 Query of the Internal Variables of the NC: the SCP Instruction

Symbol Description Param1 Param2

PlcBit Query of a PLC bit variable
from the PLC memory.
Floating-point type data.

Double word
address: a
numeral, behind #
character
Value: #0...#9999

Bit address:
a numeral,
behind #
character
Value: #0...#31

PlcInt Query of a PLC integer
variable from the PLC
memory.
Floating-point type data.

Double word
address: a
numeral, behind #
character
Value: #0...#9999

#0

PlcDouble Query of a PLC floating-
point variable from the PLC
memory.
Floating-point type data.

A floating-point
variable address: a
numeral, behind #
character
Value: #0...#9998

#0

DirectPlcBit Query of PLC bit variable
from TimeSlice memory.
Floating-point type data.

Double word
address: a
numeral, behind #
character
Value: #0...
#<PLCNVRAM-
1>

Bit address:
a numeral,
behind #
character
Value: #0...#31

DirectPlcInt Query of PLC integer
variable from TimeSlice
memory.
Floating-point type data.

Double word
address: a
numeral, behind #
character
Value: #0...
#<PLCNVRAM-
1>

#0

DirectPlcDouble Query of PLC floating-point
variable from TimeSlice
memory.
Floating-point type data.

A floating-point
variable address: a
numeral, behind #
character
Value: #0...
#<PLCNVRAM-
2>

#0

ComPosAx Position command sent to
the position control loop of
an axis. Floating-point type
data in output units (mm,
degree, inch).

Axis number.
Value: #1...#32

#0

117

6.17 Query of the Internal Variables of the NC: the SCP Instruction

Symbol Description Param1 Param2

ComVelAx Velocity command sent to
the position control loop
 of an axis. Floating-point
type data in output units
(mm/sec, degree/sec,
inch/sec).

Axis number.
Value: #1...#32

#0

FolErrAx Following error of an axis
(lag). Floating-point type
data in output units (mm,
degree, inch).

Axis number.
Value: #1...#32

#0

CommandAx Command signal of an axis
sent to servo drive.
Floating-point type data in
output units (mm/sec,
degree/sec, inch/sec).

Axis number.
Value: #1...#32

#0

ActPosAx Actual position of an axis
measured by encoder.
Floating-point type data in
output units (mm, degree,
inch).

Axis number.
Value: #1...#32

#0

PosErrAx Difference between the
predicted position
calculated from the position
command and the position
measured by encoder.
Floating-point type data in
output units (mm, degree,
inch).

Axis number.
Value: #1...#32

#0

TachAx Axis speed measured by
encoder. Floating-point type
data in output units
(mm/sec, degree/sec,
inch/sec).

Axis number.
Value: #1...#32

#0

TachRealAx Axis speed measured by
encoder. Quantity of pulses
from encoder in Time Slice,
in floating-point data.

Axis number.
Value: #1...#32

#0

EGBvTarAx Speed of EGB master axis.
Floating-point type data in
output units (mm/sec,
degree/sec, inch/sec).

Define the slave
spindle number!
Value: #1...#32

#0

118

6.17 Query of the Internal Variables of the NC: the SCP Instruction

Symbol Description Param1 Param2

EGBcCurrAx Speed of EGB slave axis.
Floating-point type data in
output units (mm/sec,
degree/sec, inch/sec).

Axis number.
Value: #1...#32

#0

SyncErrAx Position difference between
master and slave axes, in
case of EGB or gantry
synchronization. Floating-
point type data in output
units (mm, degree, inch).

Axis number.
Value: #1...#32

#0

PitchAx Current value of the pitch
error compensation.
Floating-point type data in
output units (mm, degree,
inch).

Axis number.
Value: #1...#32

#0

StraightnessAx Current value of the
straightness compensation.
Floating-point type data in
output units (mm, degree,
inch).

Axis number.
Value: #1...#32

#0

CompenValAx Sum of the current
compensation values.
Floating-point type data in
output units (mm, degree,
inch).

Axis number.
Value: #1...#32

#0

ComPosSp Position command sent to
the position control loop of
a spindle in case of a closed
loop. Floating-point type
data in spindle revolutions.

Spindle number.
Value: #1...#16

#0

ComVelSp Velocity command sent to
the position control loop of
a spindle in case of a closed
loop. Floating-point type
data in spindle
revolution/sec.

Spindle number.
Value: #1...#16

#0

FolErrSp Following error of a spindle
(lag) in case of a closed
loop.
Floating-point type data in
spindle revolutions.

Spindle number.
Value: #1...#16

#0

119

6.17 Query of the Internal Variables of the NC: the SCP Instruction

Symbol Description Param1 Param2

CommandSp Command signal of a
spindle sent to drive in case
of a closed loop. Floating-
point type data in spindle
revolution/sec.

Spindle number.
Value: #1...#16

#0

ActPosSp Actual position of a spindle.
Floating-point type data in
spindle revolution.

Spindle number.
Value: #1...#16

#0

PosErrSp Difference between the
predicted position
calculated from the position
command and the position
measured by encoder,
in case of a closed loop.
Floating-point type data in
spindle revolution.

Spindle number.
Value: #1...#16

#0

TachSp Spindle speed measured by
encoder. Floating-point type
data in spindle
revolution/sec.

Spindle number.
Value: #1...#16

#0

NActSp Spindle speed measured by
encoder. Floating-point type
data in spindle
revolution/min.

Spindle number.
Value: #1...#16

#0

NSetSp Speed command modified
by override at the input of
spindle handler. Floating-
point type data in spindle
revolution/min.

Spindle number.
Value: #1...#16

#0

NCommandSp Command signal for spindle
drive modified by spindle
handler. Floating-point type
data in spindle
revolution/min.

Spindle number.
Value: #1...#16

#0

SyncVTargetSp Master spindle speed in
synchronized state.
Floating-point type data in
spindle revolution/sec.

Define the slave
spindle number!
Value: #1...#16

#0

120

6.17 Query of the Internal Variables of the NC: the SCP Instruction

Symbol Description Param1 Param2

SyncVSlaveSp Slave spindle speed in
synchronized state.
Floating-point type data in
spindle revolution/sec.

Spindle number.
Value: #1...#16

#0

SyncErrSp Difference between slave
spindle and master spindle
position in synchronized
state. Floating-point type
data in spindle revolution.

Spindle number.
Value: #1...#16

#0

Measured For internal use.

RealTime Time usage of the real time
thread in ìsec units.
Floating-point type data.

#0 #0

HardwareTime Refresh time of I/Os in ìsec
unit. Floating-point type
data.

#0 #0

ChannelsTime Time usage of channel
control in ìsec units.
Floating-point type data.

#0 #0

AxesTime Time usage of axis control
in ìsec units. Floating-point
type data.

#0 #0

PlcTime Time usage of Int0 PLC
module in ìsec units.
Floating-point type data.

#0 #0

PlcCycle Time usage of PLC Main in
ìsec unit. Floating-point
type data. It contains real
time interrupts.

#0 #0

CANErr For internal use.

TSliceErr For internal use.

CNCBufferCount Quantity of records in
buffer. Floating-point type
data.

Channel number.
Value: #1...#8

#0

RotaryAx Value of cyclical position in
case of a rotary axis.
Floating-point type position
data in degree unit.

Axis number.
Value: #1...#32

#0

121

6.17 Query of the Internal Variables of the NC: the SCP Instruction

Symbol Description Param1 Param2

TachRealSp Spindle speed measured by
encoder. Quantity of pulses
from encoder in Time Slice,
floating-point data.

Spindle number.
Value: #1...#16

#0

NCTDriveMess Data sent by NCT servo
drive, in floating-point data.

Axis- or spindle
servo drive
number:
#1...#48

#0: motor speed
[rev/min]

#1: motor current
[A],

#2: motor
relative current

nI/I [%]

#3: bus voltage
[V]

#4: motor
temperature [EC]

#5: motor power
[kW]

122

6.18 Reading and Writing NC Memory Arrays

6.18 Reading and Writing NC Memory Arrays

An array of NC memory can be read into the PLC memory by using array read instructions.
An array of PLC memory can be written into the NC memory by using array write instructions.

6.18.1 NC Memory Array Read: the MR Instruction

A data arrays, stored in NC memory can be read by using this instruction.

Input and output of MR instruction
The MR instruction has got an

enable input.
Reading is executed in TRUE state of the enable input.
You can configure an

output for MR instruction.
If the input is TRUE and read has been executed, the output will be TRUE.
You can connect further instructions to its output.
L Attention! The execution of instruction may last for several PLC cycles, so the enable input

has to be kept in TRUE state until the output of instruction changes into TRUE state. Then
the enable input has to be reset.

Input parameters of MR instruction
– Data Address:

Range of the value: 0...9999
Data Address is the starting address of the PLC memory array. It can be a numeral or a
symbol. Indexed addressing is possible.

 Messages of the instruction execution and data read from the NC are written here.
– Function Code:

It specifies the part of NC memory where the data array is to be read from. The different
function codes are described in the following chapters.

– Output:
You can connect further instructions to its output in enabled state.

– Remark:
Remark.

The space in PLC memory to be reserved is the function of the amount of data to be read. The
instruction writes execution information at the address and at the following one specified in
parameter Data Address.

123

6.18 Reading and Writing NC Memory Arrays

 – Address: Data array starts at the address
defined in parameter Data Address. The
execution code is written here.

 – Execution code: Output data, it is created
during the execution of the instruction.

 – Amount of data: Input data. It determines the
amount of double word memory space
reserved for data to be read.

 – Function specific memory space: Special
data, defined by the parameter Function
Code are written here. These data can be:
 – Further input data configuring the MR

instruction and
 – Data of the memory read.

LAttention! The amount of data is always the sum of data configuring the instruction and the
amount of data to be read in DWORD units!

Execution code:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data

.. Function specified errors

n

6.18.2 NC Memory Array Write: the MW Instruction

Data arrays, stored in NC memory can be written by using this instruction.

Input and output of MW instruction
The MW instruction has got an

enable input.
Writing is executed in TRUE state of the enable input.
You can configure an

output for MW instruction.
If the input is TRUE and writing has been executed, the output will be TRUE.
You can connect further instructions to its output.
L Attention! The execution of instruction may last for several PLC cycles, so the enable input

has to be kept in TRUE state until the output of instruction changes into TRUE state. Then
the enable input has to be reset.

Address Data

0 Execution code

1 Amount of data (input data)

2 Function specific memory

3

... ...

n ...

124

6.18 Reading and Writing NC Memory Arrays

Input parameters of MW instruction
– Data Address:

Range of the value: 0...9999
Data Address is the starting address of the PLC memory array. It can be a numeral or a
symbol. Indexed addressing is possible.

 Messages of the instruction execution are written here and data to be written to the NC
are read from here.

– Function Code:
It specifies the part of NC memory where the data array is to be written to. The different
function codes are described in the following chapters.

– Output:
You can connect further instructions to its output in enabled state.

– Remark:
Remark.

The space in PLC memory to be reserved is the function of the amount of data to be written. The
instruction writes execution information at the address and at the following one specified in
parameter Data Address.

 – Address: Data array starts at the address
defined in parameter Data Address. The
execution code is written here.

 – Code of execution: Output data, it is created
during the execution of the instruction.

 – Amount of data: Input data. It determines the
amount of double word memory space
reserved for data to be written.

 – Function specific memory space: Special
data, defined by the parameter Function
Code, are written here. These data can be:
 – Further input data configuring the MW instruction and
 – Data to be written.

LAttention! The amount of data is always the sum of data configuring the instruction and the
amount of data to be written in DWORD units!

Address Data

0 Code of execution

1 Amount of data (input data)

2 Function specific memory

3

... ...

125

6.18 Reading and Writing NC Memory Arrays

Code of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data

3 Overwrite protected

... Function specified errors

n

126

6.19 Transferring Data between non-volatile Memory and PLC Memory

6.19 Transferring Data between Non-volatile Memory and PLC

Array of PLC variables can be saved to or loaded from non-volatile memory.
Some controls save automatically the 1024 double word long data array started from PLCVRAM
address, PLC programmer does not have to save it by own.
Other types of control do not support the automatic storage of 1024 double word long data array
started from PLCVRAM address after switching off.
Data changed are to be saved by array write instruction from the PLC program. Similarly, the
saved data array is to be loaded by array read instruction from the PLC program, for example after
switching on. Control also reserves 1024 double word long memory space for saving PLC
variables.

The identifier of first variable in non-volatile memory: 0,
and the last one is 1023.

Executing MW, MR instructions for saving and loading PLC variables take for several PLC
cycles, so you always have to wait for their output turn into TRUE state.

6.19.1 PLC Data Read from Non-volatile Memory

Instruction: MR
Function code: 10

Reading the variables of an array defined by its starting address and the number of variables from
the non-volatile memory to the PLC memory.

Input parameters:

Address Data

0 Code of execution *

1 Amount of data: 3

2 Starting address of the first variable in non-volatile memory to be
read: 0...1023 (source)

3 Starting address of the first variable is in PLC memory to be read
(destination)

4 Number of variables to be read: 1...1024

*: need not be set

The amount of data has to be equal to 3. PLC memory is loaded continuously from the destination
address in case of reading several variables.

127

6.19 Transferring Data between Non-volatile Memory and PLC

Output parameters:

Address Data

0 Code of execution: refer to table

1 Amount of data: 3

2 Starting address of the first variable in non-volatile memory to be
read: 0...1023 (source)

3 Starting address of the first variable is in PLC memory to be read
(destination)

4 Number of variables to be read: 1...1024

Code of execution can be:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid amount of data: is not equal to 3

4 Memory checksum error

10 Array specified in non-volatile memory not in the range between
0...1023

11 Starting address specified in the PLC memory is not higher than or
equal to PLCNVRAM

12 Data number error:
(address of first variable to be read)+
(number of variables to be read)>1024

128

6.19 Transferring Data between non-volatile Memory and PLC Memory

6.19.2 PLC Data Write to Non-volatile Memory

Instruction: MW
Function code: 11

Writing the variables of an array defined by its starting address and the number of variables from
the PLC memory to the non-volatile memory. The output of the instruction returns 0 code of
execution only after the calculation of the checksum of memory.

Input parameters:

Address Data

0 Code of execution *

1 Amount of data: 3

2 Starting address of the first variable in non-volatile memory to be
written: 0...1023 (destination)

3 Starting address of the first variable is in PLC memory to be
written (source)

4 Number of variables to be written: 1...1024

*: need not be set

The amount of data has to be equal to 3. The non-volatile memory is loaded continuously from
starting address in case of writing several variables.

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 3

2 Starting address of the first variable in non-volatile memory to be
written: 0...1023 (destination)

3 Starting address of the first variable is in PLC memory to be
written (source)

4 Number of variables to be written: 1...1024

129

6.19 Transferring Data between Non-volatile Memory and PLC

Code of execution can be:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid amount of data: is not equal to 3

10 Array specified in non-volatile memory not in the range between
0...1023

11 Starting address specified in the PLC memory is not higher than or
equal to PLCNVRAM

12 Data number error:
(address of first variable to be read)+
(number of variables to be read)>1024

130

6.20 Reading and Writing Parameters from the PLC Program

6.20 Reading and Writing Parameters from the PLC Program

By the use of MR and MW instruction, the parameters of the NC are accessible for the PLC
program, for reading or writing.
In the course of reading and writing, the following point have to be taken into account:

data representation of the parameter,
whether the parameter is global one or it is indexed one.

In terms of data representation, the following kinds of parameters can be distinguished:
 – bit-type ones,
 – DWORD-type ones: they are fixed-point, double-word parameters,
 – double-type ones: with floating point representation.
Space reservation from PLC of the bit-type parameters is DWORD. The different bit values are
represented on the bits 0 ... 7 of DWORD.
A parameter can be indexed according to:
 – machine group,
 – channel,
 – axis or
 – spindle.
The indexed parameters do not have separate identification number.
A parameter can be referred to by its identification number and its index. When a global
parameter is referred to, the value of the index is 0. Array-type parameter writing or reading
(reading or writing several parameters simultaneously) is possible only for non-global parameters.
For example, reading a parameter being different by spindles can be executed for all the spindles
at the same time.
Identification number (Nnnnn) and format (bit, DWORD, double) of a parameter and the basis
of its indexing can be found at the description of that given parameter.

6.20.1 Reading the DWORD-type Parameters

Instruction: MR
Function code: 31

Reading the data of the DWORD-type parameters specified by the use of their identification
number and their initial index , among the PLC variables. The amount of data to be read is
determined by the Amount of data parameter of the instruction.

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: min. 3, max. n+2

2 Identifier of the parameter to be read: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be read

4 Value of the 1st parameter*

131

6.20 Reading and Writing Parameters from the PLC Program

Address Data

5 Value of the 2nd parameter*

... ...

n+3 Value of the nth parameter*

*: need not be set

The minimum number to be written for the Amount of data is 3, in such a case only one double
word will be read. In the case of reading several data, the PLC memory will be filled
continuously.
If, for example, a parameter indexed by axis is to be read and the parameter of the 2nd and the
3rd axes is to be known, the following values will be valid: Amount of data=4 and Initial
index=2.

Output parameters:

Address Data

0 Code of execution

1 Amount of data: min. 3, max. n+2

2 Identifier of the parameter to be read: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be read

4 Value of the 1st parameter

5 Value of the 2nd parameter

... ...

n+3 Value of the nth parameter

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data:
< 3
or
> (index of the last variable of the parameter array ! number of the specified initial
index) + 2

132

6.20 Reading and Writing Parameters from the PLC Program

Code Explanation

4 Memory checksum error

30 Referring to a non-existing parameter

31 The parameter is not global (parameter index = 0)

32 The parameter is global (parameter index indexe > 0)

33 Wrong reading code: the parameter format is not DWORD-type

6.20.2 Reading the Double-type Parameters

Instruction: MR
Function code: 32

Reading the data of the double-type parameters specified by the use of their identification number
and their initial index , among the PLC variables. The amount of data to be read is determined
by the Amount of data parameter of the instruction.

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: min. 4, max. 2n+2

2 Identifier of the parameter to be read: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be read

4 Value of the 1st parameter*

5

6 Value of the 2nd parameter*

7

... ...

2n+2 Value of the nth parameter*

2n+3

*: need not be set

The minimum number to be written for the Amount of data is 4, in such a case only one floating-
point data will be read. In the case of reading several data, the PLC memory will be filled

133

6.20 Reading and Writing Parameters from the PLC Program

continuously.
If, for example, a parameter indexed by axis is to be read and the parameter of the 2nd and the
3rd axes is to be known, the following values will be valid: Amount of data=6 and Initial
index=2.
Output parameters:

Address Data

0 Code of execution

1 Amount of data: min. 4, max. 2n+2

2 Identifier of the parameter to be read: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be read

4 Value of the 1st parameter

5

6 Value of the 2nd parameter

7

... ...

2n+2 Value of the nth parameter

2n+3

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data:
< 3
or
> (index of the last variable of the parameter array ! number of the specified initial
index) ×2 + 2

4 Memory checksum error

30 Referring to a non-existing parameter

31 The parameter is not global (parameter index = 0)

32 The parameter is global (parameter index > 0)

33 Wrong reading code: the parameter format is not double-type

134

6.20 Reading and Writing Parameters from the PLC Program

6.20.3 Writing the DWORD-type Parameters

Instruction: MW
Function code: 34

Writing the data of the DWORD-type parameters specified by the use of their identification
number and their initial index, from the PLC. The amount of data to be written is determined by
the Amount of data parameter of the instruction

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: min. 3, max. n+2

2 Identifier of the parameter to be written: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be written

4 Value of the 1st parameter

5 Value of the 2nd parameter

... ...

n+3 Value of the nth parameter

*: need not be set

The minimum number to be written for the Amount of data is 3, in such a case only one double
word will be written. In the case of writing several data, writing from the PLC memory will be
executed continuously.
If, for example, a parameter indexed by axis and the parameter of the 2nd and the 3rd axes is to
be written, the following values will be valid: Amount of data=4 and Initial index=2.

Output parameters:

Address Data

0 Code of execution

1 Amount of data: min. 3, max. n+2

2 Identifier of the parameter to be written: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be written

4 Value of the 1st parameter

135

6.20 Reading and Writing Parameters from the PLC Program

Address Data

5 Value of the 2nd parameter

... ...

n+3 Value of the nth parameter

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data:
< 3
or
> (index of the last variable of the parameter array ! number of the
specified initial index) + 2

30 Referring to a non-existing parameter

31 The parameter is not global (parameter index = 0)

32 The parameter is global (parameter index > 0)

33 Wrong writing code: the parameter format is not DWORD -type

136

6.20 Reading and Writing Parameters from the PLC Program

6.20.4 Writing Double-type Parameters

Utasítás: MR
Funkció kód: 35

Writing the data of the double-type parameters specified by the use of their identification number
and their initial index, from the PLC. The amount of data to be written is determined by the
Amount of data parameter of the instruction.

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: min. 4, max. 2n+2

2 Identifier of the parameter to be read: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be read

4 Value of the 1st parameter

5

6 Value of the 2nd parameter

7

... ...

2n+2 Value of the nth parameter

2n+3

*: need not be set

The minimum number to be written for the Amount of data is 4, in such a case only one floating-
point data will be written. In the case of reading several data, writing from the PLC memory will
be executed continuously.
If, for example, a parameter indexed by axis is to be read and the parameter of the 2nd and the
3rd axes is to be known, the following values will be valid: Amount of data=6 and Initial
index=2.

137

6.20 Reading and Writing Parameters from the PLC Program

Output parameters:

Address Data

0 Code of execution

1 Amount of data: min. 4, max. 2n+2

2 Identifier of the parameter to be read: <number>

3 Initial index of the parameter:
=0: global parameter
>0 index of the 1st parameter to be read

4 Value of the 1st parameter

5

6 Value of the 2nd parameter

7

... ...

2n+2 Value of the nth parameter

2n+3

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data:
< 3
or
> (index of the last variable of the parameter array ! number of the specified initial
index) ×2 + 2

4 Memory checksum error

30 Referring to a non-existing parameter

31 The parameter is not global (parameter index = 0)

32 The parameter is global (parameter index > 0)

33 Wrong writing code: the parameter format is not double-type

138

6.21 Assigning a Program for Execution

6.21 Assigning a Program for Execution

Arbitrary part program stored in the memory of the control may be assigned for execution.

6.21.1 Assigning a Program Specified with its Program Number for Automatic Execution

Instruction: MW
Function code: 40

Assigning a part program specified with its 4-digit or 8-digit program number (Onnnn or
Onnnnnnnn) for execution in automatic mode, in the specified channel. The write operation will
be executed only in the case, i.e. the output of the instruction will be true only in the case when
no program is running in the automatic mode.

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 2

2 Program number: <number>

3 Channel number: 1...8

*: need not be set

For Amount of data, always 2 has to be written.

Output parameters:

Addr
ess

Data

0 Code of execution

1 Amount of data: 2

2 Program number: <number>

3 0

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data: not 1

40 Non-existing program: the givenprogram is not in the memory

139

6.22 Network Communication Instructions

6.22 Network Communication Instructions

The PLC program can receive and send data through the Ethernet network. Communication is
realized via UDP protocol. Structure of an Ethernet UDP/IP frame is as follows:

Ethernet header UDP/IP Sent or received data CRC

...

The PLC works by the use of data sent or received.

6.22.1 Opening the Network Connection

Instruction: MW
Function code: 60

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 5

2 Connection identifier: always 1

3 Windows error code *

4 Protocol: 1: UDP
2: TCP server
3: TCP client

5 IP address of the target device. For example: 192.168.1.12 = #$C0A8010C
Its value must not be: 0.0.0.0 és 255.255.255.255

6 The number of the port through which communication is intended.
Proposed values: 49202...49205

*: need not be set
For Amount of data, always 5 has to be written.

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 5

2 Connection identifier: always 1

3 Windows error code: if the code of execution is 61, the re-decoded error sent by
Windows will be placed here (see Windows Sockets Error Codes) *

140

6.22 Network Communication Instructions

Address Data

4 Protokoll: 1: UDP
2: TCP server
3: TCP client

5 IP address of the target device. For example: 192.168.1.12 = #$C0A8010C
Its value must not be: 0.0.0.0 és 255.255.255.255

6 The number of the port through which communication is intended.
Proposed values: 49202...49205

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

60 Invalid connection identifier

61 Establishing connection is failed

66 False input parameters

6.22.2 Closing the Network Connection

Instruction: MW
Function code: 61

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 1

2 Connection identifier: always 1

*: need not be set
For Amount of data, always 2 has to be written.

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 1

141

6.22 Network Communication Instructions

Address Data

2 Connection identifier: always 1

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

60 Invalid connection identifier

6.22.3 Receiving the Network Data Packet

Instruction: MR
Function code: 62

Output parameters:

Address Data

0 Code of execution*

1 Amount of data: 3-5

2 Connection identifier: always 1

3 Initial address of the data array in the PLC memory

4 Data array length: so many data of PLC register will be received
0 < value < = 350

5 Windows error code **

6 IP address of the source device. For example:: 192.168.1.12 =
#$C0A8010C **

7 Number of the source device port**

*: need not be set
**: optional data, need not be set

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 3-5

142

6.22 Network Communication Instructions

Address Data

2 Connection identifier: always 1

3 Initial address of the data array in the PLC memory

4 Data array length: so many data of PLC register will be received
0 < value < = 350

5 Windows error code: if the code of execution is 62, the re-decoded error sent by
Windows will be placed here (see Windows Sockets Error Codes)

6 IP address of the source device. For example: 192.168.1.12 = #$C0A8010C

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

60 Invalid connection identifier

62 Error while receiving the data

63 The specified connection is not open

64 The data array length is false: =0 or >350

65 Data is not received

6.22.4 Sending the Network Data Packet

Instruction: MW
Function code: 63

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 3-5

2 Connection identifier: always 1

3 Initial address of the data array in the PLC memory

4 Data array length: so many data of PLC register will be received
0 < value < = 350

143

6.22 Network Communication Instructions

Address Data

5 Windows error code**

6 IP address of the target device. For example: 192.168.1.12 = #$C0A8010C **

7 Number of the target device port. For example: 49202 **

*: need not be set
**: optional data, it has to be set only when UDP is used

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 3-5

2 Connection identifier: always 1

3 Initial address of the data array in the PLC memory

4 Data array length: so many data of PLC register will be received
0 < value < = 350

5 Windows error code: if the code of execution is 62, the re-decoded error sent by
Windows will be placed here (see Windows Sockets Error Codes)

6 IP address of the source device. For example: 192.168.1.12 = #$C0A8010C

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

60 Invalid connection identifier

62 Error while sending the data

63 The specified connection is not open

64 The data array length is false: =0 or >350

144

6.23 Opening a Window in the Screen of the Control

6.23 Opening a Window in the Screen of the Control

Windows, which can be displayed from the menu system of the control by operator’s intervention,
can be selected from the PLC program by the use of MW instruction, too.

Instruction: MW
Function code: 70

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 2-4

2 Window identifier: see the table

3 Channel number:
=0: window independent of channel
=1...8: window has to be displayed together with data valid in the channel

4 Parameter 1: see the table

5 Parameter 2: see the table

*: need not be set

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 2-4

2 Window identifier: see the table

3 Channel number:
=0: window independent of channel
=1...8: window has to be displayed together with data valid in the channel

4 Parameter 1: see the table

5 Parameter 2: see the table

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

145

6.23 Opening a Window in the Screen of the Control

Code Explanation

6 Invalid channel number

70 Invalid window number

71 There is no connection to the display (the display is not receive ready)

Identification the windows that can be displayed from the PLC program

Window name Identifier Parameter 1 Parameter 2

Alfanumerical keyboard 100 - -

PLC buttons 110 - -

Window selection buttons 120 - -

Machine operation panel 130 - -

Active G codes in the view set last -1

Active G codes 1000 0 -

Active G codes together with text 1000 1 -

All the G codes 1000 2 -

All the G codes together with text 1000 3 -

Active M codes in the view set last -1

Active M codes 1010 0 -

Active M codes together with text 1010 1 -

All the M codes 1010 2 -

All the M codes together with text 1010 3 -

FST 1020 - -

All the spindles 1030 - -

Single block input 1040 - -

Program list 1050 - -

Left directory window 1090 - -

Right directory window 1091 - -

List of programs running (main programs
and subprograms)

1110 - -

146

6.23 Opening a Window in the Screen of the Control

Window name Identifier Parameter 1 Parameter 2

All the messages 1130 - -

Time/workpiece counter 1150 - -

Position 3000 - -

Workpiece probing 3011 - -

Tool probing 3012 - -

Tool compensation table for milling
machine

3020 - -

Tool compensation table for lathe 3031 - -

Tool compensation table 2 for lathe 3032 - -

Zero point offset window 3040 - -

Tool management table 4010 - -

Tool pocket table 4020 - -

Particular window for tool construction 4030 Magazine
number

Pocket
number

Tool shape table 4040 - -

Aggregate tool life table 4050 - -

#1...#33 local macro variables 5010 - -

#100...#499 global macro variables 5020 - -

#500...#999 global macro variables 5030 - -

Calculator 6000 - -

Cutting speed calculation 6010 - -

Division counter 6020 - -

DXF converter 6030 - -

Setting the spindle orientation position 6040 - -

Setting the spindle phase shift 6041 - -

Workpiece probe calibration 6060 - -

Workpiece surface measurement 6061 - -

Workpiece corner measurement 6062 - -

147

6.23 Opening a Window in the Screen of the Control

Window name Identifier Parameter 1 Parameter 2

Workpiece pocket/web, bore/boss
measurement

6063 - -

148

6.24 Dumping the Drive Data

6.24 Dumping the Drive Data

The values of current required by the motors can be visualized on position display and in the FST
window, the speed of the spindle motors can be displayed in the FST window. Data of drives
manufactured by the NCT are received automatically by the control from the drives.
In the case of drives other than manufactured by the NCT, the PLC program can read the different
data from the drive or, for example, it can read in the current data through an A-D converter, and
it can transmit them to the control for displaying, using the instruction 81.

Instruction: MW
Function code: 81

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 3

2 Drive address: value set in the N0501 Axis Input Address or in the

N0601 Spindle Input Address parameter

3 Type of the data transmitted:

0 – Motor speed [1/min]

1 – Instantaneous value of the motor current [10 mA] (125 = 1,25 A)

2 – Motor load (relative current) [%]

3 – DC bus voltage [V]

4 – Motor temperature [°C]

5 – Instantaneous motor power [kW]

4 Value of the data transmitted (DWORD)

*: need not be set

Output parameters:

Address Data

0 Code of execution*

1 Amount of data: 3

2 Drive address: value set in the N0501 Axis Input Address or in the

N0601 Spindle Input Address parameter

149

6.24 Dumping the Drive Data

Address Data

3 Type of the data transmitted:

0 – Motor speed [1/min]

1 – Instantaneous value of the motor current [10 mA] (125 = 1,25 A)

2 – Motor load (relative current) [%]

3 – DC bus voltage [V]

4 – Motor temperature [°C]

5 – Instantaneous motor power [kW]

4 Value of the data transmitted (DWORD)

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

80 Invalid drive address

81 Invalid data type

82 Invalid transmitted data value

150

?, 6.25 Writing the Position Data

6.25 Writing the Position Data

The position recorded in the axis controlling module can be overwritten by the PLC program if

 – the position control loop is open for the given axis (AN_OPNA=1), and

 – receiving the position from the encoder is disabled (AP_EFD=1 or N0514 Servo Control para-

meter #4 EFD=1).

Due to the instruction, the state reference point is taken will be recorded by the axis controlling

module for the given axis (AN_RPE=1).

This instruction can be used, for example, when a rotating axis is placed on a Hirth disc, and it

is the PLC program that executes position recording and saving. In such a way, positioning to the

reference point after turn-on can be activated. Its application is useful particularly in the case

when positions of several axes are measured by one encoder.

Instruction: MW

Function code: 90

Input parameters:

Address Data

0 Code of execution*

1 Amount of data: 3

2 Axis index (0, ..., 31)

3 Position to be written in the machine coordinate system (double)

4

*: need not be set

Output parameters:

Address Data

0 Code of execution

1 Amount of data: 3

2 Axis index (0, ..., 31)

3
Position to be written in the machine coordinate system (double)

4

151

?, 6.25 Writing the Position Data

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data

30 Invalid axis index: <0 or >31

90 Internal error, the instruction cannot be used

91 The axis index indicates a non-existing axis, or the position control

loop is not open (AN_OPNA=0), or receiving the position from the

encoder is not disabled (AP_EFD=0)

152

6.26 Reading and Writing Data of Tool Management Table

6.26 Reading and Writing Data of Tool Management Table

Tool management function is to be used in the following cases:

 – tool life counting is applied,

 – referring to tools by code, not by pot numbers,

 – tool change applied in machine requires random tool pot management.

Data of tool management are stored in tables in the NC. PLC program can read and write them

by using MR and MW instructions.

6.26.1 The Tool Management Table

You can write the T codes of tools, used in the machine, into the tool management table. T codes,

by which a tool is referred to in a part program, are called type numbers.

You can define the properties of tools in the table. They can be normal sized, or oversize ones,

can take part in life management or not, an offset number can be assigned to them, etc. You can

assign further machining data to a tool, e.g.: spindle speed, feed-rate, etc.

The tool management is common for each channel.

Data

number

Type

number

(T)

Tool info Figure

number

Life

status

Life

counter

Life

1 10002001 UENCV Expired 150 150

2 10002001 SENCV Used 131 200

3 10002001 SENCV Not used 0 170

4 150 SDLCV 2 Not

performed

5 3210 UENTV Broken 1h42m26s 2h30m00s

6 3210 SENTV Used 1h34m14s 1h50m30s

...

Elements of tool management table:

1 Data number (DWORD)

It is the serial number of rows in the table. It cannot be edited, the number of rows in the

table determined by parameter. Tools are registered by data number in the cartridge table.

2 Type number (T) (DWORD)

Tools are referred by their type numbers at the address T in a part program. If a group of

the tools takes part in tool life management, then all tools in the same group are referred

to by the same type number. Type number is specified by maximum 8 digits:

153

6.26 Reading and Writing Data of Tool Management Table

T: from 1 to 99 999 999.

That tool is selected by the NC among the tools with the same type number, life counter

of which is maximal but it has not expired yet. According to the table above, the tool with

data number 2 will be selected if you specify the T code

T10002001.

If each tool with the same type number has identical value of life counters, the tool with

lower data number will be selected.

3 Tool info (DWORD)

The tool info contains the following bit information:

#0 I (=0, Invalid): the whole row of tool management table is invalid, it can be

deleted

V (=1, Valid): the whole row of tool management table is valid.

#1 C (=0, Count): life management is done for counts of usage

T (=1, Time): life management is done for machining time.

L Attention:

You have to set the same C or T tool info for tools with the same type number.

#2 N (=0, Normal): The tool has normal size (it occupies one tool pot).

L (=1, Large): The tool is oversize, it occupies more tool pots.

#3 E (=0, Enabled): The whole row of tool management table can be edited.

D (=1, Disabled): The whole row of tool management table cannot be edited.

#4 If life status states that this tool does not take part in tool life management and this

bit

U (=0, Unsearchable): NC does not search for this tool

4 Figure number (DWORD)

If an oversize tool is defined by “L” in the tool info column, then you have to specify the

figure number of the tool. The tool pattern table contains the definitions of figure numbers

of the oversize tools (pot occupied).

The figure number points to the row number of the tool pattern table.

If the value of figure number is 0 then the tool occupies 1 pot space in the cartridge. If a

normal tool is defined in tool info by using “N”, then the value of figure number is

invalid.

5 Life status (DWORD)

The life status contains the following codes:

=0: Not performed

If the tool does not take part in life management, but it is indicated by “S” in tool

info column, then its status is “not performed”. The tool can be searched.

=1: Not used

If the tool takes part in life management but it has not been used yet, that is the

value of its life counter is 0, then its status is “not used”. The tool can be searched.

=2: Used

154

6.26 Reading and Writing Data of Tool Management Table

If the tool takes part in life management and the value of its life counter is lower

than the defined life then its status is “used”. The tool can be searched.

=3: Expired

If the tool takes part in life management and the value of its life counter has

reached the defined life value then its status is “expired”. The tool cannot be

searched.

=4: Broken

If PLC indicates, the tool is broken, then its status becomes “broken”. This status

is the same as the “expired” status: The tool cannot be searched. This status is

valid also for those tools which do not take part in life management.

6 Life counter (DWORD)

If bit #1 is set to C in the tool info column, tool life management is enabled and life

management is done for counts of usage. It counts the execution of tool changes. When

the FIN signal arrives after the execution of an M06 or a T code, then the value of life

counter is incremented.

If the value of life counter reaches the value set in the life column then the status of tool

will be “expired”. To count for M06 or T decided by parameter.

If bit #1 is set to T in the tool info column, tool life management is enabled and life

management is done for the time spent with machining. It measures the time

spent in Start state and

when the value of override is not 0 and

the spindle is turning and

a movement with a feed-rate is done.

If the time measured by life counter has reached the value set in the life column, then the

status of tool will be “expired”.

7 Life (DWORD)

You can set the life value of a tool for counts or time here. If the life counter of a tool

reaches the value set here, then the status of tool will be “expired”.

Further elements of the table:

Data

number

Type

number

(T)

Tool info Notice life H D S

1 10002001 UENCV 20 1 1 12500

2 10002001 SENCV 12 2 3 11400

3 10002001 SENCV 15 31 31 13000

4 150 SDLCV 12 13 5400

5 3210 UENTV 5m30s 326 326 2500

155

6.26 Reading and Writing Data of Tool Management Table

6 3210 SENTV 4m10s 63 63 2700

...

8 Notice life (DWORD)

If the difference between the life and life counter reaches the value set on notice life then

the control sends a warning signal to the PLC.

9 H: tool length compensation number (DWORD)

In a milling channel it is the tool length compensation number to be used (H code) if the

tool takes part in life management.

10 D: cutter compensation number (DWORD)

In a milling channel it is the cutter compensation number to be used (D code) if the tool

takes part in life management.

11 G: tool geometry compensation number (DWORD)

In a turning channel it is the tool geometry compensation number to be used if the tool

takes part in life management.

12 W: tool wear compensation number (DWORD)

In a turning channel it is the tool wear compensation number to be used if the tool takes

part in life management.

13 Spindle speed (DWORD)

Spindle speed for the tool in [1/min] unit.

Further elements of table

Data

number

Type

number

(T)

Tool info F User data 1 User data 2

...

1 10002001 UENCV 3000

2 10002001 SENCV 2800

3 10002001 SENCV 3300

4 150 SDLCV 650

5 3210 UENTV 1800

6 3210 SENTV 1700

...

14 Feed (double)

Feed-rate for the tool in mm/min, inch/min, or mm/revolution, inch/revolution unit.

15 User data 1 (DWORD)

You can define 8 bit type data per tool type, for arbitrary application.

156

6.26 Reading and Writing Data of Tool Management Table

16 User2, 3, 4, ...20 (double)

Columns for storing double type floating-point data. Number of columns set in a

parameter.

157

6.26 Reading and Writing Data of Tool Management Table

6.26.2 The Cartridge Management Table

Data numbers of tools in the pots of cartridges are written in the cartridge management table, that

is the serial numbers of rows of the tool management table.

The cartridge management table is common for each channel.

Serial number Cartridge number Pot number Data number

1 1 1 0

2 1 2 4

3 1 3 3

...

24 1 24 1

25 2 1 12

26 2 2 28

27 2 3 0

...

40 2 16 62

...

41 10 1 2

42 11 1 0

43 20 1 5

44 21 1 6

...

The cartridge management table is divided as the follows:

1 Serial number

It is the serial number of rows in the table. This is equal to the available tool pots in the

machine.

2 Cartridge number

You can define up to 4 cartridges in parameter. Their serial numbers are ranging from 1

up to 4. It depends on the mechanical construction of machine tool that the tool changing

arms how could reach the cartridges and which spindles could they supply.

You can define in parameters that cartridges are chain-type or matrix-type ones and the

amount of tool pots in each cartridge.

158

6.26 Reading and Writing Data of Tool Management Table

Special tool cartridges

All spindles can be assigned by parameter to the cartridge table and a standby cartridge

for spindles. The spindle and the standby cartridges are single-pot cartridges.

The cartridge number of the 1st spindle is 10, the cartridge number of the 2nd spindle is

20, and so on.

The numbers of standby cartridges assigned to the spindles (for example tool change

arms) are 11, 21 and so on.

L Remark.

The tool machining may not be in a spindle but in a tool holder. E.g.: A vertical turning

machine with a single table has 2x2 axes. Each channel is machining with a separate tool,

which are fixed in the left and right tool holders. Spindles also have to be defined to both

channels (E.g.: S1, S2), that is tool holders, because the PLC-NC communication flags

belonging to tool management are handled per spindle cartridges.

3 Pot number

The pot numbers are increased by 1 in a cartridge. The starting pot number determined by

parameter.

4 Data number

Data number of the tool management table is written here that specifies the tool in the pot.

If the value of data number is 0, there is no tool in the pot.

159

6.26 Reading and Writing Data of Tool Management Table

6.26.3 The Tool Pattern Table

The figure of oversize tools, that may occupy several pots in the cartridge, can be determined in

the tool pattern table.

In case of an oversize tool

 – you have to set #2 bit of Tool info column of the tool management table into “L”, and

 – you have to specify a code in the Figure number column of the tool management table. Figure

number points to the appropriate row of the tool pattern table that describes the figure of

the tool.

Types of each cartridges have to be determined by parameter before using tool pattern table

(chain-type or matrix-type).

You also have to determine by parameter

 – the starting pot number in case of chain-type cartridges (it is not necessary to start from 1),

and the number of pots in the cartridge,

 – the starting pot number in case of matrix-type cartridges (it is not necessary to start from 1),

and the number of columns and rows of the matrix.

160

6.26 Reading and Writing Data of Tool Management Table

The control interprets the numbering of pots of matrix-type cartridges shown in the above figure,

so it starts at the upper left corner and lasts till the right bottom corner.

The tool pattern table is common for each channel. The maximum number of rows of the tool

pattern table is 20, so it can manage up to 20 different figures.

Figure

number

Left Right Up Down Geometry

1

...

1 Figure number (DWORD)

It is the serial number of rows in the table. The number, determined in the figure number

column of tool management table, points to the appropriate row of the tool pattern table.

2 Left, Right, Up, Down

The Left, Right columns of the table are also used in case of chain- and matrix-type

cartridges. The Up, Down columns of the table are used only in case of matrix-type

cartridges. The number written in columns shows the space requirement of the tool in the

corresponding direction in

½ pot

units. It is not possible to put a tool into a pot, which is occupied by half. However an

oversize tool can be placed in its adjacent pot that also occupies ½, 1 ½, 2 ½ pots in the

opposite direction.

The explanation of the different directions:

Left: decreasing pot numbers (also in chain- and matrix-type cartridges)

Right: increasing pot numbers (also in chain- and matrix-type cartridges)

Up: decreasing number of rows (only matrix-type)

Down: increasing number of rows (only matrix-type)

161

6.26 Reading and Writing Data of Tool Management Table

The spaces, occupied by tools shown in the upper figures, have to be specified in the following

format:

Figure

number

Left Right Up Down Geometry

...

5 4 1 0 0

6 2 3 4 1

162

6.26 Reading and Writing Data of Tool Management Table

3 Geometry

The space requirement of a tool is defined in the Geometry column. Two types are

available:

A: rectangular,

B: circular

shapes. When using circular shape tools and geometry is defined as B, in the corners there

are empty pots, opposed to the space requirement defined as rectangle.

As the above figure shows, the Geometry column is used only in case of matrix-type cartridges.

The completion of the table is based on the above figure:

Figure

number

Left Right Up Down Geometry

1 1 3 2 1 A

2 3 3 3 3 B

163

6.26 Reading and Writing Data of Tool Management Table

6.26.4 Exchange of Data Numbers in Cartridge Table

Instruction: MW

Function code: 100

Data numbers, defined by cartridge and pot numbers, are exchanged in the cartridge manage-

ment table.

Example to use:

Tool is removed from the magazine and is placed into the changer arm, then

tool is removed from the changer arm and is placed into the spindle, while tool in spindle

is placed into the changer arm, then

tool is removed from the changer arm and is placed into the magazine.

Each of the above mentioned tool change operations has to be followed by a data number

exchange in the cartridge management table.

Input data:

Address Data

0 Code of execution *

1 Amount of data: 4

2 Cartridge number 1

3 Pot number 1

4 Cartridge number 2

5 Pot number 2

*: need not be set

Output data:

Address Data

0 Code of execution: shown in table below

1 Amount of data: 4

2 Cartridge number 1

3 Pot number 1

4 Cartridge number 2

5 Pot number 2

164

6.26 Reading and Writing Data of Tool Management Table

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data (not 4)

3 Overwrite protected

100 Specified Cartridge number 1 does not exist

101 Specified Pot number 1 does not exist

102 Specified Cartridge number 2 does not exist

103 Specified Pot number 2 does not exist

6.26.5 Search of Empty Pot

Instruction: MR

Function code: 101

It searches an empty pot for the tool returning to the magazine according to the figure number

of the tool.

You have to specify which pot of the target cartridge has to search from. The tool is identified by

the number of the source cartridge and pot. Empty pots are not searched in standby and spindle

cartridges.

L Attention! Execution of the instruction is influenced by the #0 MRW bit of the N1274 PLC

PrgConfig parameter!

Input data:

Address Data

0 Code of execution *

1 Amount of data *

2 Number of the target cartridge

3 Number of pot in the target cartridge, where the search starts

from

165

6.26 Reading and Writing Data of Tool Management Table

Address Data

4 Search direction in table:

=0: two-way

=1: positive direction

=2: negative direction

5 Number of the source cartridge

6 Number of the pot in the source cartridge

7 Pot number found *

8 Rotation direction of the magazine *

*: need not be set

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data: 7

2 Number of the target cartridge

3 Number of pot in the target cartridge, where the search starts

from

4 Search direction in table:

=0: two-way

=1: positive direction

=2: negative direction

5 Number of the source cartridge

6 Number of the pot in the source cartridge

7 Pot number found

8 Magazine rotation direction:

=1: positive direction

=2: negative direction

166

6.26 Reading and Writing Data of Tool Management Table

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data (not 7)

3 Overwrite protected

100 Specified target cartridge number does not exist

101 Specified target pot number does not exist

102 Specified source cartridge number does not exist

103 Specified source pot number does not exist

104 No empty pot: Searched pot number=0

6.26.6 Register New Tool Data in Tool Management Table

Instruction: MW

Function code: 102

You can register a new tool through the PLC program by using this instruction. The instruction

searches the first empty or invalid (I) data number (row) in the tool management table and the

data of the new tool are registered at this data number. Each column of the table can be input.

For example: Tools are loaded into the magazine through the spindle manually.

Switch tool registration mode in the PLC.

Type number of tools, specified at the address T, is entered in a manual mode as a single

block. The tool is registered with the type number specified by the T code and with the

number of the spindle cartridge. Then the other data of the tool management table (figure

number, life, etc.) are to be specified manually.

Input data:

Address Data

0 Code of execution *

1 Amount of data: from 3, to 55

2 Number of cartridge

3 Number of pot in the cartridge: where the tool, to be registered,

is

167

6.26 Reading and Writing Data of Tool Management Table

Address Data

4 Type number

5 Tool info

6 Figure number

7 Life status

8 Life counter

9 Life

10 Notice life

11 H: tool length compensation number

12 D: cutter compensation number

13 G: tool geometry compensation number

14 W: tool wear compensation number

15 S: spindle speed

16 F: feed-rate (double)

17

18 User data 1 (DWORD, 8 bit type)

19 User data 2 (double)

20

21 User data 3 (double)

22

...

...

55 User data 20 (double)

56

*: need not be set

The minimum amount of data will be at least 3, because defining a cartridge number, a pot num-

ber and a type number are required. The instruction fills as many columns in the tool management

table, as many are determined in the amount of data parameter minus 2 (cartridge number, pot

number).

168

6.26 Reading and Writing Data of Tool Management Table

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data: from 3 to 55

2 Number of cartridge

3 Number of pot in the cartridge: where the tool, to be registered,

is

4 Type number

5 Tool info

6 Figure number

7 Life status

8 Life counter

9 Life

10 Notice life

11 H: tool length compensation number

12 D: cutter compensation number

13 G: tool geometry compensation number

14 W: tool wear compensation number

15 S: spindle speed

16 F: feed-rate (double)

17

18 User data 1 (DWORD, 8 bit type)

19 User data 2 (double)

21

22 User data 3 (double)

23

...

...

55 User data 20 (double)

169

6.26 Reading and Writing Data of Tool Management Table

Address Data

56

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data:

is not greater than 2,

is not lower than 57

the amount of data specified cannot be input into integer number of

columns

3 Overwrite protected

100 The cartridge number specified does not exist

101 The pot number specified does not exist

105 Type number error: cannot be represented in 8 decimal digits

106 Tool info error:

107 Figure number error:

108 Life status error:

109 Life counter error:

110 Life error:

111 Notice life error:

112 H definition error:

The value is greater than the length of compensation table

113 D definition error:

The value is greater than the length of compensation table

114 G definition error:

The value is greater than the length of compensation table

115 W definition error:

The value is greater than the length of compensation table

116 S: spindle speed error

170

6.26 Reading and Writing Data of Tool Management Table

Code Explanation

117 F: feed-rate (double) error

118 User error 1

119 User error 2

120 User error 3

...

137 User error 20

138 Life table is full

6.26.7 Writing Each Tool Management Data of a Tool

Instruction: MW

Function code: 103

Data of a tool, identified by the cartridge number and the pot number, can be written into the tool

management table.

Input data:

Address Data

0 Code of execution: shown in table *

1 Amount of data: from 3 to 55

2 Number of cartridge

3 Number of pot in the cartridge

4 Type number

5 Tool info

6 Figure number

7 Life status

8 Life counter

9 Life

10 Notice life

11 H: tool length compensation number

171

6.26 Reading and Writing Data of Tool Management Table

Address Data

12 D: cutter compensation number

13 G: tool geometry compensation number

14 W: tool wear compensation number

15 S: spindle speed

16 F: feed-rate (double)

17

18 User data 1 (DWORD, 8 bit type)

19 User data 2 (double)

20

21 User data 3 (double)

22

...

...

55 User data 20 (double)

56

*: need not be set

Value of the amount of data will be at least 3, because defining a cartridge number and a pot

number are required and at least type number is to be written. The instruction fills as many

columns in the tool management table, as many are determined in the amount of data parameter

minus 2 (cartridge number, pot number).

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data: from 3 to 55

2 Number of cartridge

3 Number of pot in the cartridge

4 Type number

172

6.26 Reading and Writing Data of Tool Management Table

Address Data

5 Tool info

6 Figure number

7 Life status

8 Life counter

9 Life

10 Notice life

11 H: tool length compensation number

12 D: cutter compensation number

13 G: tool geometry compensation number

14 W: number of wear compensation pocket in milling channel

15 S: spindle speed

16 F: feed-rate (double)

17

18 User data 1 (DWORD, 8 bit type)

19 User data 2 (double)

21

22 User data 3 (double)

23

...

...

55 User data 20 (double)

56

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

173

6.26 Reading and Writing Data of Tool Management Table

Code Explanation

2 Invalid amount of data:

does not greater than 2,

is not lower than 57

the amount of data specified cannot be input into integer number of

columns

3 Overwrite protected

100 The cartridge number specified does not exist

101 The pot number specified does not exist

105 Type number error: cannot be represented in 8 decimal digits

106 Tool info error:

107 Figure number error:

108 Life status error:

109 Life counter error:

110 Life error:

111 Notice life error:

112 H definition error:

The value is greater than the length of compensation table

113 D definition error:

The value is greater than the length of compensation table

114 G definition error:

The value is greater than the length of compensation table

115 W definition error:

The value is greater than the length of compensation table

116 S: spindle speed

117 F: feed-rate (double)

118 User error 1

119 User error 2

120 User error 3

...

137 User error 20

174

6.26 Reading and Writing Data of Tool Management Table

Code Explanation

139 There is no tool in the pot of the cartridge specified

175

6.26 Reading and Writing Data of Tool Management Table

6.26.8 Reading Each Tool Management Data of a Tool

Instruction: MR

Function code: 104

Data of a tool, identified by the cartridge number and the pot number, can be read from the tool

management table.

L Attention! Execution of the instruction is influenced by the #0 MRW bit of the N1274 PLC

PrgConfig parameter!

Input data:

Address Data

0 Code of execution *

1 Amount of data: from 3 to 55

2 Number of cartridge

3 Number of pot in the cartridge

4 Type number *

5 Tool info *

6 Figure number *

7 Life status *

8 Life counter *

9 Life *

10 Notice life *

11 H: tool length compensation number *

12 D: cutter compensation number *

13 G: tool geometry compensation number *

14 W: tool wear compensation number *

15 S: spindle speed *

16 F: feed-rate (double) *

17

18 User data 1 (DWORD, 8 bit type) *

19 User data 2 (double) *

176

6.26 Reading and Writing Data of Tool Management Table

Address Data

20

21 User data 3 (double) *

22

...

...

55 User data 20 (double) *

56

*: need not be set

Value of the amount of data will be at least 3, because defining a cartridge number and a pot num-

ber are required and at least type number is to be read. The instruction reads as many columns

from the tool management table, as many are determined in the amount of data parameter minus

2 (cartridge number, pot number).

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data: from 3 to 55

2 Number of cartridge

3 Number of pot in the cartridge: where tool has stored

4 Type number

5 Tool info

6 Figure number

7 Life status

8 Life counter

9 Life

10 Notice life

11 H: tool length compensation number

177

6.26 Reading and Writing Data of Tool Management Table

Address Data

12 D: cutter compensation number

13 G: tool geometry compensation number

14 W: tool wear compensation number

15 S: spindle speed

16 F: feed-rate (double)

17

18 User data 1 (DWORD, 8 bit type)

19 User data 2 (double)

20

21 User data 3 (double)

22

...

...

55 User data 20 (double)

56

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data:

is not greater than 2,

is not lower than 55

to the amount of data specified cannot be read from integer number

of columns

100 The cartridge number specified does not exist

101 The pot number specified does not exist

139 There is no tool in the pot of determined cartridge

178

6.26 Reading and Writing Data of Tool Management Table

6.26.9 Deletion of All Tool Management Data of a Tool

Instruction: MW

Function code: 105

This function deletes all data of the tool, identified by cartridge number and pot number, in the

tool management table.

Input data:

Address Data

0 Code of execution *

1 Amount of data: 2

2 Number of cartridge

3 Number of pot in the cartridge

*: need not be set

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data: 2

2 Number of cartridge

3 Number of pot in the cartridge

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data (is not 2)

3 Overwrite protected

100 The cartridge number specified does not exist

101 The pot number specified does not exist

179

6.26 Reading and Writing Data of Tool Management Table

Code Explanation

139 There is no tool in the pot of cartridge specified

6.26.10 Writing a Tool Management Data of a Tool

Instruction: MW

Function code: 106

This function writes a single data of a tool identified by cartridge number and pot number in the

tool management table.

Input data:

Address Data

0 Code of execution *

1 Amount of data: from 4 or 5

2 Number of cartridge

3 Number of pot in the cartridge

4 Data number: shown in data number table below

4 Data word 1

5 Data word 2: in case of floating-point data is to be written only

*: need not be set

Amount of data has to be 4 in case of an integer (DWORD) data and 5 in case of floating-point

data.

Explanation of data numbers in the tool management table:

Data

number

Explanation

1 Type number

2 Tool info

3 Figure number

4 Life status

5 Life counter

180

6.26 Reading and Writing Data of Tool Management Table

Data

number

Explanation

6 Life

7 Notice life

8 H: tool length compensation number

9 D: cutter compensation number

10 G: tool geometry compensation number

11 W: tool wear compensation number

12 S: spindle speed

13 F: feed-rate (double)

14 User data 1 (DWORD, 8 bit type)

15 User data 2 (double)

16 User data 3 (double)

...

33 User data 20 (double)

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data

2 Number of cartridge

3 Number of pot in the cartridge

4 Data number: shown in data number table

5 Data word 1

6 Data word 2: in case of floating-point data is to be written only

181

6.26 Reading and Writing Data of Tool Management Table

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid Amount of data: is not 4 or 5

3 Overwrite protected

100 The cartridge number specified does not exist

101 The pot number specified does not exist

105 Type number error: cannot be represented in 8 decimal digits

106 Tool info error:

107 Figure number error:

108 Life status error:

109 Life counter error:

110 Life error:

111 Notice life error:

112 H definition error:

The value is greater than the length of compensation table

113 D definition error:

The value is greater than the length of compensation table

114 G definition error:

The value is greater than the length of compensation table

115 W definition error:

The value is greater than the length of compensation table

116 S: spindle speed

117 F: feed-rate

118 User 1 error

119 User 2 error

120 User 3 error

...

137 User 20 error

182

6.26 Reading and Writing Data of Tool Management Table

Code Explanation

139 There is no tool in the pot of the cartridge specified

140 Invalid data number

6.26.11 Reading a Tool Management Data of a Tool

Instruction: MR

Function code: 107

This function reads a single data of a tool identified by cartridge number and pot number from

the tool management table.

L Attention! Execution of the instruction is influenced by the #0 MRW bit of the N1274 PLC

PrgConfig parameter!

Input data:

Address Data

0 Code of execution *

1 Amount of data: from 4 to 5

2 Number of cartridge

3 Number of pot in the cartridge

4 Data number: shown in data number table

5 Data word 1 *

6 Data word 2: in case of floating-point data is to be read only *

*: need not be set

Amount of data has to be 4 in case of an integer (DWORD) data and 5 in case of floating-point

data.

Explanation of data numbers in the tool management table:

Data

number

Explanation

1 Type number

2 Tool info

183

6.26 Reading and Writing Data of Tool Management Table

Data

number

Explanation

3 Figure number

4 Life status

5 Life counter

6 Life

7 Notice life

8 H: tool length compensation number

9 D: cutter compensation number

10 G: tool geometry compensation number

11 W: tool wear compensation number

12 S: spindle speed

13 F: feed-rate

14 User data 1 (DWORD, 8 bit type)

15 User data 2 (double)

16 User data 3 (double)

...

33 User data 20 (double)

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data

2 Number of cartridge

3 Number of pot in the cartridge

4 Data number: shown in data number table

5 Data word 1

6 Data word 2: in case of floating-point data is to be read only

184

6.26 Reading and Writing Data of Tool Management Table

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data: is not 4 or 5

does not meet the amount of data of variable referred in data

number

100 The cartridge number specified does not exist

101 The pot number specified does not exist

139 There is no tool in the pot of the cartridge specified

140 Invalid data number

6.26.12 Searching a Tool by User Data

Instruction: MR

Function code: 108

This function searches a tool by user data in the tool management table, and returns the cartridge

and the pot numbers. It will find the first tool whose user data corresponds the data specified in

the input data.

Input data:

Address Data

0 Code of execution *

1 Amount of data: 4 or 5

2 Number of cartridge *

3 Number of pot in the cartridge *

4 Data number: number of user data, shown in data number table

to be compared

5 Data word 1: to be compared

6 Data word 2: in case of floating-point data is to be compared

only

185

6.26 Reading and Writing Data of Tool Management Table

*: need not be set

If User data 1 is searched, 1 word, for further user data (floating-point) 2 words of data is to be

specified.

The comparison is executed according to the increment system, set by parameter. If ISB=1, so

0.001 mm increment system is selected. Then it considers two data to be equal to if the absolute

value of their difference is lower than 0.001.

Explanation of data numbers in the tool management table:

Data

number

Explanation

14 User data 1 (DWORD, 8 bit type)

15 User data 2 (double)

16 User data 3 (double)

...

33 User data 20 (double)

Output data:

Address Data

0 Code of execution: shown in table

1 Amount of data: 4 or 5

2 Number of cartridge

3 Number of pot in the cartridge

4 Data number

5 Data word 1

6 Data word 2

Codes of execution:

Code Explanation

0 Normal execution

1 Invalid function code

186

6.26 Reading and Writing Data of Tool Management Table

Code Explanation

2 Invalid amount of data: is not 4 or 5

140 Invalid data number

141 No match found

187

6.27 Writing and Reading the Data of the Pallet Management Table

6.27 Writing and Reading the Data of the Pallet Management Table

In the control, the data of the pallet management are stored in the pallet management table. Using

the MR and MW instructions, the PLC program has access to the data of the table, it can also read

and write them. Application of the pallet management table can be enabled at the bit #0 PAL of

the parameter N3300 Pallet Contr. by writing 1 in the bit.

The pallet management table is global, it is common for each channel.

The last two rows of the pallet management table is as follows provided that the M60 is selected

by the PLC for pallet change:
Part program
...
...
M60 (pallet change)
M30

In the M60 code, the PLC executes the M30 instruction, looks up the next pallet from the table

and selects the program assigned to the pallet for execution.

6.27.1 The Pallet Management Table

The pallet manager table stores the data of the pallets in the pallet magazine, at the working space

and at the loading-unloading point, as well as of those pallets deleted from the above locations.

Pallet magazine number 1 is the name of the storage place where the pallets having workpieces

ready to be machined are located. The number of seats in the magazine can be specified in the

parameter N3301 Pallet Pool Length.

Pallet magazine number 10 is the name of the working space of the machine tool where

machining occurs. In the case of pallet change due to M60 function for example, the machined

workpiece comes back to the magazine 1, the new workpiece comes into the magazone 10, i,e,

into the working space.

In front of the pallet magazine 1 there can be a loading-unloading point named magazine 11. If

there is loading-unloading point on the machine, the #1 MNT bit of the parameter N3300 Pallet

Contr. will have to be set in 1. From the loading-unloading point, i.e. from the magazine 11, the

pallet having the loaded unmachined workpiece can be sent into the magazine 1, and the pallet

having finished machined workpiece can be carried out into the loading-unloading point.

Pallet magazine number 0 or virtual magazine is the name of those rows of the table behind

which there is no physical storage place; it stores only the the data of the pallets on the basis of

their identification numbers. If a pallet is removed from the loading-unloading point, the data of

the pallet can be transferred to the magazine 0 by the use of PLC instruction. If a new pallet

comes to the loading-unloading point, the data of the pallet can be called from the virtual

magazine 0 by the use of PLC instruction (for example, due to RFID reading) provided that the

pallet with this identification number already participated in machining earlier and its data have

been stored in the virtual magazine 0.

188

6.27 Writing and Reading the Data of the Pallet Management Table

Columns 1-5 of the pallet management table:

Magazine

numbers []

and

Place

numbers

Data numbers

1 2 3 4 5 ..

Pallet

identifier

Status Priority Number of

executed

programs

Number of

assigned

programs

..

Working

space

[10] 1

Loading-

unloading

point [11] 1

[1] 1

[1] 2

...

...

[1] n

[0] 1

[0] 2

...

The column of Magazine numbers and Place numbers:

The row of Working space[10] 1: It contains the data of the pallet being in the working space. It

cannaot be edited in the automatic mode. As for the PLC, it is the magazine 10.

The row of loading-unloading point [11] 1: It contains the data of the pallet being in the loading-

unloading point. It can be seen only in the case if the value of the #2 MNT bit of the

parameter N3300 Pallet Contr. is 1. It can only be edited when it is not forbidden by the

PLC because, for example, a pallet change between the loading-unloading point and the

magazine has already started. As for the PLC, it is the magazine 11.

Pallet magazine [1] place number rows 1, 2, ... n: It contains the data of the pallets being in the

pallet magazine. It contains as many rows as many have been specified in the parameter

N3301 Pallet Pool Length. It can only be edited if it is not forbidden by the PLC because,

for example, a pallet change between the working space and the magazine has already

started.

189

6.27 Writing and Reading the Data of the Pallet Management Table

Virtual magazine [0] place number rows 1, 2, ...: The pallet magazine 0, i.e. the virtual magazine

contains the data of the pallets deleted from the physical magazine. The number of the

rows available in the magazine 0 is 128 minus the rows of the magazine 1, 10 and 11. It

can only be edited if it is not forbidden by the PLC because, for example, a pallet change

between the working space and the magazine has already started.

The column 1 of the pallet identifier:

Data number=1, DWORD data. It contains arbitrary identification number of the pallets. It can

be written by the operator manually, or by the PLC too, for example, after read-in of the RFID

code. If, in the magazine 0, the pallet manager finds a pallet identifier of which is written/read in,

it will automatically transmit the data of the appropriate pallet to the appropriate (physical) row

of the table.

The PLC instruction MW41 assigns the program(s) to execute based on pallet identifier of the

working space.

The column 2 of the status:

Data number=2, DWORD value. It contains the status of the pallet place. It can be written by the

operator manually, or by the PLC program too.

Its value=0: It cannot be used. It is not possible to use the pallet place due to mechanical trouble

for example. It is not allowed to place a pallet there.

Its value=1: It is empty. At the given station, there is neither pallet nor pallet support plate. This

is the case when the pallets in the magazine 1 are stored on a support plate and the support

plate can also be exchanged together with the pallet, for example, between the magazine

and the loading-unloading point.

Its value=2: Only support plate. At the given station there is no pallet but there is pallet support

plate. This is the case when a pallet is exchanged to the working space but there is no need

for the support plate.

Its value=3: It is under loading-unloading. The pallet is not enabled for exchange yet. When,

for example, the pallet arrives to the magazine 1 from the loading-unloading point, it can

take the status 3. It will physically be one of the exchangeable pallets, however it cannot

be exchanged into the working space until it is enabled for exchange.

Its value=4: It is ready for exchange. The pallett is prepared and enabled. Elõkészített és

érvényesített paletta. The pallet is ready to be exchanged for machining.

Its value=5: It is under machining. Machining is in progress, the part program runs.

Its value=6: It is finished. There is properly machined workpiece on the pallet.

Its value=7: It is faulty. There is machined workpiece on the pallet but is is faulty.

Its value=8: Remachining. The pallet has been sent back to the working space for correction.

190

6.27 Writing and Reading the Data of the Pallet Management Table

The column 3 of priority:

Data number=3, DWORD-type data. The smaller the priority value is, the sooner the workpiece(s)

on the pallet will be machined. It can be written by the operator manually, or by the PLC program

too.

If several pallets have the same priority, the closest pallet to the working space will be exchanged,

i.e. the position of this pallet will be provided by the MR308 search instruction.

The column 4 of the number of executed programs:

Data number=4, DWORD-type data. During execution of the M60 instruction, the PLC program

increments the number of executed programs in the working space, i.e. in the magazine 10.

As long as the MW41 program selection instruction returns with 0, not all the programs are

executed on the palette. In this case the PLC does not search for a new pallet in the magazine, but

it starts the next program.

If the MW41 program selection instruction returns with 47, a new pallet should be searched.

The column 5 of the number of assigned programs:

Data number=5, DWORD-type data. Several main programs can be assigned to a pallet for

execution. The number of assigned programs can be found in this column.

As long as the MW41 program selection instruction returns with 0, not all the programs are

executed on the palette. If the number of the programs executed is equal to the number of the

programs assigned, the instruction will return with the code 47.

The columns from 6 to 10:

Magazine

numbers []

and

Place numbers

Data numbers

.. 6 7 8 9 10

Program

identifier

Custom 1 Custom 2 Custom 3 Custom 4

Working space

[10] 1

Loading-

unloading point

[11] 1

[1] 1

[1] 2

...

...

191

6.27 Writing and Reading the Data of the Pallet Management Table

[1] n

[0] 1

[0] 2

...

The column 6 of Program identifier:

Data number=6

If the N3300 Pallet Contr. parameter’s #3 PRI=0:

The assigned programs will be identified by 4-digit or 8-digit program numbers. The

programs should be in the root of the Programs directory with the file name Ooooo.nct or

Ooooooooo.nct. In this case, the variable belonging to the data number will be DWORD-

type, and the PLC program can write and read this column.

If the N3300 Pallet Contr. parameter’s #3 PRI=1:

The program (s) to be executed are selected manually based on their filename and path by

the use of the palette manager table. In this case, the PLC program cannot write and read

this column.

In the parameter N3302 No. of Custom Columns, maximum 4 custom columns can be assigned.

The column 7 of Custom 1:

Data number=7, it is bit-data, its length is 8 bits.

It can be used if the N3302 No. of Custom Columns parameter>0.

The column 8-10 of Custom 2-4:

Data number=8-10, double-type data.

It can be used if N3302 No. of Custom Columns parameter>1.

192

6.27 Writing and Reading the Data of the Pallet Management Table

6.27.2 Data Interchange Between Two Different Places of Two Different Pallet Magazines

Instruction: MW

Function code: 300

In the pallet management table, the data of two rows specified by the magazine number and the

place number will be interchanged.

Input parameters:

Address Data

0 Code of execution*

1 Data length: 3

2 Number of the pallet magazine 1 (1, 10, 11)

3 Number of the place 1

4 Number of the pallet magazine 2 (0, 10 or 11)

*: This data should not be entered.

If the data interchange should be done between the pallet magazine and the working space,

2 the number of the pallet magazine 1=1

3 the place number of the magazine 1= the number of the adequate pocket

4 the number of the pallet magazine 2=10

If the data interchange should be done between the pallet magazine and the loading-unloading

point,

2 the number of the pallet magazine 1=1

3 the place number of the magazine 1= the number of the adequate pocket

4 the number of the pallet magazine 2=11

If the data interchange should be done between the loading-unloading point and the virtual

magazine,

2 the number of the pallet magazine 1=11

3 the place number of the magazine 1= 1

4 the number of the pallet magazine 2=0

If the data interchange should be done between the pallet magazine and the virtual magazine,

2 the number of the pallet magazine 1=1

3 the place number of the magazine 1= the number of the adequate pocket

4 the number of the pallet magazine 2=0

193

6.27 Writing and Reading the Data of the Pallet Management Table

Output parameters:

Address Data

0 Code of execution: See the table

1 Data length: 3

2 Number of the pallet magazine 1

3 Number of the place 1

4 Number of the pallet magazine 2

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

2 Invalid data length (it is not 3)

3 Write-protected

300 The given number of the pallet magazine 1 does not exist

301 The given pallet place does not exist

302 The given number of the pallet magazine 2 does not exist

194

6.27 Writing and Reading the Data of the Pallet Management Table

6.27.3 Rewriting the Pallet Data

Instruction: MW

Function code: 303

In the pallet management table, rewriting the data of the pallet identified in accordance with the

magazine number and the place number.

Input parameters:

Address Data

0 Code of execution*

1 Data length: minimum 3, maximum 14

2 Number of the pallet magazine

3 Place number of the pallet magazine: Where the pallet is

4 Pallet identifier

5 Status

6 Priority

7 Number of the programs executed

8 Number of the programs assigned

9 Custom 1

10 Custom 2 (double)

11

12 Custom 3 (double)

13

14 Custom 4 (double)

15

*: This data should not be entered.

For data length, minimum 3 should be written because entering the data of magazin number and

place number is mandatory, and at least the Pallet identifier should be written. The instruction

will rewrite as many columns in the pallet management table as many columns have been

specified in the Data length parameter, minus 2 (magazine number, place number). When the

data of the pallet in the working space (the magazine number is 10) or at the loading-unloading

point the magazine number is 11) are rewritten, the place number will be 1.

195

6.27 Writing and Reading the Data of the Pallet Management Table

The instruction does not manage the Program identifier, it will be accessible only by the use

of specific pallet data writing, i.e. MW306 instruction in the case if the value of the #3 PRI bit

of the parameter N3300 Pallet Contr. is 0.

For rewiting the pallet identifier, the system transposes all the data from the virtual pallet

table and rewrites the other possible data provided that it finds row of such identifier.

Output parameters:

Address Data

0 Code of execution

1 Data length: minimum 3, maximum 14

2 Number of the pallet magazine

3 Place number of the pallet magazine: Where the pallet is

4 Pallet identifier

5 Status

6 Priority

7 Number of the programs executed

8 Number of the programs assigned

9 Custom 1

10 Custom 2 (double)

11

12 Custom 3 (double)

13

14 Custom 4 (double)

15

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

196

6.27 Writing and Reading the Data of the Pallet Management Table

Code Description

2 Invalid data length:

not greater than 2,

or not smaller than 14

3 Write-protected

300 The given pallet magazine nimber does not exist

301 The given place number does not exist

305 Invalid pallet identifier (<1, or >99999999)

306 Invalid pallet status (>9)

307 Priority error (>128)

308 The number of the programs executed is out of bounds (it is greater

than the number of the programs assigned)

309 The number of the programs is out of bounds (> 64)

339 The pallet place is empty

197

6.27 Writing and Reading the Data of the Pallet Management Table

6.27.4 Reading the Data of the Pallet

Instruction: MR

Function code: 304

Reading the data of the pallet identified in accordance with the magazine number and the place

number from the pallet management table.

Input parameters:

Address Data

0 Code of execution*

1 Datalength: minimum 3, maximum 14

2 Number of the pallet magazine

3 Place number of the pallet magazine: Where the pallet is

4 Pallet identifier*

5 Status*

6 Priority*

7 Number of the programs executed*

8 Number of the programs assigned*

9 Custom 1*

10 Custom 2* (double)

11

12 Custom 3* (double)

13

14 Custom 4* (double)

15

*: This data should not be entered.

For data length, minimum 3 should be written because entering the data of magazin number and

place number is mandatory, and at least the pallet identifier should be read. The instruction will

only read as many columns from the pallet management table as many columns have been

specified in the Data length parameter, minus 2 (magazine number, place number). When the

data of the pallet in the working space (the magazine number is 10) or at the loading-unloading

point the magazine number is 11) are read, the place number will be 1.

198

6.27 Writing and Reading the Data of the Pallet Management Table

The instruction does not manage the Program identifier, it will be accessible only by the use

of specific pallet data reading, i.e. MW307 instruction in the case if the value of the #3 PRI bit

of the parameter N3300 Pallet Contr. is 0.

Output parameters:

Address Data

0 Code of executionTeljesítés kódja

1 Data length: minimum 3, maximum 14

2 Number of the pallet magazine

3 Place number of the pallet magazine: Where the pallet is

4 Pallet identifier

5 Status

6 Priority

7 Number of the programs executed

8 Number of the programs assigned

9 Custom 1

10 Custom 2 (double)

11

12 Custom 3 (double)

13

14 Custom 4 (double)

15

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

2 Invalid data length:

not greater than,

or not smaller than 14

3 Write-protected

199

6.27 Writing and Reading the Data of the Pallet Management Table

Code Description

300 The given pallet magazine number does not exist

301 The given place number does not exist

339 The pallet place is empty

6.27.5 Rewriting a Pallet Management Data of the Pallet

Instruction: MW

Function code: 306

Rewriting a given data of the pallet identified in accordance with the pallet magazine number and

the place number in the pallet management table.

Input parameters:

Address Data

0 Code of executionTeljesítés kódja *

1 Datalength: 4 or 5

2 Number of the pallet magazine

3 Place number of the pallet magazine

4 Data number: See the Data number table

5 Data (if the data is double, 2 places should be reserved)

6

*: This data should not be entered.

When the data of the pallet in the working space (the magazine number is 10) or at the loading-

unloading point the magazine number is 11) are rewritten, the place number will be 1.

For rewriting the pallet identifier, the system transposes all the data from the table of the

selectable pallets and overwrites other possible data.

It will only be allowed to write the Program identifier (data number=6) if the value of the #3 PRI

of the parameter N3300 Pallet Contr. is 0.

With writing, the previous assignments will be overwritten.

Several programs can be assigned at once. In this case, the data of Number of assigned programs

should be given first. Then, the data length parameter of the MW306 instruction should be

increased depending on the program number to be entered. The program numbers can be

uploaded by the use of the MW306 instruction.

200

6.27 Writing and Reading the Data of the Pallet Management Table

Interpretation of the data numbers in the pallet management table is as follows:

Data number Description

1 Pallet identifier

2 Status

3 Priority

4 Number of the programs executed

5 Number of the programs assigned

6 Program identifier

7 Custom 1

8 Custom 2

9 Custom 3

10 Custom 4

Output parameters:

Address Data

0 Code of execution: See the table

1 Data length: 4 or 5

2 Number of the pallet magazine

3 Péace number of the pallet magazine

4 Data number: See the Data number table

5 Data (if the data is double, 2 places should be reserved)

6

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

2 Invalid data length: not 4 or 5

3 Write-protected

300 The given pallet magazine number does not exist

201

6.27 Writing and Reading the Data of the Pallet Management Table

Code Description

301 The given place number does not exist

305 Invalid pallet identifier (<1 or >99999999)

306 Invalid pallet status (>10)

307 Priority error (>128)

308 The number of the programs executed is out of bounds (it is greater

than the number of the programs assigned)

309 Program number error (>64)

339 The pallet place is empty

6.27.6 Reading a Pallet Management Data of the Pallet

Instruction: MR

Function code: 307

Reading a given data of the pallet identified in accordance with the pallet magazine number and

the place number from the pallet management table.

Input parameters:

Address Data

0 Code of execution*

1 Data length: 4 or 5

2 Number of the pallet magazine

3 Place number of the pallet magazine

4 Data number: See the Data number table

5 Data (if the data is double, 2 places should be reserved)*

6

*: This data should not be entered.

When the data of the pallet in the working space (the magazine number is 10) or at the loading-

unloading point the magazine number is 11) are read, the place number will be 1.

It will only be allowed to read the Program identifier (data number=6) if the value of the #3 PRI

of the parameter N3300 Pallet Contr. is 0.

202

6.27 Writing and Reading the Data of the Pallet Management Table

The data of Number of assigned programs should be read first. Then, the data length parameter

of the MW307 instruction should be increased depending on the program number to be entered.

The program numbers can be uploaded by the use of the MW307 instruction.

Interpretation of the data numbers in the pallet management table is as follows:

Data number Description

1 Pallet identifier

2 Status

3 Priority

4 Number of the programs executed

5 Number of the programs assigned

6 Program identifier

7 Custom 1

8 Custom 2

9 Custom 3

10 Custom 4

Output parameters:

Address Data

0 Code of execution: See the table

1 Data length: 4 or 5

2 Number of the pallet magazine

3 Place number of the pallet magazine

4 Data number: See the Data number table

5 Data (if the data is double, 2 places should be reserved)

6

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

203

6.27 Writing and Reading the Data of the Pallet Management Table

Code Description

2 Invalid data length: not 4 or 5

3 Write-protected

300 The given pallet magazine number does not exist

301 The given place number does not exist

339 The pallet place is empty

6.27.7 Searching a pallet by its data number value

Instruction: MR

Function code: 308

In the pallet magazine 1, the instruction looks up the place of that pallet the data number and the

value of which is specified in input parameter, and the found place number will be given back.

If a ready-to exchange pallet place of status 4 is searched upon the data number 2 and there are

several pallets with the same status in the magazine, the place of that pallet will be given back

which has the highest priority (the lowest priority number). If there are several pallets with the

same priority in the magazine, the place of that pallet will be given back which is the nearmost

one to the given initial position.

If a non-status 4 pallet place is searched upon the data number 2 or a pallet of a given value is

searched upon another data number, the place of that pallet will be given back which is the

nearmost one to the given initial position.

Depending on the mechanical design of the pallet magazine, i.e. it can only be rotated in one or

both directions, the direction of the search can also be specified as an input parameter.

Accordingly, the instruction gives back the direction of the magaine rotation.

204

6.27 Writing and Reading the Data of the Pallet Management Table

Inpur parameters:

Address Data

0 Code of execution *

1 Data length: 6

2 Data number

3 Value to be searched

4 Place number of the pallet magazine: the position from which

search should be done

5 The direction of the search in the table:

=0: bidirectional

=1: in positive direction

=2: in negative direction

6 The found place number *

7 The direction of the magazine rotation*

*: This data should not be entered.

Output parameters:

Address Data

0 Code of execution: See the table

1 Data length: 6

2 Data number

3 Value to be searched

4 Place number of the pallet magazine

5 The direction of the search in the table

6 The found place number

7 Magazine rotation

=1: in positiev direction

=2: in negative direction

205

6.27 Writing and Reading the Data of the Pallet Management Table

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

2 Invalid data lengtgh: it is not 2

12 Data number error

301 The given place number does not exist

339 The pallet place is empty

341 In the magazine there is no the pallet with the status searched

6.27.8 Reading out the pallet magazine’s values of given data number

Instruction: MR

Function code: 309

The values of any column of a magazine can be read out from the pallet management table by the

use of this instruction. It can be specified which magazine position (which row of the table) to

start reding from and how many rows to read. If the reading reaches the end of the magazine and

the specified number of items has not been exhausted, reading will continued from the beginning

of the table.

Input parameters:

Address Data

0 Code of execution*

1 Data length: n $4

2 Data number: See the Data number table

3 Number of the pallet magazine

4 Place number of the pallet magazine

5 Value at the given place number*

... ...*

4+n ...*

*: This data should not be entered.

206

6.27 Writing and Reading the Data of the Pallet Management Table

Output parameters:

Address Data

0 Code of execution

1 Data length: n $4

2 Data number: See the Data number table

3 Number of the pallet magazine

4 Place number of the pallet magazine

5 Value at the given place number

... ...

4+n ...

Example:

Let the pallet magazine 1 be a 5-seat one and let’s read the data beginning from the place number

4. Let’s read the first column of the table, that is, the pallet identification codes. The result after

reading will be as follows:

0: 0 (perfect operation)

1: Data length: 10

2: Data number 1 (pallet identifier)

3: Number of the pallet magazine:1

4: Place number of the pallet magazine: 4

5: Read out identifier: 12345679 (place 4)

6: Read out identifier: 98764 (place 5)

7: Read out identifier: 123 (place 1)

8: Read out identifier: 456 (place 2)

9: Read out identifier: 789 (place 3)

10: Read out identifier: 12345679 (place 4)

11: Read out identifier: 98764 (place 5)

The code of execution can be the following:

Code Description

0 Normal execution

1 Invalid Function code

2 Invalid data length: it is not n $4

12 Data number error

300 The given pallet magazine number does not exist

207

6.27 Writing and Reading the Data of the Pallet Management Table

Code Description

301 The given place number does not exist

339 The pallet place is empty (internal error)

6.27.9 Assigning a program accessible by its pallet identifier for automatic execution

Instruction: MW

Function code: 41

The write operation will be executed only in the case, when there is no program running in

automatic mode and there is no interrupt status in the given channel, i.e. the following conditions

are true:

CN_START=CN_STOP=CN_INTD=0.

It is always necessary to give the identifier of that pallet which is in the working space (in the

magazine 10).

If several programs are assigned in the pallet, the next program will be assigned based on the

Number of the programs executed in the table.

Input parameters:

Address Data

0 Code of execution *

1 Data length: 2

2 The identifier of the pallet in the magazine 10

3 Channel number: 1...8

*: This data should not be entered.

It is always 2 that should be written for data length.

208

6.27 Writing and Reading the Data of the Pallet Management Table

Output parameters:

Address Data

0 Code of execution

1 Data length: 2

2 Identifier of the pallet

3 Channel number: 1...8

209

6.27 Writing and Reading the Data of the Pallet Management Table

Possible codes of execution:

Code Description

0 Normal execution

1 Invalid Function code

2 Invalid data length: it is not 2

41 Invalid channel number

45 The file does not exist

46 A program is being run in the given channel

47 There is no executable program on the pallet

342 The working space is empty (there is no pallet there)

In the case when several programs are assigned on the pallets for execution and the Code of

execution of the MW41 instruction is 0, not all the programs are executed yet and the next

program can be started in the M60 pallet change function.

In the case when the Code of execution of the MW41 instruction is 47, all the programs are

executed on the pallet and the M60 function should search a new and ready-to-exchange pallet.

Then, the M41 program assignment instruction should be applied to the new pallet.

210

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

EtherCAT mailboxes of a device, manufacturer of which is not the NCT and which uses known

protocol, can be accessed from the PLC program by the use of instructions MR201 and MW202.

The protocols used can be the following:

SoE: Sercos over EtherCAT,

CoE: CANopen over EtherCAT,

VoE: Vendor over EtherCAT (protocol defined by the manufacturer).

The use of mailbox communication instructions may be necessary in the following cases:

SoE, CoE drives: error deletion, reading and displaying the current data,

SoE, CoE drives: reading and displaying current and speed data.

6.28.1 Reading the Data of the EtherCAT Mailbox

Instruction: MR

Function code: 201

Input parameters:

The case of the VoE protocol:

Addr

ess

Data

0 Code of execution *

1 Amount of data: 4 (VoE)

2 Protocol code: 15

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

*: need not be set

The case of the CoE protocol, when CompleteAccess is missing and the error code is

indifferent:

Address Data

0 Code of execution*

1 Amount of data: 5 (CoE)

2 Protocol code: 3

211

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

*: need not be set

The case of the CoE protocol, when CompleteAccess is missing:

Address Data

0 Code of execution*

1 Amount of data: 6 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device*

*: need not be set

The case of the SoE protocol:

Address Data

0 Code of execution*

1 Amount of data: 7 (SoE)

2 Protocol code: 5

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

212

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

5 The PLC memory address where the data is waited to

6 IDN: 2 bytes (0-15th bit): element identifier

Drive Index: 1 byte (16-23th bit)

7 Error code given back by the device*

8 ElementFlags **

*: need not be set

** ElementFlags

Data of the element selected on the IDN, which are set in the ElementFlags bits can be

inquired. All the data might as well inquired.

Interpretation of the ElementFlags data bit by bit is as follows:

bit Name

0 DataState (parameter state)

1 Name (ASCII-coded name)

2 Attribute (attribute)

3 Unit (unit of measurement)

4 Min (minimum value)

5 Max (maximum value)

6 Value (actual value)

7 DefaultValue (reference value)

The case of the CoE protocol:

Address Data

0 Code of execution*

1 Amount of data: 7 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

213

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device*

8 CompleteAccess (it can be 0/1)**

*: need not be set

** CompleteAccess:

 – If CompleteAccess=0, the object specified in the Index and SubIndex fields will be

downloaded.

 – If CompleteAccess=1 and SubIndex=0 or 1, all the objects specified in the Index field will

be downloaded.

Output parameters:

The case of the VoE protocol:

Address Data

0 Code of execution

1 Amount of data: 4 (VoE)

2 Protocol code: 15

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

The case of the CoE protocol, when CompleteAccess is missing and the error code is

indifferent:

Address Data

0 Code of execution

1 Amount of data: 5 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

214

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

The case of the CoE protocol, when CompleteAccess is missing:

Address Data

0 Code of execution

1 Amount of data: 6 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device

The case of the SoE protocol:

Address Data

0 Code of execution

1 Amount of data: 7 (SoE)

2 Protocol code: 5

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 IDN: 2 bytes (0-15th bit): element identifier

Drive Index: 1 byte (16-23th bit)

7 Error code given back by the device

215

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

8 ElementFlags

The case of the CoE protocol:

Address Data

0 Code of execution

1 Amount of data: 7 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device

8 CompleteAccess (it can be 0/1)

216

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid amount of data: nem 3

200 There is no EtherCAT device with specified index

201 SOE or COE communication is not supported by the device with

specified index

202 The PLC memory address or the amount of data of the mailbox is

incorrect

203 Timeout reading

204

205 An error was sent by the device: the error code sent back by the

device can be read from the field 7, which is the field of the error

code given back by the device

217

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

6.28.2 Writing the Data of the EtherCAT Mailbox

Instruction: MW

Function code: 202

Input parameters:

The case of the VoE protocol:

Address Data

0 Code of execution*

1 Amount of data: 4 (VoE)

2 Protocol code: 15

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

*: need not be set

The case of the CoE protocol, when CompleteAccess is missing and the error code is

indifferent:

Address Data

0 Code of execution*

1 Amount of data: 5 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

*: need not be set

218

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

The case of the CoE protocol, when CompleteAccess is missing:

Address Data

0 Code of execution*

1 Amount of data: 6 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device*

*: need not be set

The case of the SoE protocol:

Address Data

0 Code of execution*

1 Amount of data: 7 (SoE)

2 Protocol code: 5

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 IDN: 2 byte (0-15th bit): element identifier

Drive Index: 1 byte (16-23th bit)

7 Error code given back by the device*

8 ElementFlags **

*: need not be set

** ElementFlags

219

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Data of the element selected on the IDN, which are set in the ElementFlags bits can be

written. All the data might as well written.

Interpretation of the ElementFlags data bit by bit is as follows:

bit Name

0 DataState (parameter state)

1 Name (ASCII-coded name)

2 Attribute (attribute)

3 Unit (unit of measurement)

4 Min (minimum value)

5 Max (maximum value)

6 Value (actual value)

7 DefaultValue (reference value)

The case of the CoE protocol:

Address Data

0 Code of execution*

1 Amount of data: 7 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device*

8 CompleteAccess (it can be 0/1) **

*: need not be set

** CompleteAccess:

 – If CompleteAccess=0, the object specified in the Index and SubIndex fields will be written.

 – If CompleteAccess=1 and SubIndex=0 or 1, all the objects specified in the Index field will

be written.

220

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Output parameters:

The case of the VoE protocol:

Address Data

0 Code of execution

1 Amount of data: 4 (VoE)

2 Protocol code: 15

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

The case of the CoE protocol, when CompleteAccess is missing and the error code is

indifferent:

Address Data

0 Code of execution

1 Amount of data: 5 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

The case of the CoE protocol, when CompleteAccess is missing:

Address Data

0 Code of execution

1 Amount of data: 6 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

221

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device

The case of the SoE protocol:

Address Data

0 Code of execution

1 Amount of data: 7 (SoE)

2 Protocol code: 5

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 IDN: 2 bytes (0-15th bit): element identifier

Drive Index: 1 byte (16-23th bit)

7 Error code given back by the device

8 ElementFlags

The case of the CoE protocol:

Address Data

0 Code of execution

1 Amount of data: 7 (CoE)

2 Protocol code: 3

3 ECAT device index: Serial number of the device that can be seen in

the EtherCAT window

4 Amount of data for the device, in byte

5 The PLC memory address where the data is waited to

6 Index: 2 bytes (0-15th bit)

222

6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device

Address Data

SubIndex: 1 byte (16-23th bit)

7 Error code given back by the device

8 CompleteAccess (it can be 0/1)

The code of execution can be the following:

Code Explanation

0 Normal execution

1 Invalid Function code

2 Invalid Amount of data: not 3

200 There is no EtherCAT device with specified index

201 SOE or COE communication is not supported by the device with

specified index

202 The PLC memory address or the amount of data of the mailbox is

incorrect

203

204 Timeout writing

205 An error was sent by the device: the error code sent back by the

device can be read from the field 7, which is the field of the error

code given back by the device

223

6.29 Codes of Execution of MR, MW Instructions

6.29 Codes of Execution of MR, MW Instructions

Address Explanation

0 Normal execution

1 Invalid function code

2 Invalid amount of data

3 Overwrite protected

4 Memory checksum error

6 Invalid channel number

10 Array specified in non-volatile memory not in the range between

0...1023

11 Starting address specified in the PLC memory is not higher than or

equal to PLCNVRAM

12 Data number error:

(address of first variable to be read)+

(number of variables to be read)>1024

20 Referring to a non-existing macro variable

21 The macro variable is not global (macro variable index = 0)

22 The macro variable is global (macro variable index > 0)

23 Incorrect writing/reading code: the format of the macro variable

(DWORD, double) is not in harmony with the writing/reading code

24 The macro variable cannot be read

25 The macro variable cannot be written

30 Referring to a non-existing macro variable/Invalid axis index

31 The parameter is not global (parameter index = 0)

32 The parameter is global (parameter index > 0)

224

6.29 Codes of Execution of MR, MW Instructions

Address Explanation

33 Incorrect writing/reading code: the format of the parameter (bit,

DWORD) is not in harmony with the writing/reading code

40 Non-existing program: the specified program is not in the memory

41 Invalid channel number

45 The file does not exist

46 A program is being run in the given channel

47 There is no executable program on the pallet

60 Invalid connection identifier

61 Establishing connection is failed

62 Error in receiving data

63 The specified connection is not open

64 False data array Amount of data: =0 or >350

65 No data received

66 False incoming parameters

70 Invalid window number

71 There is no connection to the display (the display is not receive

ready)

80 Invalid drive address

81 Invalid data type

82 Invalid value of the data transmitted

90 Internal error, the instruction cannot be used

91 The axis index indicates a non-existing axis, or the position control

loop is not open (AN_OPNA=0), or receiving the position from the

encoder is not disabled (AP_EFD=0)

225

6.29 Codes of Execution of MR, MW Instructions

Address Explanation

100 The cartridge number specified does not exist

101 The pot number specified does not exist

102 Specified source cartridge number does not exist

103 Specified source pot number does not exist

104 No empty pot: Searched pot number=0

105 Type number error: can not represent in 8 decimal digits

106 Tool info error:

107 Figure number error:

108 Life status error:

109 Life counter error:

110 Life error:

111 Notice life error:

112 H definition error:

The value is greater than the length of compensation table

113 D definition error:

The value is greater than the length of compensation table

114 G definition error:

The value is greater than the length of compensation table

115 W definition error:

The value is greater than the length of compensation table

116 S: spindle speed

117 F: feed-rate

118 User error 1

119 User error 2

120 User error 3

...

137 User error 20

138 Life table is full

226

6.29 Codes of Execution of MR, MW Instructions

Address Explanation

139 There is no tool in the pot of the cartridge specified

140 Invalid data number

141 No match found

200 There is no EtherCAT device with specified index

201 SOE or COE communication is not supported by the device with

specified index

202 The PLC memory address or the amount of data of the mailbox is

incorrect

203 Timeout reading

204 Timeout writing

205 An error was sent by the device: the error code sent back by the

device can be read from the field 7, which is the field of the error

code given back by the deviceaner

300 The first given pallet magazine number does not exist

301 The given pallet place does not exist

302 The given second magazine number does not exist

305 Invalid pallet identifier (<1 or >99999999)

306 Invalid pallet status (>9)

307 Priority error (>128)

308 The number of the programs executed is out of bounds (it is greater

than the number of the programs assigned)

309 The number of the programs is out of bounds (> 64)

339 The pallet place is empty

341 In the magazine there is no the pallet the status of which is searched

342 The working space is empty (there is no pallet there)

227

7 Communication between the PLC Program and the NC

7 Communication between the PLC Program and the NC

The communication between the PLC program and the NC, respectively, with the outer world

is made through the memory used by the PLC program. The memory area starts after the word

containing the Status bits (FLAGS) and lasts till the address PLCNVRAM. This memory area

contains the so called NC symbols.

On this memory area, through the NC symbols the communication takes place between the

PLC program and the

 – NC peripheries, i.e. the input and output hardware units, such as the:

machine control panel(s),

handwheel(s),

binary and analog interface out- and inputs,

probes,

EtherCAT drives,

encoder receiver, respectively, the analog or CAN-bus servo control units,

 – certain software modules of the NC, such as:

modules of several services, e.g. function buttons, PLC parameters, etc,

common module,

axis controlling module,

spindle controlling module and

channel controlling module.

We can set the address of output and input units on the EtherCAT setting panel of the given

element, on the control, and these addresses correspond to the appropriate area of the PLC

memory.

From among the flags of communication with the modules of the NC software, the common

flags do not become indexed, in contrast with the axis-, spindle- or channel controlling

variables, which become indexed per axis, spindle or channel. We mean by this that the single

reference to a symbol, refers always to the first axis, spindle or channel. The appropriate

variable of the other axes, spindles or channels can be accessed by an indexed reference.

The NC symbol may be a

bit-,

double-word- (DWORD), or

floating point (double)

value.

We refer to every single communication memory area in a symbolic way. In our guide we do

not provide the physical address of the communication memory, i.e. the NC symbols, as it

may vary during the several software versions.

228

7 Communication between the PLC Program and the NC

Due to the above reason, in the PLC program we cannot define symbols with fix addresses

from the FLAGS address to the PLCNVRAM address, but only such addresses which

contain a relative reference to an NC symbol.

Example 1:

Symbol MB_JOG1 refers to the upper left button in the matrix of jog buttons. On the factual

machine this button moves axis X in a negative direction.

In case we would like to refer to the button by a B_JOG_XN symbol, we have to declare this

symbol in the PLC Editor by a reference to the MB_JOG1 symbol as the basis, with a zero

offset – and no way shall we enter the numeric address of the MB_JOG1 symbol on the

B_JOG_XN symbol.

Example 2:

We would like to refer to bit nr. 17 of the DWORD INP000 by a MGZ_RPT symbol

(magazine on the refpoint switch).

We shall declare the MGZ_RPT symbol by a zero-offset to the INP000 symbol as the basis

and we shall enter 17 on the bit number.

229

7.1 NCT Machine Control Panels

7.1 NCT Machine Control Panels

The system receives the signals of the machine control panel installable under

MK19: 19-inch

MK15: 15-inch

monitor through the EtherCAT network.

The button layout of the machine control panel can be seen in the below figure. A lamp

belongs to each button. Above every button we have indicated the common text part of

symbol of the button and the lamp. Freely usable button inputs and lamp outputs belong to the

control panel, too. These may be connected to any place, the figure does not contain them.

The MKSOVER under the spindle override buttons, respectively the MKFOVER above the

feedrate override switch is the symbol of the handover register of the corresponding override

value.

L Attention! Control panel type MK15 does not contain buttons between the range from

USR9 to USR20!

The following symbols of the machine control panel buttons and lamps are all symbols with

bit reference.

Bit variables of the control panel:

Inputs Outputs

Symbol Description Symbol Description

MB_START Start button ML_START Start lamp

MB_STOP Stop button ML_STOP Stop lamp

MB_FLCK Function lock button ML_FLCK Function lock lamp

MB_INP1 Machine control panel general

input 1

ML_OUT1 Machine control panel general

output 1

230

7.1 NCT Machine Control Panels

Inputs Outputs

Symbol Description Symbol Description

MB_M3 M3 button ML_M3 M3 lamp

MB_M4 M4 button ML_M4 M4 lamp

MB_M5 M5 button ML_M5 M5 lamp

MB_INP2 Machine control panel general

input 2

ML_OUT2 Machine control panel general

output 2

MB_JOG1 Jog1 button ML_JOG1 Jog1 lamp

MB_JOG2 Jog2 button ML_JOG2 Jog2 lamp

MB_JOG3 Jog3 button ML_JOG3 Jog3 lamp

MB_JOG4 Jog4 button ML_JOG4 Jog4 lamp

MB_JOG5 Jog5 button ML_JOG5 Jog5 lamp

MB_JOG6 Jog6 button ML_JOG6 Jog6 lamp

MB_JOG7 Jog7 button ML_JOG7 Jog7 lamp

MB_JOG8 Jog8 button ML_JOG8 Jog8 lamp

MB_REFP Refpoint mode button ML_REFP Refpoint mode lamp

MB_HNDL Handwheel mode button ML_HNDL Handwheel mode lamp

MB_INCR Incremental jog mode button ML_INCR Incremental jog mode lamp

MB_JOG Jog mode button ML_JOG Jog mode lamp

MB_B20 Not used. ML_B20 Not used.

MB_MDI Manual data input mode button ML_MDI Manual data input mode lamp

MB_AUTO Automatic mode button ML_AUTO Automatic mode lamp

MB_EDIT Edit mode button ML_EDIT Edit mode lamp

MB_TEST Test button ML_TEST Test lamp

MB_MLCK Machine lock button ML_MLCK Machine lock lamp

MB_DRRUN Dry run button ML_DRRUN Dry run lamp

MB_BKRST Block restart button ML_BKRST Block restart lamp

MB_BKRET Block return button ML_BKRET Block return lamp

MB_CNDSP Conditional stop button ML_CNDSP Conditional stop lamp

MB_CNDBK Conditional block button ML_CNDBK Conditional block lamp

MB_SGLBK Single block button ML_SGLBK Single block mode lamp

MB_I1 1 increment button ML_I1 1 increment lamp

MB_I10 10 increment button ML_I10 10 increment lamp

MB_I100 100 increment button ML_I100 100 increment lamp

MB_I1000 1000 increment button ML_I1000 1000 increment lamp

MB_SMAX S+% button ML_SMAX S+% button lamp

MB_S100 S100% button ML_S100 S100% button lamp

MB_SMIN S-% button ML_SMIN S-% button lamp

231

7.1 NCT Machine Control Panels

Inputs Outputs

Symbol Description Symbol Description

MB_JOGRAP Jog rapid travel button ML_JOGRAP Jog rapid travel lamp

MB_USR1 PLC-defined button No. 1 ML_USR1 PLC-defined lamp No. 1

MB_USR2 PLC-defined button No. 2 ML_USR2 PLC-defined lamp No. 2

MB_USR3 PLC-defined button No. 3 ML_USR3 PLC-defined lamp No. 3

MB_USR4 PLC-defined button No. 4 ML_USR4 PLC-defined lamp No. 4

MB_USR5 PLC-defined button No. 5 ML_USR5 PLC-defined lamp No. 5

MB_USR6 PLC-defined button No. 6 ML_USR6 PLC-defined lamp No. 6

MB_USR7 PLC-defined button No. 7 ML_USR7 PLC-defined lamp No. 7

MB_USR8 PLC-defined button No. 8 ML_USR8 PLC-defined lamp No. 8

MB_USR9 PLC-defined button No. 9 ML_USR9 PLC-defined lamp No. 9

MB_USR10 PLC-defined button No. 10 ML_USR10 PLC-defined lamp No. 10

MB_USR11 PLC-defined button No. 11 ML_USR11 PLC-defined lamp No. 11

MB_USR12 PLC-defined button No. 12 ML_USR12 PLC-defined lamp No. 12

MB_USR13 PLC-defined button No. 13 ML_USR13 PLC-defined lamp No. 13

MB_USR14 PLC-defined button No. 14 ML_USR14 PLC-defined lamp No. 14

MB_B23 Not used ML_RESET Reset button lamp

MB_B24 Not used ML_CANCEL Cancel button lamp

MB_USR15 PLC-defined button No. 15 ML_USR15 PLC-defined lamp No. 15

MB_USR16 PLC-defined button No. 16 ML_USR16 PLC-defined lamp No. 16

MB_USR17 PLC-defined button No. 17 ML_USR17 PLC-defined lamp No. 17

MB_USR18 PLC-defined button No. 18 ML_USR18 PLC-defined lamp No. 18

MB_USR19 PLC-defined button No. 19 ML_USR19 PLC-defined lamp No. 19

MB_USR20 PLC-defined button No. 20 ML_USR20 PLC-defined lamp No. 20

MB_USR21 PLC-defined button No. 21 ML_USR21 PLC-defined lamp No. 21

MB_USR22 PLC-defined button No. 22 ML_USR22 PLC-defined lamp No. 22

NB_RESET Reset button

NB_CANCEL Cancel button

NB_NCPC Not used

232

7.1 NCT Machine Control Panels

The control panel hands over the state of feed-rate and spindle override buttons, too, through a

2 DWORD register.

DWORD variables of the control panel:

Inputs Outputs

Symbol Description Symbol Description

MKBTNS0 Lower 32 buttons of the machine

control panel (DWORD)

MKLEDS0 Lamps of the lower 32 buttons of

the machine control panel

(DWORD)

MKBTNS1 Upper 32 buttons of the machine

control panel (DWORD)

MKLEDS1 Lamps of the upper 32 buttons of

the machine control panel

(DWORD)

NCTBTNS Buttons (DWORD)

MKFOVER Value of the feed-rate override

switch: 0, 1, 2...

MKSOVER Value of the spindle override:

0...10 (DWORD)

Addressing of control panels

A maximum of 4 machine control panels can be connected to the control.

We can carry out the setting of address of the machine control panel in the Service menu of

the control, after exchanging the window ECAT settings. Select the appropriate unit on the

left-side panel and by clicking on the Setting tab we can set the address of the unit.

Values of the addresses can be:

1, 2, 3, 4.

The addresses of the control panel No. 1 can be accessed by referring directly to the symbol.

For example:

MB_START

refers to the START button of control panel No. 1.

Symbols of the other control panels (No. 2, 3, 4) can be accessed by an indexed reference. For

example:

MB_START,#2

refers to the START button of control panel No. 3 (with index No. 2).

PLC-defined buttons

The programmer of PLC can give functions to PLC-defined buttons and lamps. The same

applies to JOG1...JOG8 buttons and lamps, too. For these ones the programmer of the PLC

may define unique symbols depending on which axes are moved by the given buttons.

These bit symbols are always to be entered to the appropriate NC symbol as the basis (e.g.

MB_JOG1) with a zero offset.

233

7.1 NCT Machine Control Panels

Example:

In the matrix of jog buttons, MB_JOG1 Symbol refers to the upper left-side button. On the

factual machine this button moves axis X in a negative direction.

In case we would like to refer to the button by the symbol B_JOG_XN, then we have to

declare in the PLC Editor the symbol by referencing to the symbol MB_JOG1 as the basis,

with a zero offset – and no way shall we enter the numeric address of MB_JOG1 Symbol at

the symbol B_JOG_XN.

Buttons which have both inputs and outputs toward the channels

The below mode-changing, operating condition-setting buttons and the start, stop buttons have

outputs - indexed per channel - towards NC with a CP_ prefix and from the NC they have

inputs indexed per channel with a CN_ prefix for the lamps:

MB_JOG – CP_JOG

MB_INCR – CP_INCR

MB_HNDL – CP_HNDL

MB_REFP – CP_REFP

MB_EDIT – CP_EDIT

MB_AUTO – CP_AUTO

MB_MDI – CP_MDI

MB_TEST – CP_TEST

MB_MLCK – CP_MLCK

MB_DRRUN – CP_DRRUN

MB_BKRST – CP_BKRST

MB_BKRET – CP_BKRET

MB_FLCK – CP_FLCK

MB_START – CP_START

MB_STOP – CP_STOP

CN_JOG – ML_JOG

CN_INCR – ML_INCR

CN_HNDL – ML_HNDL

CN_REFP – ML_REFP

CN_EDIT – ML_EDIT

CN_AUTO – ML_AUTO

CN_MDI – ML_MDI

CN_TEST – ML_TEST

CN_MLCK – ML_MLCK

CN_DRRUN – ML_DRRUN

CN_BKRST – ML_BKRST

CN_BKRET – ML_BKRET

CN_FLCK – ML_FLCK

CN_START – ML_START

CN_STOP – ML_STOP

The PLC program has to decide whether the pushing of the button is enabled on the machine

side or not. For example, by pushing the MB_START button, whether the machine is

switched on or not and whether the machining area is closed or not.

In case there aren’t any obstacles from the machine’s side, the PLC program requests through

the CP channel handling flags the desired effect from the NC. The NC will examine whether

the pushing of the button is enabled or not. For example, in case of CP_START=1 whether

the program can be run in the given mode or not, etc.

In case the NC has accepted the pushing of the button, it will signal it through the a

appropriate CN channel handling flag to the PLC. For example, by the CN_START=1 status.

Thereafter the PLC may unconditionally switch on the lamp belonging to the button. By

taking our example again: ML_START=1.

234

7.1 NCT Machine Control Panels

Buttons which have only outputs toward the channel

The below condition switching buttons have outputs indexed per channel towards NC with a

CP_ prefix, but no feedback belongs to them from the NC side (CN flag):

MB_JOGRAP – CP_JOGRAP – ML_JOGRAP

MB_SGLBK – CP_SGLBK – ML_SGLBK

MB_CNDBK – CP_CNDBK – ML_CNDBK

MB_CNDSP – CP_CNDSP – ML_CNDSP

At these condition switching buttons the lamp of the button is to be handled based on the state

stored in the PLC program, or simply the state of the button has to be copied onto the lamp.

Buttons which have outputs toward the axis control

The jog buttons have to be linked to the input - indexed per axis, with an AP_ prefix - of the

axis to be moved:

MB_JOGn – AP_JOGP (+ direction), or AP_JOGN (- direction) – ML_JOGn

The lamps of jog buttons have to be linked directly to the button.

Control of the increment selection buttons

The size of the step calculated from the commands of increment selection buttons shall be

entered into the floating-point registers - indexed per channel - of the control, in a floating-

point form.

For example: *0.001, *0.01, *0.1, *1.

Based on the CN_INCH flag, it shall be taken into consideration whether the control is used

by a metric or inch data input, and if it is necessary, to convert the data for the output unit of

measurement system. Output unit of measurement system: N0104 Unit of Measure parameter

#0 IND bit.

MB_I1, MB_I10, MB_I100, MB_I1000 – CP_INC

Control of the feed-rate and rapid override

The override value calculated from the feedrate override switch MKFOVER (DWORD) state

shall be entered into the floating-point registers (double) - indexed per channel - of NC, in a

floating-point form.

*1.0 corresponds to 100% in case of both overrides.

The value received in the MKFOVER register may change depending on the hardware

structure of the override switch.

We can connect the rapid override input to the feed-rate override switch, too.

235

7.1 NCT Machine Control Panels

MKFOVER – CP_FOVER, CP_ROVER

Control of the spindle override

We control the spindle override from buttons MB_SMAX, MB_S100 and MB_SMIN.

By pushing these buttons, or by using data of the MKSOVER register, the PLC program

calculates a floating-point override value.

MKSOVER: DWORD, it hands over a value ranging from 0 to 10 to the PLC.

For the spindle override values, floating-point registers - indexed per spindle, with an SP

prefix - are available. *1.0 corresponds to 100%:

MB_SMAX, MB_S100, MB_SMIN or MKSOVER – SP_SOVER

236

7.2 NCT Handwheels

7.2 NCT Handwheels

In case of a handwheel mounted on the front

panel, the selection of axes and increments

is made by the buttons of the control panel.

We call as an external handwheel the unit

which is in a separate box and on the box

there are axis- and increment selection

rotary switches. Built-in bit symbols belong

to the positions of the rotary switches of the

external handwheel.

Bit variables of the external handwheel are the following:

Inputs Outputs

Symbol Description Symbol Description

HB_AXISX X axis input (external handwheel) HL_AXISX Not used

HB_AXISY Y axis input (external handwheel) HL_AXISY Not used

HB_AXISZ Z axis input (external handwheel) HL_AXISZ Not used

HB_AXIS4 4. axis input (external handwheel) HL_AXIS4 Not used

HB_AXIS5 5. axis input (external handwheel) HL_AXIS5 Not used

HB_AXIS6 6. axis input (external handwheel) HL_AXIS6 Not used

HB_AXIS7 7. axis input (external handwheel) HL_AXIS7 Not used

HB_AXIS8 8. axis input (external handwheel) HL_AXIS8 Not used

HB_I1 1 increment input (external

handwheel)

HL_I1 Not used

HB_I10 10 increment input (external

handwheel)

HL_I10 Not used

HB_I100 100 increment input (external

handwheel)

HL_I100 Not used

237

7.2 NCT Handwheels

Inputs Outputs

Symbol Description Symbol Description

HB_I1000 1000 increment input (external

handwheel)

HL_I1000 Not used

HB_B12 Not used HL_B12 Not used

HB_B13 Not used HL_B13 Not used

HB_B14 Not used HL_B14 Not used

HB_B15 Not used HL_B15 Not used

In case of the external handwheel indicated in the above picture, the below symbols are

connected:

HB_B12: The NC position of the increment selector switch

HB_B13: The flag’s true state means that an external handwheel is attached to the

control.

A handwheel double-word variables are the following:

Inputs Outputs

Symbol Description Symbol Description

HWMOVE Handwheel: displacement per

cycle (exclusively in Int0

module!) (DWORD)

HWBITS External handwheel inputs

(DWORD)

HWLEDS Not used

P_H1AS The number of axis assigned to the

handwheel No. 1 (=0 inactive)

(DWORD)

P_H2AS The number of axis assigned to the

handwheel No. 2 (=0 inactive)

(DWORD)

P_H3AS The number of axis assigned to the

handwheel No.3 (=0 inactive)

(DWORD)

P_H4AS The number of axis assigned to the

handwheel No.4 (=0 inactive)

(DWORD)

HWMOVE: the displacement of the handwheel compared to the previous cycle can be read

out from the register. As the updating of the register is carried out by the frequency of

the TimeSlice cycle time, the register shall be read out in the Int0 module of the PLC

program. The register can be read both in case of a built-in and external handwheel.

238

7.2 NCT Handwheels

P_HnAS: the number of that axis shall be entered into the register assigned to handwheel 1-4,

which we would like to move by the given handwheel. In case the value of the register

is 0, the handwheel is inactive.

Addressing of the handwheels

A maximum of 4 handwheels can be connected to the control.

We can carry out the setting of the address of the handwheel in the Service menu of the

control, after exchanging the window ECAT settings at the settings of the machine control

panel. Select the appropriate unit on the left-side panel and by clicking on the Setting tab we

can set the address of the unit.

Values of the addresses can be:

1, 2, 3, 4.

The address of the built-in handwheel is always 4.

The address of the external handwheel is usually (default setting): 4.

L Attention! As in the standard way we use the handwheel No. 4, do not forget to index the

symbols (symbol,#3)!

239

7.3 Two-state, 24V Interface In- and Outputs

7.3 Two-state, 24V Interface In- and Outputs

The below NCT-brand, EtherCAT, two-state, 24V interface in- and output units can be

connected to the control:

I16: 16-bit 24V interface input,

I16S: 3x16-bit 24V interface input, and to each input point a 24V and 0V power

supply voltage access point belongs (for sensors),

I32: 32-bit 24V interface input,

O16: 16-bit 24V interface output with transistors,

O8RM: 8-bit 24V interface output with Morse type contact relays

O8R: 8-bit 24V interface output with open contact relays

The NC symbols of the two-state, 24V interface in- and outputs are 32-bit (DWORD)

references.

Inputs Outputs

Symbol Description Symbol Description

INP000 Interface Inputs 0. DWORD OUT000 Interface outputs 0. DWORD

INP001 Interface Inputs 1. DWORD OUT010 Interface outputs 1. DWORD

INP010 Interface Inputs 2. DWORD OUT020 Interface outputs 2. DWORD

INP011 Interface Inputs 3. DWORD OUT030 Interface outputs 3. DWORD

INP020 Interface Inputs 4. DWORD OUT040 Interface outputs 4. DWORD

INP021 Interface Inputs 5. DWORD OUT050 Interface outputs 5. DWORD

INP030 Interface Inputs 6. DWORD OUT060 Interface outputs 6. DWORD

INP031 Interface Inputs 7. DWORD OUT070 Interface outputs 7. DWORD

INP040 Interface Inputs 8. DWORD

INP041 Interface Inputs 9. DWORD

INP050 Interface Inputs 10. DWORD

INP051 Interface Inputs 11. DWORD

INP060 Interface Inputs 12. DWORD

INP061 Interface Inputs 13. DWORD

INP070 Interface Inputs 14. DWORD

INP071 Interface Inputs 15. DWORD

Addressing of I/O cards

The number of in- and outputs of the in- and output hardware units connected to the control is

the integer multiple of the byte (8 bits).

We can carry out the setting of the starting addresses of in- and output units in the Service

menu of the control, after exchanging the window ECAT settings. Select the appropriate unit

on the left-side panel and by clicking on the Setting tab we can set the starting address of the

unit.

240

7.3 Two-state, 24V Interface In- and Outputs

The addressing is carried out per bytes. The addresses of units, separately for the in- and

output units may range from 1 to 64. The address occupation of 8-bit units is 1 address,

address occupation of 16-bit ones is 2 addresses, etc.

Address 1

in case of an input unit is the 0 byte of the word INP000,th

in case of an output unit is the 0 byte of the word OUT000.th

i.e. bits of 00...07.

Address 2

is the byte 1 of the 0 DWORD, i.e.the bits of 08...15 and so on.th

The order of the addresses does not have to follow the physical order of connection to the

EtherCAT chain.

The below table shows a simple sample of filling in the starting addresses and the place of

signs in the memory.

Hardware unit Starting

address

Reference to the signal

8-bit input unit 1 INP000: 00...07 bit

16-bit input unit 2 INP000: 08...23 bit

16-bit input unit 4 INP000: 24...31, INP001: 00...07 bit

8-bit input unit 6 INP001: 08...15 bit

16-bit output unit 1 OUT000: 00...15 bit

8-bit output unit 3 OUT000: 16...23 bit

16-bit output unit 4 OUT000: 24...31, OUT010: 00...07 bit

8-bit output unit 6 OUT010: 08...15 bit

The symbols of the unique, in- and output bits can be determined by the PLC programmer

itself. These bit symbols have always to be declared for the appropriate NC symbol as the

basis (e.g. INP000). Within the double word the selection of the bit is carried out numerically

(00, ..., 31) according to the I/O allocation.

Example:

We would like to refer to the 17 bit of the DWORD INP000 by the symbol MGZ_RPTth

(magazine in the reference point switch).

We have to declare the MGZ_RPT symbol with a 0-offset reference to the INP000 symbol as

the basis and we have to enter 17 to the bit number.

241

7.4 In- and Outputs of NCT Probe Interface Cards

7.4 In- and Outputs of NCT Probe Interface Cards

Through the EtherCAT bus, cards suitable for receiving the signals of probes can be

connected to the control. Their types are:

ETPC: 2-channel probe control card. On the card, besides the signal Probe pushed, 3

pieces of 24V inputs and 2 pieces of 24V outputs are available per probe.

The control is able to manage signals of 8 probes.

In- and outputs of probe interface cards:

Inputs Outputs

Symbol Description Symbol Description

TN_TS1 Probe 1 is pushed TP_OUT11 Probe 1 output 1

TN_INP11 Probe 1 input signal 1 TP_OUT12 Probe 1 output 2

TN_INP12 Probe 1 input signal 2 TP_OUT21 Probe 2 output 1

TN_INP13 Probe 1 input signal 3 TP_OUT22 Probe 2 output 2

TN_TS2 Probe 2 is pushed TP_OUT31 Probe 3 output 1

TN_INP21 Probe 2 input signal 1 TP_OUT32 Probe 3 output 2

TN_INP22 Probe 2 input signal 2 TP_OUT41 Probe 4 output 1

TN_INP23 Probe 2 input signal 3 TP_OUT42 Probe 4 output 2

TN_TS3 Probe 3 is pushed TP_OUT51 Probe 5 output 1

TN_INP31 Probe 3 input signal 1 TP_OUT52 Probe 5 output 2

TN_INP32 Probe 3 input signal 2 TP_OUT61 Probe 6 output 1

TN_INP33 Probe 3 input signal 3 TP_OUT62 Probe 6 output 2

TN_TS4 Probe 4 is pushed TP_OUT71 Probe 7 output 1

TN_INP41 Probe 4 input signal 1 TP_OUT72 Probe 7 output 2

TN_INP42 Probe 4 input signal 2 TP_OUT81 Probe 8 output 1

TN_INP43 Probe 4 input signal 3 TP_OUT82 Probe 8 output 2

TN_TS5 Probe 5 is pushed

TN_INP51 Probe 5 input signal 1

TN_INP52 Probe 5 input signal 2

TN_INP53 Probe 5 input signal 3

TN_TS6 Probe 6 is pushed

TN_INP61 Probe 6 input signal 1

TN_INP62 Probe 6 input signal 2

TN_INP63 Probe 6 input signal 3

TN_TS7 Probe 7 is pushed

TN_INP71 Probe 7 input signal 1

TN_INP72 Probe 7 input signal 2

242

7.4 In- and Outputs of NCT Probe Interface Cards

Inputs Outputs

Symbol Description Symbol Description

TN_INP73 Probe 7 input signal 3

TN_TS8 Probe 8 is pushed

TN_INP81 Probe 8 input signal 1

TN_INP82 Probe 8 input signal 2

TN_INP83 Probe 8 input signal 3

Addressing of the probe fitter

The control handles the signals of a maximum of 8 probes.

A probe interface card fits 2 probe in- and outputs.

We can carry out the setting of the addresses of the interface card in the Service menu of the

control, after exchanging the window ECAT settings at the settings of the probe fitter. Select

the appropriate unit on the left-side panel and by clicking on the Setting tab we can set the in-

and output addresses of the two probes used on the card.

Values of the addresses can be:

Not used, 1, 2, ..., 8

The values of addresses correspond to the symbol indexes of the in- and outputs of the probe.

Interface inputs of the probe

TN_TSn: Probe n is pushed

This input indicates that the stylus of the probe with address n is deflected or the

button of the probe is pushed.

The Probe is pushed sign is mandatorily an active 0! The interface card shall be set

in a way to fulfil this condition.

TN_INPn1: Probe n input signal 1

TN_INPn2: Probe n input signal 2

TN_INPn3: Probe n input signal 3

3 pieces of optional 24V inputs of the probe with address n.

The inputs can be used for e.g. signaling the ready state of the probe or the discharged

state of the battery.

Interface outputs of the probe

TP_OUTn1: Probe n output 1

TP_OUTn2: Probe n output 2

2 pieces of optional 24V outputs of the probe with address n.

The outputs can be used for example for switching on and off the probe.

243

7.5 NCT Sensor Inputs

7.5 NCT Sensor Inputs

The type of card - which can be connected to the EtherCAT network - containing a sensor

inputs:

SENS: The card contains 8 pieces of KTY84/130 temperature sensor analog inputs

and 1 piece of 12-bit 4-20 mA A-D converter. A comparison value can be set

for the temperature sensor inputs.

Bit inputs of the sensor:

Inputs Outputs

Symbol Description Symbol Description

IN_1EN0 0. analog input > comparison value

IN_1EN1 1. analog input > comparison value

IN_1EN2 2. analog input > comparison value

IN_1EN3 3. analog input > comparison value

IN_1EN4 4. analog input > comparison value

IN_1EN5 5. analog input > comparison value

IN_1EN6 6. analog input > comparison value

IN_1EN7 7. analog input > comparison value

IN_1EN8 Not used

DWORD inputs of the sensor

Inputs Outputs

Symbol Description Symbol Description

ANINPUTS Analog Inputs: 32db DWORD

IN_1 Status of analog comparator inputs

(DWORD)

Addressing of the SENS card and setting of the comparison value

The control handles the signals of a maximum of 32 SENS cards.

We can carry out the setting of addresses of the SENS card in the Service menu of the control

after exchanging the window ECAT settings at the settings of card. Select the appropriate unit

on the left-side panel and by clicking on the Setting tab we can set the address of the card.

Values of the addresses can be:

Not used, 1, 2, ..., 32.

Symbols IN_1ENn, IN_1 and ANINPUTS refer to card No. 1. (indexed as 0), and the signals

of other cards can be accessed by an indexed reference.

244

7.5 NCT Sensor Inputs

We can carry out the comparison values in degrees (centigrade), per channel, by exchanging

the window ECAT settings, at the settings of the card.

Bit inputs of the sensor:

IN_1ENn: analog input No. n > comparison value

In case on the n input of the card the value of the analog signal exceeds theth

comparison value set, the flag will turn to 1.

Double-word inputs of the sensor

ANINPUTS: Analog inputs: 32 pieces DWORD

On the ANINPUTS variable, with an appropriate indexation, the value of the analog

input of the card can be read.

IN_1: Status of analog comparator inputs (DWORD)

The comparator inputs can be accessed from the variable in a DWORD form.

245

7.6 NCT Analog inputs

7.6 NCT Analog Inputs

Type of card - which can be connected to the EtherCAT network - containing analog inputs:

DANI: The card contains 6 pieces of 12-bit analog to digital converters. The analog

inputs can be configured to either +/-10V or 0-20 mA.

DWORD inputs of analog signals

Inputs Outputs

Symbol Description Symbol Description

ANINPUTS Analog inputs: 32 pieces DWORD

Addressing of DANI card

The control manages the signals of a maximum of 32 analog inputs.

We can carry out the setting of addresses of the DANI card in the Service menu of the control,

after exchanging the window ECAT settings at the settings of the card. Select the appropriate

unit on the left-side panel and by clicking on the Setting tab you can set the addresses of the

analog inputs one-by-one.

Values of the addresses can be:

Not used, 1, 2, ..., 32.

The symbol ANINPUTS refers to the analog input No. 1 (indexed as 0), and the signals of the

other inputs can be accessed by an indexed reference.

DWORD inputs of analog signals

ANINPUTS: Analog inputs: 32 pieces, DWORD

On the ANINPUTS variable, with an appropriate indexation, it is possible to read the

appropriate analog input of the card.

246

7.7 In- and Outputs of EtherCAT NCT Drives

7.7 In- and Outputs of EtherCAT NCT Drives

NCT drives of following types can be connected to the control through the EtherCAT bus:

DS-i/I EE: to synchronous servo motors,

DA-i/I EE: asynchronous motors,

where: i: is the nominal current,

I: maximum current

EE: EtherCAT, EnDat 2.2 interface.

The system is able to handle the signals of a maximum of 48 pieces of EtherCAT drives (32

axes + 16 spindles).

The EtherCAT drives hand over to NC through the EtherCAT network the position, number

of revolution, etc. measured from the encoder mounted on the motor; their states, respectively,

the codes of their error states. They receive in the same way the speed set-point signal from

NC; respectively, other commands arriving from NC.

Signals of the above type NCT EtherCAT drives are the following:

Bit status and control signals of drives

Inputs Outputs

Symbol Description Symbol Description

DN_ENA Enable acknowledge DP_ENA1 Drive enable bit 1

DN_RDY Drive ready for operation DP_ENA2 Drive enable bit 2

DN_INC Incremental encoder on the

drive

DP_EMG No emergency braking

DN_PRM1 Active parameter table bit 1 DP_POSLCK Drive position keeping on

DN_PRM2 Active parameter table bit 2 DP_PRM1 Drive parameter table selection bit 1

DP_PRM2 Drive parameter table selection bit 2

DP_MOD1 Drive regulator mode selection bit 1

DP_MOD2 Drive regulator mode selection bit 2

DP_SILCK Speed integrator lock

DP_ERRCLR Drive error clear

Bit error flags of drives

Inputs Outputs

Symbol Description Symbol Description

DN_ERROR There is a drive error (DN_ERR>0)

DN_EDERR1 Encoder error

DN_EDERR2 Temperature of the encoder is too high

DN_IEERR1 Not used

247

7.7 In- and Outputs of EtherCAT NCT Drives

Inputs Outputs

Symbol Description Symbol Description

DN_IEERR2 Not used

DN_BVERR Excess voltage error on the bus

DN_CURERR Motor current too high

DN_CMEERR Current measurement error

DN_HALERR Hall commutation signal error

DN_HASERR Hall sequence signal error

DN_SRTERR Timeout error

DN_CWDER1 CAN Watchdog error

DN_CWDER2 Not used

DN_CHERR1 CAN other error

DN_CHERR2 Not used

DN_ECTERR EtherCAT timeout error

DN_PDPINT IGBT error

DN_PRMERR Parameter table error

DN_PRGERR Drive firmware error

DN_FOLERR Speed following error

DN_OVHERR Overheat protection

DWORD variables of drives

Inputs Outputs

Symbol Description Symbol Description

DN_STAT Drive status register (DWORD) DP_CTRL Drive control register (DWORD)

DN_ERR Register of drive error flags

(DWORD)

Addressing of EtherCAT drives

The control handles the signals of a maximum of 48 pieces of EtherCAT drives.

We can carry out the setting of addresses of drives in the Service menu of the control after

exchanging the window ECAT settings by selecting the appropriate drive. Select the

appropriate unit on the left-side panel and by clicking on the Setting tab and set the address of

the drive.

Values of the addresses can be:

Not used, 1, 2, ..., 48.

248

7.7 In- and Outputs of EtherCAT NCT Drives

Binding of addresses of drives and axes

The control handles a maximum of 32 axes. The addresses of axes in the control can be:

1, 2, ..., 32.

Issuance of the speed set-point (command) signal:

Let’s select the option EtherCAT-32 on the parameter N0502 Axis Output Type.

On the parameter N0503 Axis Output Address we have to enter the address of the drive by

which we would like to move the given axis.

Example:

The parameter

N0100 Axis Name1 A4=C

determines the address of axis 4 as C.

The address of drive of axis C between the EtherCAT settings is 6.

Then the N0503 Axis Output Address A4=6,

which means that control’s axis 4 issues the command signal to drive 6.

Reception of the encoder’s signals:

Let’s select the option EtherCAT on the parameter N0500 Axis Input Type.

Let’s write on the parameter N0501 Axis Input Address the address of the drive from which

we would like to receive the signals of the encoder.

L Attention! The N0503 Axis Output Address parameter and the N0501 Axis Input Address

parameter may be different!

Example:

The parameter

N0100 Axis Name1 A4=C

determines the address of axis 4 as C.

The address of the drive of axis C between the EtherCAT settings is 6.

We would like to receive the signals of the encoder from the encoder handled by the drive.

Then the N0501 Axis Input Address A4=6,

i.e. axis 4 of the control receives the signals of the encoder from drive 6.

Binding of addresses of drives and spindles

The control handles a maximum of 16 spindles. The addresses of spindles in the control can

be:

1, 2, ..., 16.

Issuance of the speed set-point (command) signal:

Let’s select the option EtherCAT on the parameter N0602 Spindle Output Type.

Let’s write on the parameter N0603 Spindle Output Address the address of the drive by which

we would like to move the given spindle.

249

7.7 In- and Outputs of EtherCAT NCT Drives

Example:

Parameter

N0605 Spindle Name2 S3=3

determines the address of spindle 3 as S3.

The address of the drive of spindle S3 between the EtherCAT settings is 8.

Then the N0603 Spindle Output Address S3=8,

i.e. the control’s spindle 3 issues the command signal to drive 8.

Reception of the encoder’s signals:

Let’s select the option EtherCAT on the parameter N0600 Spindle Input Type.

Let’s write on the parameter N0601 Spindle Input Address the address of the drive from

which we would like to receive the signals of the encoder.

L Attention! The N0603 Spindle Output Address parameter and the N0601 Spindle Input

Address parameter may be different!

Example:

Parameter

N0605 Spindle Name2 S3=3

determines the address of spindle 3 as S3.

The address of the drive of spindle S3 between the EtherCAT settings is 8.

We would like to receive the signals of the encoder from the encoder handled by the drive.

Then the N0601 Spindle Input Address S3=8,

i.e. the control’s spindle 3 receives the signals of the encoder from drive 8.

Reference in the PLC program to axes, spindles and drives

The

AN_ xx and AP_xx

NC symbols always refer to axes. We have to refer to these symbols always based on axis

index:

#0: axis 1, ..., #31: axis 32.

The

SN_ xx and SP_xx

NC symbols always refer to spindles. We have to refer to these symbols always based on

spindle index:

#0: spindle 1, ..., #15: spindle 16.

The

DN_ xx and DP_xx

NC symbols always refer to drives. We have to refer to these symbols always based on drive

index:

#0: drive 1, ..., #47: drive 48.

The axis-, respectively, spindle index of a given axis or spindle may be different from the drive

index of the given axis or spindle!

250

7.7 In- and Outputs of EtherCAT NCT Drives

Status signals of drives (inputs)

DN_ENA: Enable acknowledge

It is the acknowledgment flag of signals’ DP_ENA1 and DP_ENA2. If the value of the

flag is 1, the motor is operated by the drive, and it is under voltage.

DN_RDY: Drive ready for operation

If the value of the signal is 1 the drive is ready for operation, and can be enabled.

DN_INC: Incremental encoder on the drive

If the flag DN_INC=0, there is an absolute, EnDAT encoder on the motor,

if the flag DN_INC=1, there is an incremental encoder on the motor.

DN_PRM1: Active parameter table bit 1

DN_PRM2: Active parameter table bit 2

The above two bits tell from which parameter table does the drive take the data. See

also: description of DP_PRM1 and DP_PRM2 bits.

DN_PRM2 DN_PRM1 Active parameter table

0 0 1. parameter table active

0 1 2. parameter table active

1 0 3. parameter table active

1 1 4. parameter table active

Control signals of drives (outputs)

DP_ENA1: Drive enable bit 1

DP_ENA2: Drive enable bit 2

The enabling of the drive happens upon the below bit change

DP_ENA1 1 –> 0, and

DP_ENA2 0 –> 1.

DP_ENA2 DP_ENA1 Enable status

0 0 Not enabled

0 1 Not enabled

1 0 Enabled

1 1 Not enabled

251

7.7 In- and Outputs of EtherCAT NCT Drives

DP_EMG: No emergency braking

If DP_EMG=0, the drive, independently of the command signal received on its input,

will stop the motor. The motor will be stopped till the drive is enabled.

DP_EMG=1 normal operation, according to the received command signal.

DP_POSLCK: Drive position keeping on

DP_POSLOCK=0, normal mode,

DP_POSLOCK=1, at the 0 –> 1 transition of the signal the drive will keep the motor

in the position measured from the encoder, independently of the received

command signal.

DP_PRM1: Drive parameter table selection bit 1

DP_PRM2: Drive parameter table selection bit 2

The above two bits tell from which parameter table shall the drive take data. After the

parameter change, we have to wait till the drive returns the set bit sample at bits

DN_PRM1 and DN_PRM2.

DP_PRM2 DP_PRM1 Parameter table selection

0 0 1. parameter table selection

0 1 2. parameter table selection

1 0 3. parameter table selection

1 1 4. parameter table selection

DP_MOD1: Drive regulator mode selection bit 1

DP_MOD2: Drive regulator mode selection bit 2

By the setting of flags we can select from the below regulation modes:

DP_MOD2 DP_MOD1 Regulation mode selection

0 0 Speed regulating mode

0 1 Current regulating (torque) mode

1 0 Position regulating mode

1 1 Speed regulating mode with an

increased precision

252

7.7 In- and Outputs of EtherCAT NCT Drives

DP_SILCK: Speed integrator lock

DP_SILCK=0, normal mode,

DP_SILCK=1: switch-off of the integrator of the speed regulator.

Example:

On a lathe, with a counter spindle, working from a bar, we have to take over the piece into

the counter spindle. We synchronize the counter spindle to the main spindle, then we close

the chuck on the counter spindle, so that after the recession the counter spindle can hold

the piece. Till the piece is not recessed, and it is held by both chucks, the integrator of the

speed regulator has to be switched off on the drive of the counter spindle, otherwise the

over-determinedness of the system an oscillation may occur.

DP_ERRCLR: Drive error clear

If there is an error on the drive, i.e. DN_ERR>0 (the error register is not 0) the error

shall be cleared.

Status DP_ERRCLR=1 clears the error. The signal shall be kept in 1 till the time the

DN_ERR error register turns 0, or till the status DN_ERROR=0 occurs.

Bit error flags of the drive (inputs)

The PLC program does not have to send messages upon the various drive errors, as this is

done by the NC. Only the clearance of the error shall be issued by the DP_ERRCLR=1 flag

setting.

DN_ERROR: There is a drive error (DN_ERR>0)

DN_ERROR=1, if any of the further bits of the error register signals an error.

DN_EDERR1: Encoder error

DN_EDERR1=1, if the drive recognizes an error from the encoder mounted on the

motor.

DN_EDERR2: Temperature of the encoder is too high

DN_EDERR2=1, in case an EnDat encoder is mounted on the motor, and the

temperature sensor built into the encoder measures a temperature higher than

the set value.

DN_BVERR: Excess voltage error on the bus

DN_BVERR=1, in case the bus voltage has exceeded the set value.

DN_CURERR: Motor current too high

maxDN_CURERR=1, in case the motor current has exceeded the I value set on the

drive.

253

7.7 In- and Outputs of EtherCAT NCT Drives

DN_CMEERR: Current measurement error

DN_CMEERR=1, in case a current measurement error has occurred.

DN_HALERR: Hall commutation signal error

DN_HALERR=1, in case a commutation signal error has occurred.

DN_HASERR: Hall sequence signal error

DN_HASERR=1, in case the sequence of the commutation signal is not according to

the Gray code.

DN_SRTERR: Timeout error

DN_SRTERR=1, in case in the drive the central watchdog timer has elapsed. The

drive is broken down.

DN_CWDER1: CAN watchdog error

DN_CWDER1=1, in case in the drive the watchdog timer of the CAN communication

has elapsed. The CAN communication is broken down.

DN_CHERR1: CAN other error

DN_CHERR1=1, in case an error has occurred in the CAN communication.

DN_ECTERR: EtherCAT timeout error

DN_ECTERR=1, in case in the drive the watchdog timer of the EtherCAT

communication has elapsed. The EtherCAT communication is broken down.

DN_PDPINT: IGBT error

DN_PDPINT=1, in case an error has occurred during the feeding of the motor. It may

be a circuit or a cable error.

DN_PRMERR: Parameter table error

DN_PRMERR=1, In case the active parameter table is damaged.

DN_PRGERR: Drive firmware error

DN_PRGERR=1, if the operating program of the drive is damaged, that is there is a

checksum error.

DN_FOLERR: Speed following error

DN_FOLERR=1, if the drive was not able to follow the speed set-point within a set

period of time.

254

7.7 In- and Outputs of EtherCAT NCT Drives

DN_OVHERR: Overheat protection

DN_OVHERR=1, if the heat protection of the motor has issued an alarm signal. It may

be a PTC or a temperature model.

DWORD input registers of drives

DN_STAT: Drive status register (DWORD)

By this symbol it is possible to access the status bits of the drive in a double-word

format.

DN_ERR: Register of drive error flags (DWORD)

By this symbol it is possible to access the error bits of the drive in a double-word

format.

DWORD output registers of drives

DP_CTRL: Drive control register (DWORD)

By this symbol it is possible to access the control signals of the drive in a double-word

format.

255

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

The encoder receiver and analog/stepping motor/CAN drive interface cards can be fitted onto

the EtherCAT bus.

We use these units in the below cases:

 – The EtherCAT drives hand over the position measured from the encoder mounted onto the

motor to the NC. In cases where instead of the encoder mounted on the motor we need

to use another encoder, the signal shall be taken from an appropriate receiver card.

Such cases are for example the thread cutting encoder mounted onto the spindles of

lathes, or if we use a linear scale on an axis for position measurement.

 – The second case is where instead of an EtherCAT drive, it is necessary to fit an analog,

stepping motor or CAN bus drive to the control.

The below interface cards are available:

 – ENDAT:

Inputs:

It is suitable for receiving the signals of 2 pieces of encoders with EnDat 2.2

communication protocol (rotary encoder, linear scale, angle encoder).

 – TTLAI:

Inputs:

The unit is able to receive on its input the signals of 2 incremental, TTL encoders.

Outputs:

In case of an

ECAT-TTLASM software version,

analog speed set-point signals are issuable on its 2 outputs, or

Pulse-Dir pulse series and direction bit for stepping motors, or

CW-CCW two-direction pulse series for stepping motors.

All three outputs are issued per channel, and we can select by connection,

which one to apply.

In case of an

ECAT-TACHO software version, it gives out an analog signal created from the

difference between the speed set-point signal and tach signal, issuable on its 2

outputs, for analog-type drives.

 – TTLCAN:

Inputs:

The unit is able to receive on its input the signals of 2 incremental, TTL encoders.

Outputs:

It is suitable for the handling of 2 CAN-bus-input NCT drives.

The communication registers and flags of interface cards keep connection with the PLC on the

DN_, DP_drive flags. The system is able to handle the signals of a maximum of 48 pieces of

EtherCAT drives and interface units (32 axes + 16 spindles).

Below we have indicated only those signals which are handled by the interface units.

256

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

Bit status and control signals of interface cards

Inputs Outputs

Symbol Description Symbol Description

DN_INC Incremental encoder on the

drive/unit

DP_ERRCLR Drive/unit error clear

Bit error flags of interface cards

Inputs Outputs

Symbol Description Symbol Description

DN_ERROR There is a drive/unit error

(DN_ERR>0)

DN_EDERR1 Encoder error

DN_ECTERR EtherCAT timeout error

DWORD variables of interface cards

Inputs Outputs

Symbol Description Symbol Description

DN_STAT Drive/unit status register

(DWORD)

DP_CTRL Drive/unit control register

(DWORD)

DN_ERR Register of drive/unit error flags

(DWORD)

Addressing of EtherCAT interface cards

The control is able to handle signals of a maximum of 48 pieces of EtherCAT drives and

interface cards. We can carry out the setting of addresses of interface cards in the Service

menu of the control after exchanging the window ECAT settings by selecting the appropriate

interface card. Let’s select the appropriate unit in the left-side panel and by selecting the -

Setting tab we can set the address of the interface card.

The values of addresses can be:

Not used, 1, 2, ..., 48.

Binding of addresses of interface cards and axes

The control handles a maximum of 32 axes. Addresses of axes in the control may be:

1, 2, ..., 32.

257

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

Issuance of the set-point (command) signal:

Let’s select the option EtherCAT-32 on the parameter N0502 Axis Output Type.

Let’s write onto the parameter N0503 Axis Output Address the address of the interface cards

by which we intend to move the given axis.

Example:

The parameter

N0100 Axis Name1 A4=C

determines the address of axis 4 as C.

Axis C is moved by a drive with an analog input. The address of the TTLAI’s interface card

between the EtherCAT settings is: 6.

Then the N0503 Axis Output Address A4=6,

i.e. axis 4 of the control issues the command signal to the interface card No. 6.

Reception of signals of the encoder:

Let’s select the option EtherCAT on the parameter N0500 Axis Input Type.

Let’s write onto the parameter N0501 Axis Input Address the address of the interface card

from which we intend to receive the signals of the encoder.

L Attention! The parameters N0503 Axis Output Address and N0501 Axis Input Address may

be different!

Example:

The parameter

N0100 Axis Name1 A2=Y

determines the address of axis 2 as Y.

The address of the EtherCAT drive of axis Y between the EtherCAT settings can be 2 (N0503

Axis Output Address A2=2).

An EnDat linear scale is mounted onto axis Y. The signals of linear scale Y are handled by the

ENDAT interface card under address 12.

Then the N0501 Axis Input Address A2=12,

i.e. axis 2 of the control takes the signals of the encoder from interface card No. 12.

Binding of the addresses of interface cards and spindles

The control handles a maximum of 16 spindles. Addresses of spindles in the control can be:

1, 2, ..., 16.

Issuance of the set-point (command) signal:

Let’s select the option EtherCAT on the parameter N0602 Spindle Output Type.

Let’s write onto the parameter N0603 Spindle Output Address the address of the interface

card by which we intend to move the given spindle.

258

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

Example:

The parameter

N0605 Spindle Name2 S1=1

determines the address of spindle 1 as S1.

The S1 spindle drive has a CAN bus input, the set-point signal is given to the drive by the

TTLCAN interface card, the address of which between the EtherCAT settings is 8.

Then the N0603 Spindle Output Address S1=8,

i.e. spindle 1 of the control issues the set-point signal to interface card No. 8.

Reception of signals of the encoder:

Let’s select the option EtherCAT on the parameter N0600 Spindle Input Type.

Let’s write onto the parameter N0601 Axis Input Address the address of the interface card

from which we intend to receive the signals of the encoder.

L Attention! The parameters N0603 Spindle Output Address and N0601 Spindle Input

Address may be different!

Example:

The parameter

N0605 Spindle Name2 S1=1

determines the address of spindle 1 as S1.

The address of the interface card of spindle drive S1 between the EtherCAT settings is 8.

We would like to receive the signals of the encoder from an encoder mounted onto the

spindle. (And not from the motor)

 The signals of the encoder mounted onto the spindle are received by a TTLAI interface card,

the address of which is 21. Then the N0601 Spindle Input Address S1=21,

i.e. spindle 1 of the control receives the encoder signals from interface card No. 21.

Reference in the PLC program to axes, spindles and drives

NC symbols

AN_ xx and AP_xx

always refer to axes. We have to refer to these symbols always based on axis index:

#0: axis 1, ..., #31: axis 32.

NC symbols

SN_ xx and SP_xx

always refer to spindles. We have to refer to these symbols always based on spindle index:

#0: spindle 1, ..., #15: spindle 16.

NC symbols

DN_ xx and DP_xx

NC always refer to drives or interface cards. We have to refer to these symbols always based

on drive index:

#0: drive 1, ..., #47: drive 48.

259

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

The axis-, respectively, spindle index of a given axis or spindle may be different from the drive

index of the given axis or spindle!

Status signals of interface cards (inputs)

DN_INC: Incremental encoder on the drive/unit

If the flag DN_INC=0, there is an absolute, EnDAT encoder on the motor,

if the flag DN_INC=1, there is an incremental encoder on the motor.

Control signals of the interface cards (outputs)

DP_ERRCLR: Drive/unit error clear

In case there is an error on the interface card, i.e. DN_ERR>0 (the error register is not

0) the error shall be cleared.

Status DP_ERRCLR=1 clears the error. The signal shall be kept in 1 till the time the

DN_ERR error register turns 0, or till the status DN_ERROR=0 occurs.

Bit error flags of interface cards (inputs)

The PLC program does not have to send messages to the various interface card errors, as

this is done by the NC. It only has to clear the error by the flag status DP_ERRCLR=1.

DN_ERROR: There is a drive/unit error (DN_ERR>0)

DN_ERROR=1, if any of the further bits of the error register indicates an error.

DN_EDERR1: Encoder error

DN_EDERR1=1, in case the interface card recognizes an error from the encoder.

DN_ECTERR: EtherCAT timeout error

DN_ECTERR=1, in case in the interface card the EtherCAT communication’s

watchdog timer has elapsed. The EtherCAT communication is broken down.

260

7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards

DWORD input registers of interface cards

DN_STAT: Drive/unit status register (DWORD)

By this symbol it is possible to access the status bits of interface card in a double-word

way.

DN_ERR: Register of drive/unit error flags (DWORD)

By this symbol it is possible to access the error bits of interface card in a double-word

way.

DWORD output registers of interface cards

DP_CTRL: Drive/unit control register (DWORD)

By this symbol it is possible to access the control signals of the interface card in a

double-word way.

In case of TTLAI interface card ECAT-TACHO software, the handling of the control word:

Through the PLC we have to enter an integer into the upper word of the DP_CTRL

(from bit 16 to 31) based on the following formula:

(pulse number of the encoder*4)*(maximum number of rev. of the motor/60)/5000

In case we enter a zero here, the unit will not carry out tach-compensation, and it will

give out an analog signal corresponding to the speed set-point (command) signal.

261

7.9 Function Buttons Accessible from the PLC

7.9 Function Buttons Accessible from the PLC

32 pieces of function buttons accessible for the PLC program on the screen of the control. We

have to enter the title of function buttons in the PLC program in the bottom right-side panel of

the PLC Editor by clicking on the PLC buttons tab.

2 DWORD registers belong to the 32 function buttons: the input register belongs to the

button, whilst the output register belongs to the lamp of the button.

DWORD variables of the function buttons:

Inputs Outputs

Symbol Description Symbol Description

N_MSG Buttons of 32 function buttons on

the screen, which may be used by

the PLC (DWORD)

P_MSG Lamps of 32 function buttons on the

screen, which may be used by the

PLC (DWORD)

Referencing to registers N_MSG and P_MSG we can declare bit symbols, which symbols

indicate the function buttons and their lamps.

Example:

Let’s say the B_LUB Symbol is the symbol of manual start of the lubricating pump, which we

would like to start from the function button F23.

On the PLC buttons panel, we entered the title LUBRICATION into the text box of button

F23, which text appears on the screen on the appropriate function button.

We have to fill in the panel called ‘AddSymbolForm’ in the following way:

Let’s select radio button Reference,

Symbolic Text be: B_LUB, lubrication button

Base: N_MSG,

Offset: 0,

Bit: 22 (23. button = 22-bit).

Symbolic Text be: L_LUB, lubrication button lamp

Base: P_MSG,

Offset: 0,

Bit: 22 (23. button = 22-bit).

262

7.10 Position switches

7.10 Position Switches

32 position switches can be specified on the parameters.

Parameter

N1100+n SWn Axis Number

tells, for which axis shall we set the n switch.th

Parameter

N1132+n SWn Min Pos n

determines the machine position of the end of the n switch falling in a negative direction, onth

the given axis.

Parameter

N1164+n SWn Max Pos n

determines the machine position of the end of the n switch falling in a positive direction, onth

the given axis.

Before all PLC cycles the control checks whether the n switch does exist or not. If yes, basedth

on the absolute position of the axis, appointed to the switch, calculated from its encoder it

will handle the below signals for the n switch (n-1 indexed PLC flag).th

The signals of the position switches are input signals for the PLC.

Bit variables of the position switches:

Inputs Outputs

Symbol Description Symbol Description

N_SW The axis is on the 1 switchst

N_SWN The axis is in a negative direction

from the 1 switchst

N_SWP The axis is in a positive direction

from the 1 switchst

Inputs of the position switches

N_SW: The axis is on the 1 switchst

If the highlighted axis is on switch 1, i.e.

N1133 SW1 Min Pos 1 < Position < N1165 SW1 Max Pos 1

the flag becomes true.

N_SWN: The axis is in a negative direction from the 1 switchst

If the highlighted axis is in a negative direction from switch 1, i.e.

Position < N1133 SW1 Min Pos 1

the flag becomes true.

263

7.10 Position switches

N_SWP: The axis is in a positive direction from the 1 switchst

If the highlighted axis is in a positive direction from switch 1, i.e.

Position > N1133 SW1 Max Pos 1

the flag becomes true.

The other switches are accessible by indexing referenced to the address of switch 1. We can

add symbolic names to switches, too; but we shall pay attention to taking up the names with a

relative reference to symbols N_SW, ... etc. as bases.

L Attention: During the application of switch signals you have to take into consideration the

maximum movement speed of the axis, the length of the switch and PLC cycle time.

DWORD variables of the position switches:

Inputs Outputs

Symbol Description Symbol Description

N_SW0 The register of switch 1

determined on the Position

Switches parameter (DWORD)

N_SW0: The register of switch 1 determined on the Position Switches parameter (DWORD)

The signals of position switch 1 are accessible in the N_SW0 register also in a dword-

format. The registers of other switches can be read by an indexed access.

264

7.11 Access to Parameter Group PLC Constants

7.11 Access to Parameter Group PLC Constants

In the parameter group PLC Constants, for the PLC program

64 pieces of bit-,

32 pieces of dword integer and

32 pieces of floating-point-type,

freely usable parameters are available. These parameters can be read by the PLC program

directly from the PLC memory, and a contact can be defined for the bit parameters.

PLC parameters cannot be directly written out from the PLC program!

Bit-type PLC parameters:

Inputs Outputs

Symbol Description Symbol Description

N_P00 PLCBits0 parameter’s P00 bit

N_P01 PLCBits0 parameter’s P01 bit

N_P02 PLCBits0 parameter’s P02 bit

N_P03 PLCBits0 parameter’s P03 bit

N_P04 PLCBits0 parameter’s P04 bit

N_P05 PLCBits0 parameter’s P05 bit

N_P06 PLCBits0 parameter’s P06 bit

N_P07 PLCBits0 parameter’s P07 bit

N_P10 PLCBits1 parameter’s P10 bit

N_P11 PLCBits1 parameter’s P11 bit

N_P12 PLCBits1 parameter’s P12 bit

N_P13 PLCBits1 parameter’s P13 bit

N_P14 PLCBits1 parameter’s P14 bit

N_P15 PLCBits1 parameter’s P15 bit

N_P16 PLCBits1 parameter’s P16 bit

N_P17 PLCBits1 parameter’s P17 bit

N_P20 PLCBits2 parameter’s P20 bit

N_P21 PLCBits2 parameter’s P21 bit

N_P22 PLCBits2 parameter’s P22 bit

N_P23 PLCBits2 parameter’s P23 bit

N_P24 PLCBits2 parameter’s P24 bit

N_P25 PLCBits2 parameter’s P25 bit

N_P26 PLCBits2 parameter’s P26 bit

N_P27 PLCBits2 parameter’s P27 bit

N_P30 PLCBits3 parameter’s P30 bit

265

7.11 Access to Parameter Group PLC Constants

Inputs Outputs

Symbol Description Symbol Description

N_P31 PLCBits3 parameter’s P31 bit

N_P32 PLCBits3 parameter’s P32 bit

N_P33 PLCBits3 parameter’s P33 bit

N_P34 PLCBits3 parameter’s P34 bit

N_P35 PLCBits3 parameter’s P35 bit

N_P36 PLCBits3 parameter’s P36 bit

N_P37 PLCBits3 parameter’s P37 bit

N_P40 PLCBits4 parameter’s P40 bit

N_P41 PLCBits4 parameter’s P41 bit

N_P42 PLCBits4 parameter’s P42 bit

N_P43 PLCBits4 parameter’s P43 bit

N_P44 PLCBits4 parameter’s P44 bit

N_P45 PLCBits4 parameter’s P45 bit

N_P46 PLCBits4 parameter’s P46 bit

N_P47 PLCBits4 parameter’s P47 bit

N_P50 PLCBits5 parameter’s P50 bit

N_P51 PLCBits5 parameter’s P51 bit

N_P52 PLCBits5 parameter’s P52 bit

N_P53 PLCBits5 parameter’s P53 bit

N_P54 PLCBits5 parameter’s P54 bit

N_P55 PLCBits5 parameter’s P55 bit

N_P56 PLCBits5 parameter’s P56 bit

N_P57 PLCBits5 parameter’s P57 bit

N_P60 PLCBits6 parameter’s P60 bit

N_P61 PLCBits6 parameter’s P61 bit

N_P62 PLCBits6 parameter’s P62 bit

N_P63 PLCBits6 parameter’s P63 bit

N_P64 PLCBits6 parameter’s P64 bit

N_P65 PLCBits6 parameter’s P65 bit

N_P66 PLCBits6 parameter’s P66 bit

N_P67 PLCBits6 parameter’s P67 bit

N_P70 PLCBits7 parameter’s P70 bit

N_P71 PLCBits7 parameter’s P71 bit

N_P72 PLCBits7 parameter’s P72 bit

N_P73 PLCBits7 parameter’s P73 bit

N_P74 PLCBits7 parameter’s P74 bit

266

7.11 Access to Parameter Group PLC Constants

Inputs Outputs

Symbol Description Symbol Description

N_P75 PLCBits7 parameter’s P75 bit

N_P76 PLCBits7 parameter’s P76 bit

N_P77 PLCBits7 parameter’s P77 bit

We can add also symbolic names to certain N_Pij parameters, but we have to ensure that we

enter the names with a relative reference to N_Pij symbols as the basis.

DWORD-type PLC parameters are:

Inputs Outputs

Symbol Description Symbol Description

N_PDW1 PLC DWord1 parameter value

(DWORD)

N_PDW1: PLC DWord1 parameter value (DWORD)

From the N_PDW1 register the value of N1209 PLC DWord1 parameter can be read

out. The values of other parameters can be accessed by an indexed command.

We can add also symbolic names to certain parameters, but we have to ensure that we enter

the names with a relative reference to N_PDW1 symbols, as the basis.

The floating-point type PLC parameters are:

Inputs Outputs

Symbol Description Symbol Description

N_PDB1 PLC Double1 parameter value

(double)

N_PDB1: PLC Double1 parameter value (double)

From the N_PDB1 register the value of N1241 PLC Double1 parameter can be read

out. The values of other parameters can be accessed by an indexed reference.

L Attention! In case of an indexed reference we have to take into consideration that the

double value is represented on 2 DWORDs, therefore the index has to be stepped two-

by-two.

267

7.11 Access to Parameter Group PLC Constants

We can add also symbolic names to certain parameters, but we have to ensure that we enter

the names with a relative reference to N_PDB1 symbols, as the basis.

268

7.12 Common Variables

7.12 Common Variables

The common variables are such variables either going from NC to PLC, or from the PLC to

NC, which are common for all channels.

Variables starting with a prefix

N: go from NC to PLC, while variables starting with

P: go from PLC to NC.

7.12.1 Bit-type Common Variables

Inputs Outputs

Symbol Description Symbol Description

N_P2MS Clock signal with 2 Time Slice

period (only in Int0 module, with

a direct query)

P_MONREQ Machine switch-on request from

the PLC

N_P2T Clock signal with 2 PLC cycles’

period

P_HOLD0 Feed-hold in all channels

N_P100MS Clock signal with 100 msec

period

P_SHTDNREQ NC shutdown request

N_P1S Clock signal with 1 sec period

N_P1M Clock signal with 1 min period

N_ON always 1 (true)

N_OFF always 0 (false)

N_B7 maintained

N_NVRAMOK The non-volatile PLC variables

have been successfully reloaded

N_FIRSTCC First PLC cycle after power on

N_NCREADY NC is ready for operation

N_MONST Machine ON signal status

N_MONDIS Machine ON signal’s switch-on is

disabled

N_CLRMSG Clear message

N_MSGA Message on the screen

N_MSG0 PLC message on the screen

N_MSG1 Axis or spindle message on the

screen

N_MSG2 Channel block preprocessor

message on the screen

N_MSG3 Channel execution message on

the screen

269

7.12 Common Variables

Inputs Outputs

Symbol Description Symbol Description

N_MSG4 Macro error (#3000) on the

screen

N_MSG5 Macro message (#3006) on the

screen

N_MSG6 maintained

N_MSG7 maintained

N_MSG8 Real-time system message on the

screen

N_MSG9 Human-machine interface

message on the screen

N_TLSRCH Tool search in progress

N_TLMD Tool tables under modification

N_TLSV Saving of tool tables is in

progress

N_TLEDT Editing of tool tables is in

progress

N_PTEDT The pallet management table is

under editionA palettakezelõ

táblázat szerkesztés alatt

N_SIMU The NC software runs on

simulator (PC)

N_NVECAT The non-volatile variables are

accessible through EtherCAT

P_DIR Access forbidden: Library

operations

P_PRGE Access forbidden: Program

edition

P_WOFFS Access forbidden: Workpiece

offsets

P_COMPG Access forbidden: Geometry

compensations

P_COMPW Access forbidden: Wear

compensations

P_TLTAB Access forbidden: Tool tables

P_MAC Access forbidden: Macro

variables

P_TRCTR Access forbidden: Timers and

workpiece counters

P_RUNAUT Access forbidden: Run in Auto

P_RUNMDI Access forbidden: Run in MDI

270

7.12 Common Variables

Inputs Outputs

Symbol Description Symbol Description

P_PAR Access forbidden: Parameters

P_PLC Access forbidden: PLC program

P_SVRC Access forbidden: Service

operations

P_PTTAB Access forbidden: Pallet table

Bit-type common variables going from NC to PLC

N_P2MS: Clock signal with 2 Time Slice period (only in Int0 module, with a direct query)

N_P2T: Clock signal with 2 PLC cycles’ period

N_P100MS: Clock signal with 100 msec period

N_P1S: Clock signal with 1 sec period

N_P1M: Clock signal with 1 min period

From among the clock signals handed over by NC it is worth to use the signal

N_P2MS due to the signal’s frequency only in the Int0 module. The other clock signals

can be used in the Main program, too.

N_ON: always 1 (true)

N_OFF: always 0 (false)

We can use the two symbols if, for example, to the input of an instruction box a fix

value has to be connected, or if we would like to comment out a rung.

N_NVRAMOK: The non-volatile PLC variables have been successfully reloaded

In case we store data in the non-volatile PLC RAM, in the first cycle after power on

(N_FIRSTCC=1) we can examine the flag. In case the value of the flag is 0, the PLC

variables have been damaged.

N_FIRSTCC: First PLC cycle after power on

The flag after power on or after the restart of the control is 1 for the time of 1 PLC

cycle. During this time the PLC program has to carry out the necessary initializations.

N_NCREADY: NC is ready for operation

It indicates the ready state of the NC.

N_MONST: Machine ON signal status

In case the flag turns to 0 in the switched-on state of the machine, an emergency stop

has to be initiated from the PLC.

271

7.12 Common Variables

N_MONDIS: Machine ON signal’s switch-on is disabled

We can initiate the switch-on of the machine, i.e. to switch on the P_MONREQ flag

only if the switch-on of the machine is not forbidden, i.e. N_MONDIS flag 0.

N_CLRMSG: Clear message

The message appears in the top upper row of the display.

If there are several messages waiting at the same time, always the latest received

message will be displayed in the message field. (Last in First Out)

The button

CANCEL

will delete the last received message which can be seen on the display, and it will set

the N_CLRMSG flag to 1.

In case we click on the message field, in a drop-down list all messages can be seen.

We can select any of the messages and by clicking on the

CLEAR (selected)

function button we can clear it. Then (also without pushing the CANCEL button) the

N_CLRMSG flag will operate.

We can select also the function button

Clear all

which clears all messages being in the buffer. Flag N_CLRMSG will operate this time,

too.

In the PLC program we always have to use the N_CLRMSG flag for clearing the

message.

N_MSGA: Message on the screen

The value of the flag is 1, if there is any kind of message in the upper top message row

of the screen. The flag may be used for, e.g. switching on an alarm lamp on the

machine.

N_MSG0: PLC message on the screen

N_MSG1: Axis or spindle message on the screen

N_MSG2: Channel block preprocessor message on the screen

N_MSG3: Channel execution message on the screen

N_MSG4: Macro error (#3000) on the screen

N_MSG5: Macro message (#3006) on the screen

N_MSG6: Maintained

N_MSG7: Maintained

N_MSG8: Real-time system message on the screen

N_MSG9: Human-machine interface message on the screen

The N_MSG0, ..., N_MSG9 flags indicate the type of the last received message which

can be seen in the top upper message row of the screen.

272

7.12 Common Variables

N_TLSRCH: Tool search in progress

N_TLMD: Tool tables under modification

N_TLSV: Saving of tool tables is in progress

N_TLEDT: Editing of tool tables is in progress

The above flags provide information on the reasons why the tool tables are occupied.

N_PTEDT: The pallet management table is under edition

A row of the pallet management table is being edited.

N_SIMU: The NC software runs on simulator (PC)

If the NC software runs on simulator, i.e. on PC, the PLC will be informed about this

fact based on the status 1 of the N_SIMU flag.

N_NVECAT: The non-volatile variables are accessible through EtherCAT

If there is no battery built in the control, but there is a FRAM unit, operating through

EtherCAT connected to it, then N_NVECAT=1. In such a case the PLC memory

ranging from the PLCNVRAM to the PLCRAM will not be saved during the switch-

off.

The PLC programmer shall ensure to save PLC variables, respectively, to read them,

by using commands MR10 and MW11.

Bit-type common variables going from PLC to NC

P_MONREQ: Machine switch-on request from the PLC

The MON (Machine ON) output carrying on the switch-on of the machine, can be

found on every EtherCAT head units.

We can carry out the setting of the address of MON output in the Service menu of the

control, after exchanging the window ECAT settings at the settings of the machine

control panel. Select the EtherCAT-Head unit on the left-side panel and by clicking on

the Setting tab, we can set the address of the MON output. In case we select the option

Not used

on a head unit, on that unit MON output will not be handled. If we set the address

1, 2, etc.

it will handle the MON output on it.

The switch-on of the P_MONREQ flag switches on the MON output on all head units

which have not been set to Not used. It is enabled to switch on the flag only if the

switch-on of the machine is not forbidden, i.e. N_MONDIS flag 0.

273

7.12 Common Variables

P_HOLD0: Feed-hold in all channels

The switching of the flag into 1 stops the movement of all axes in all channels even if -

the override and the stop is forbidden. In case the override and stop are forbidden,

during tapping or thread cutting the PLC has to stop the spindle.

P_SHTDNREQ: NC shutdown request

The NC can be mounted also with a battery unit, which is able to provide the power

supply of the control and the necessary EtherCAT electronics for 1-2 minutes. In case

of a network outage or the switch-off of the main switch of the machine the battery

unit issues a signal to the PLC through an interface input. The PLC program can

request the shutdown of the system by switching on the P_SHTDNREQ flag.

P_DIR: Access forbidden: Library operations

In P_DIR=1 status, files and folders

cannot be deleted,

cannot be overwritten.

Creating new files, respectively, copying files are allowed.

P_PRGE: Access forbidden: Program edition

In P_PRGE=1 state the edition of all part programs is forbidden.

P_WOFFS: Access forbidden: Workpiece offsets

In P_WOFFS=1 state the workpiece zero point offsets cannot be overwritten, neither

in the offset table nor by the measurement of offset.

P_COMPG: Access forbidden: Geometry compensations

In P_COMPG=1 state geometry compensation values cannot be overwritten, neither in

the tool offset table nor by the measurement of tool-offset.

P_COMPW: Access forbidden: Wear compensations

In P_COMPW=1 state wear compensation values cannot be overwritten, neither in the

tool offset table nor by the measurement of tool-offset.

P_TLTAB: Access forbidden: Tool tables

In P_TLTAB=1 state any element of the tool management table cannot be overwritten.

P_MAC: Access forbidden: Macro variables

In P_MAC=1 state any local, or common macro variable cannot be overwritten.

P_TRCTR: Access forbidden: Timers, workpiece counters

In P_TRCTR=1 state the timers and workpiece counters cannot be overwritten.

274

7.12 Common Variables

P_RUNAUT: Access forbidden: Run in Auto

In P_RUNAUT=1 state

programs to run in automatic mode cannot be appointed,

cannot be deleted any program to run appointed for an automatic run.

P_RUNMDI: Access forbidden: Run in MDI

In P_RUNMDI=1 state

 programs to run in MDI mode cannot be appointed,

cannot be deleted any program to run appointed for an MDI run.

P_PAR: Access forbidden: Parameters

In P_PAR=1 state

parameters cannot be edited,

parameters cannot be imported,

but parameters can be saved or exported.

P_PLC: Access forbidden: PLC program

In P_PLC=1 state

PLC program cannot be edited,

PLC programs cannot be imported,

but PLC program can be exported or you can watch the green flow.

P_SVRC: Access forbidden: Service operations

The state P_SVRC=1 influences the service operations in the following way:

I/O test: BitSet, BitReset, HexaSet operations are forbidden,

Symb. I/O, Logic analyser: overwriting is forbidden during saving

ECAT settings: the editing of panels is forbidden.

P_PTTAB: Acces forbidden: Pallet table

When its status is P_PTTAB=1, the pallet table cannot be edited.

7.12.2 DWORD-type Common Variables

Inputs Outputs

Symbol Description Symbol Description

N_ACTMSG The identification number of the

active message on the display

(DWORD)

P_CHSEL Which channel is the keyboard

assigned to (0,1,2...) (DWORD)

275

7.12 Common Variables

DWORD-type common variables going from NC to PLC

N_ACTMSG: The identification number of the active message on the display (DWORD)

In the small window situated left in the upper message row we can read the 8 decimal

digit code of the last message appearing on the display. In the N_ACTMSG register

this code will appear.

DWORD-type common variables going from PLC to NC

P_CHSEL: Which channel is the keyboard assigned to (0,1,2...) (DWORD)

It has a meaning on a multi-channel control. During opening a screen, for example, in

the Offsets menu selecting the option Measurement by clicking the item, the control

will first load the Measurement screen of the channel the number of which has been set

in the P_CHSEL register. After that we can move between the various channels by

pushing the PgUp, PgDn buttons.

It is not necessary to use it on a single-channel control.

276

7.13 Axis Control Variables

7.13 Axis Control Variables

The axis control variables are such variables going from NC to PLC or from PLC to NC

which become indexed per axis. All symbols published here refer to the first axis (indexed as

0). The appropriate variables of other axes can be accessed by an indexed addressing. The

control handles a maximum of 32 axes.

Variables starting with

AN go from NC to PLC (Inputs),

while variables starting with a prefix

AP go from PLC to NC (Outputs).

7.13.1 Bit-type Axis Control Variables

Inputs Outputs

Symbol Description Symbol Description

AN_DETCHA Axis detach acknowledge AP_DETCHR Axis detach request

AN_OPNA Position control loop open

acknowledge

AP_OPNR Position control loop open request

AN_INPOS Axis in position AP_END Encoder error monitoring disable

AN_AXALM Alarm state on the axis AP_FLWU Follow up on

AN_RAPR Rapid motion request AP_JOGP Jog in +direction request

AN_MTNRP Motion request in positive

direction

AP_JOGN Jog in -direction request

AN_MTNRN Motion request in negative

direction

AP_DECSW Axis on deceleration switch

AN_LUBR Lubrication request on the axis AP_RAPD Rapid motion disable

AN_RPE Reference point established AP_MTNDP Motion disable in positive

direction

AN_REFEND End of travel to reference point AP_MTNDN Motion disable in negative

direction

AN_OTP Axis on over-travel position in

positive direction

AP_LIMP Axis on limit switch in positive

direction

AN_OTN Axis on over-travel position in

negative direction

AP_LIMN Axis on limit switch in negative

direction

AN_REFP1 Axis on reference point 1 AP_LIMSELP Selection of 1B Positive limit

range

AN_REFP2 Axis on reference point 2 AP_LIMSELN Selection of 1B negative limit

range

AN_REFP3 Axis on reference point 3-on AP_LCK Axis lock

AN_REFP4 Axis on reference point 4-en AP_DISPD Display disable

AN_PARKA Parking acknowledge AP_PARKR Parking request

277

7.13 Axis Control Variables

Inputs Outputs

Symbol Description Symbol Description

AN_SYNCA Synchronous control acknowledge AP_SYNCR Synchronous control request

AN_MIXA Axis exchange acknowledge AP_MIXR Axis exchange request

AN_SPRPNA Superimposed control

acknowledge

AP_SPRPNR Superimposed control request

AN_EGBS EGB slave axis AP_DIARAD Axis programmed in diameter

AN_INDP Axis in index position AP_SSLOP Slave axis loop opening and

takeover of only the command

signal

AN_MIXM Master axis of axis exchange AP_FEEDD Motion with feed-rate disable

AN_SYNCM Master axis of synchronous control AP_PLCR PLC axis control request

AN_SPRPNM Master axis of superimposed

control

AP_GOR PLC axis go request

AN_PLCA PLC axis control

 acknowledge

AP_RES PLC axis reset

AN_BEPTY PLC axis block buffer empty AP_EFD Position measurement disable

AN_GOA PLC axis go acknowledge AP_RPE There is a valid reference point

AN_IEPTY PLC axis movement done AP_MIRR Request for axis direction

exchange (mirroring)

AN_MIRA Acknowledge of the axis direction

exchange (mirroring) requested by

the PLC

Bit-type axis variables going from NC to PLC

AN_DETCHA: Axis detach acknowledge

AN_DETCHA signal is the acknowledge flag of the AP_DETCHR axis detach request

signal.

Upon the axis detach request AP_DETCHR=1 the axis control gives back

AN_DETCHA=1. Upon the attach request AP_DETCHR=0 the axis control gives

back AN_DETCHA=0. See also: AP_DETCHR flag description.

AN_OPNA: Position control loop open acknowledge

AN_OPNA is the acknowledge flag of AP_OPNR position control loop open request

signal.

Upon position control loop open request AP_OPNR=1 the axis control gives back

AN_OPNA=1. Upon the AP_OPNR=0 position control loop close request the axis

control gives back AN_OPNA=0. See also: AP_OPNR flag description.

278

7.13 Axis Control Variables

AN_INPOS: Axis in position

If the difference of the command position of the axis and its position measured from

the encoder stays within the window determined by the N0516 Inpos parameter, the

value of the signal is 1.

AN_AXALM: Alarm state on the axis

If the axis control recognizes a servo error on any element of the servo loop (encoder,

drive operating through EtherCAT, position control loop), it will set the AN_AXALM

flag to 1.

L Attention! The task of the PLC program is to react to the error signal, to stop the drive,

and to create an emergency status! The NC does not switch off automatically the

machine, only upon the command of the PLC!

AN_RAPR: Rapid motion request

The axis control handles the flag together with motion request flags AN_MTNRP,

AN_MTNRN.

If AN_RAPR=0, the interpolator would like to move with feed-rate and it waits for the

status AP_FEEDD=0 (motion with feed-rate enable) and AP_RAPD=1 (rapid motion

disable).

If AN_RAPR=1, the interpolator would like to move with rapid traverse and it waits

for the status AP_FEEDD=1 (motion with feed-rate disable) and AP_RAPD=0 (rapid

motion enable).

See also AN_MTNRP, AN_MTNRN, AP_RAPD, AP_FEEDD flags.

This flag can be used for example for gear range change between feed-rate and rapid

traverse movements.

AN_MTNRP: Motion request in positive direction

AN_MTNRN: Motion request in negative direction

Before the start of any movement the interpolator sets the motion request flag with the

appropriate direction. In case of circular interpolation, on the axis falling into the plain

of the circle, it requests motion in both directions.

The PLC enables the movement in the appropriate direction, by resetting flags

AP_MTNDP=0 or AP_MTNDN=0.

See also: AN_RAPR, AP_RAPD, AP_FEEDD flags.

The flags can be used e.g. for clamping and unclamping axes.

AN_LUBR: Lubrication request on the axis

In case the value of the N1273 Lubrication Distance parameter is not 0, and on the

given axis the amount of displacement has exceeded the distance written on the

parameter, AN_LUBR flag will be set for 1 PLC cycle.

Upon the signal e.g. a lubrication pump can be started.

279

7.13 Axis Control Variables

AN_RPE: Reference point established

In the status of flag AN_RPE=1 on the axis the travel to the reference point has already

been made. In case of absolute encoders the flag is always 1.

AN_REFEND: End of travel to reference point

The flag is operating in reference point mode. It will be set on the given axis, if the

travel to the reference point has been carried out and the axis does not move any more.

AN_OTP: Axis on over-travel position in positive direction

AN_OTN: Axis on over-travel position in negative direction

If the axis has run to a stroke limit set in the Axis Limits parameter group, or it has run

onto a limit switch, the flag of the appropriate direction will be set.

AN_REFP1: Axis on reference point 1

* Reference point – machine position measured from the encoder* < N0516 Inpos

If the difference of the machine position of the axis measured from the encoder and the

value of N0200 Reference Position1 parameter is within the range determined by the

N0516 Inpos parameter, the value of the signal will be 1.

AN_REFP2: Axis on reference point 2

N0201 Reference position 2 – machine position measured from the encoder < N0516 Inpos

If the difference of the machine position of the axis measured from the encoder and the

value of N0201 Reference Position2 parameter is within the range determined by the

N0516 Inpos parameter, the value of the signal will be 1.

AN_REFP3: Axis on reference point 3

N0202 Reference Position3 – machine position measured from the encoder < N0516 Inpos

If the difference of the machine position of the axis measured from the encoder and the

value of N0202 Reference Position3 parameter is within the range determined by the

N0516 Inpos parameter, the value of the signal will be 1.

AN_REFP4: Axis on reference point 4

N0203 Reference Position4 – machine position measured from the encoder < N0516 Inpos

If the difference of the machine position of the axis measured from the encoder and the

value of N0203 Reference Position4 parameter is within the range determined by the

N0516 Inpos parameter, the value of the signal will be 1.

Positions belonging to signals AN_ REFP2, AN_ REFP3, AN_ REFP4 are measured

positions of exchanges. Before the PLC carries out an activity for which an exchange position

of an axis is necessary, by examining the signal, the PLC can check whether the axis is in a

right position or not.

280

7.13 Axis Control Variables

AN_PARKA: Parking acknowledge

AN_PARKA is the acknowledge flag of the AP_PARKR parking request signal.

Upon parking request AP_PARKR=1 the axis control will give back AN_PARKA=1.

Upon parking cancel AP_PARKR=0 the axis control will give back the signal

AN_PARKA=0. See also: AP_PARKR flag description.

AN_SYNCA: Synchronous control acknowledge

AN_SYNCA is the acknowledge flag of the AP_SYNCR synchronous control request

signal. It gives back the signal on the flag belonging to the axis (slave) requesting

synchronous control.

Upon the synchronous control request AP_SYNCR=1, the axis control will give back

AN_SYNCA=1. Upon synchronous control cancel AP_SYNCR=0 the axis control

will give back the signal AN_SYNCA=0. See also: AP_SYNCR flag description.

AN_MIXA: Axis exchange acknowledge

AN_MIXA is the acknowledge flag of the AP_MIXR axis exchange request signal. It

gives back the signal on the flag belonging to the axis (slave) requesting the exchange.

Upon the axis exchange request AP_MIXR=1 the axis control gives back

AN_MIXA=1. Upon axis exchange cancel AP_MIXR=0 the axis control gives back

the signal AN_MIXA=0. See also: AP_MIXR flag description.

AN_SPRPNA: Superimposed control acknowledge

AN_SPRPNA is the acknowledge flag of the AP_SPRPNR superimposed control

request signal. It gives back the signal on the flag belonging to the axis (slave)

requesting superimposed control.

Upon superimposed control request AP_SPRPNR=1 the axis control gives back

AN_SPRPNA=1. Upon superimposed control cancel AP_SPRPNR=0 the axis control

gives back the signal AN_SPRPNA=0. See also: AP_SPRPNR flag description.

AN_EGBS: Axis EGB slave

The flag switches to 1,

In case the given axis is appointed on the N1802 EGB Slave parameter as an electronic

gear box slave axis, and

 G81.8 EGB (hobbing) command is valid.

281

7.13 Axis Control Variables

AN_INDP: Axis in index position

The value of the flag is 1, if the difference of the axis position and its index position is

within the range determined by the N0516 Inpos parameter.

Under an index position we mean positions being on an axis in discrete, equally spaced

distances from each other, and which are special from a particular aspect. E.g.: a Hirth-

crowned rotary table, which can be clamped and indexed every 5 degrees.

At the N0106 Axis Properties parameter, by a setting #3 IDX=1 we can appoint an axis

an indexed axis. On the N0110 Indexing Amount parameter we can set the indexation

distance. E.g.: in case of the above, Hirth-crowned rotary table, it can be 5.

AN_MIXM: Master axis of axis exchange

If the axis is the master axis of axis exchange, the flag is set.

The flag AN_MIXA is set to the slave axis. The two axis indices are different!

AN_SYNCM: Master axis of synchronous control

If the axis is the master axis of synchronous control, the flag is set.

The flag AN_SYNCA is set to the slave axis. The two axis indices are different!

AN_SPRPNM: Master axis of superimposed control

If the axis is the master axis of superimposed control, the flag is set.

The flag AN_SPRPNMA is set to the slave axis. The two axis indices are different!

AN_PLCA: PLC axis control acknowledge

AN_PLCA is the acknowledge flag of the AP_PLCR PLC axis control request signal.

Upon PLC axis control request AP_PLCR=1 the axis control will give back

AN_PLCA=1. Upon PLC axis control cancel AP_PLCR=0, the axis control will give

back the signal AN_PLCA=0. See also: AP_PLCR flag description.

AN_BEPTY: PLC axis block buffer empty

The MOVCMD PLC axis control instructions have a single-block buffer per axis. This

means that if the interpolator has taken out a block from the buffer for execution, the

PLC may load the next block. See the chapter 6.15 named Axis Control Instruction:

MOVCMD. In fact the command MOVCMD will not be executed either ways until it

can load the block to the buffer.

If AN_BEPTY=1 the block buffer is empty.

282

7.13 Axis Control Variables

AN_GOA: PLC axis go acknowledge

If the interpolator of PLC axis is not empty, i.e. AN_IEPTY=0, AND upon the status

PLC axis go request AP_GOR=1, the axis will start the movement and the flag will

take up the status AN_GOA=1.

If the interpolator of PLC axis is empty, i.e. AN_IEPTY=1, OR upon the status PLC

axis stop AP_GOR=0, the axis will stop and the flag will take up the status

AN_GOA=0.

See the AN_GOR flag.

AN_IEPTY: PLC axis movement done

If the PLC axis movement has done, i.e. the interpolator is empty, the flag will take up

state 1.

 AN_MIRA: Acknowledge of the axis direction exchange (mirroring) requested by the PLC

The PLC can request the axis direction exchange on an axis through the AP_MIRR

flag. The AP_MIRA flag is the acknowledge signal of the request.

In this case, when the axis movement is controlled from the part program, the motion

direction of the given axis becomes opposite.

When the axis movement is controlled manually (jog buttons, handwheel), the motion

direction does not change.

If the value of the flag is:

=0: the axis will move in accordance with the part program in the original direction set

in parameter;

=1: the axis will move in accordance with the part program in the opposite direction to

that set in parameter.

L Warning! The axis direction exchange should always be carried out in the function

preventing the block buffering (see the Program parameter group).

283

7.13 Axis Control Variables

Bit-type axis variables going from PLC to NC

AP_DETCHR: Axis detach request

In case the operation of an axis needs to be detached, PLC can request this from the

system by setting the AP_DETCHR flag of the appropriate axis. After the axis control

has stopped the operation of the axis, it will give back the acknowledge signal

AN_DETCHA=1. During the cancellation of detach, the AP_DETCHR flag has to be

reset and PLC has to wait till the axis control gives back the status AN_DETCHA=0.

In case the AN_DETCHA signal is in status 1, the axis control is out of operation:

it will clear on the axis the record “reference point established”: AN_RPE=0,

it will not measure the position from the encoder,

it will not close the position control loop,

it will not issue any signals towards the drive of the axis,

in the part program and PLC no reference can be made to the axis,

the axis does not exist.

In an opposite case, if the AP_DETCHR=0 and the NC switches off the

AN_DETCHA=0 flag, the axis will exist again.

An axis exists if the

value on the N0002 Axis Assign parameter is > 0, and

AN_DETCHA=0.

L Attention! The detach and cancellation of detach of the axis shall always be carried out in

functions suppressing the buffering of blocks (see Program parameter group)

Example:

The spindle of a lathe need to be operated as axis C (rotary table), then it shall be used

as a spindle. Let’s say the

number of axis C is 3 (N0002 Axis Assign A3=1, N0100 Axis Name1 A3=C)

and the number of spindle S1 is 1. (N0605 Spindle Name2 S1=1)

After the power-on, it will work as a spindle:

SP_SDETCHR,#0=0, SN_SDETCHA,#0=0

AP_DETCHR,#2=1, AN_DETCHA,#2=1

If we would like to transform spindle S1 to axis C, we have to program an appropriate

buffer-suppressive function M and we have to set and reset the flags in the following

way:

SP_SDETCHR,#0=1, SN_SDETCHA,#0=1

AP_DETCHR,#2=0, AN_DETCHA,#2=0

From this on, the encoder signals arriving from the same spindle drive will not be

received by the S1 spindle control but the C axis control. The command signal will not

be issued by the S1 spindle control but by the C axis control to the spindle drive. Axis

C can be moved, and it is possible to refer to address C in a part program.

The transformation of axis C back to spindle S1 is carried out in the same way.

284

7.13 Axis Control Variables

AP_OPNR: Position control loop open request

If the position control loop of an axis needs to be opened, we have to request this from

the system by setting the AP_OPNR flag of the appropriate axis. After the position

control has stopped the closure of the loop, it will give back the acknowledge signal

AN_OPNA=1. At the switch-back the AP_OPNR flag has to be reset, and we have to

wait till the position control gives back the status AN_OPNA=0. Towards the drive the

command signal 0 is issued.

The fact whether the closure of the position control loop is carried out with or without

follow-up, is determined by the #5 FUP bit of the N0514 Servo Control parameter

together with the AP_FLWU flags. (See also: AP_FLWU signal description).

L Attention! The opening and closing of the position control loop has always to be carried

out in functions suppressing the buffering of the blocks (see: Program parameter

group).

AP_END: Encoder error monitoring disable

If we set the flag, the servo control will not monitor the errors of the encoder (it will

not issue any Encoder error signals).

AP_FLWU: Follow up on

It regulates the way of closing the position control loop:

In case the

N0514 Servo Control parameter #5 FUP=0 AND the PLC flag AP_FLWU=0

before closing the position control loop the command position will take up the value

of the absolute position (measured from the encoder) and on the axis there will not be

any displacement. The machine will remain in the displaced position until we program

an absolute movement.

In case the

N0514 Servo Control parameter #5 FUP=1 OR the PLC flag AP_FLWU=1

before closing the position control loop the command position will not take up

the value of the absolute position (measured from the encoder) and on the axis

there will be a displacement, and it will step the displacement accumulated in

the open status of the servo.

285

7.13 Axis Control Variables

AP_JOGP: Jog in +direction request

AP_JOGN: Jog in -direction request

In case either in Jog, or Incremental jog mode we set the flag, the axis will move in the

appropriate (+/-) direction, and if we reset the flag, the axis will stop.

MB_JOGn buttons can be linked to these signals.

In case of Reference point travel mode, we can set any of AP_JOGP, or AP_JOGN

flags, the axis will not move in the direction selected, however in the direction

determined by the parameters N0901 Reference Distance and N0900 Reference Type

#5 DIR till any of the flags is set; and it will stop if neither of the flags is set, or if the

travel to the reference point has been carried out.

AP_DECSW: Axis on deceleration switch

If on the axis the parameter state N0900 Reference Type #0 SWT=1 is set, the travel to

the reference point is carried out by running on a switch.

In case the value of the AP_DECSW flag is 1, the axis has run on the reference point

switch.

AP_RAPD: Rapid motion disable

It is the response signal issued for the AN_RAPR rapid motion request.

If AN_RAPR=1, the rapid motion will start if the PLC has reset the signal

AP_RAPD=0.

If AP_RAPD=1 the rapid motion will not take place.

The flag shall be handled together with motion disable flags AP_MTNDP and

AP_MTNDN.

This flag can be used for example for gear range change between feed-rate and rapid

traverse movements.

AP_MTNDP: Motion disable in positive direction

AP_MTNDN: Motion disable in negative direction

These are the response signals issued for the AN_MTNRP and AN_MTNRN motion

request flags.

Before starting any of the movements, the interpolator will set the motion request flag

of the appropriate direction (AN_MTNRP=1, AN_MTNDN=1). In case of circular

interpolation, it will request motion on both axis falling in the plane of the circle, in

both directions.

The axis will not move till the PLC enables the movement in the appropriate direction,

by the flag status AP_MTNDP=0, or AP_MTNDN=0.

The axis will stop as soon as the PLC sets the motion disable flag in the appropriate

direction.

See also the flags AN_RAPR, AP_RAPD, AP_FEEDD.

The flags may be used for example for the clamping and unclamping of axes.

286

7.13 Axis Control Variables

AP_LIMP: Axis on limit switch in positive direction

AP_LIMN: Axis on limit switch in negative direction

In case in any of the directions, the axis has run onto the limit switch, the appropriate

flag shall be set by the PLC: AP_LIMP=1, or AP_LIMN=1. Afer setting the flag, the

interpolator will stop by decelerating and it will be possible to start it only in the other

direction. The deceleration distance necessary for stopping shall be taken into

consideration during the setting of the switch.

AP_LIMSELP: Selection of 1B positive limit range

AP_LIMSELN: Selection of 1B negative limit range

It is the selection of the stroke limit specified on parameters per axis and direction

from PLC.

In case the

N1001 StrkCont parameter #4 ABA=0

in the given channel, the PLC flags doing the parameter selection per axis and

direction are effective: AP_LIMSELP in positive direction AP_LIMSELN in negative

direction, and it will select from ranges 1A and 1B.

In positive direction it will select the

AP_LIMSELP=0: N1002 Range1A Positive parameter,

AP_LIMSELP=1: N1004 Range1B Positive parameter.

In negative direction it will select the

AP_LIMSELN=0: N1003 Range1A Negative parameter,

AP_LIMSELN=1: N1005 Range1B Negative parameter.

Changes made to the stoke limit selection shall be made in the standstill position of

axes.

L See also: CP_LIMSEL flag.

AP_LCK: Axis lock

In AP_LCK=1 state the interpolator will not issue any movement command toward the

selected axis. The movement however can be seen on the position display.

By resetting the flag AP_LCK=0, the interpolator will update the positions from the

measuring system and it will be possible to move the axis again.

It is allowed to change the flag only if no part programs are running and the axis is in a

standstill!

287

7.13 Axis Control Variables

AP_DISPD: Display disable

If an N0002 Axis Assign parameter of an axis is not 0 and we have given a name to it

on N0100 Axis Name1, ... parameters, the axis will be automatically displayed on the

position display.

If the flag is set AP_DISPD=1, the given axis will disappear from the position display.

For example, if we detach an axis by setting the AP_DETCHR flag, its position

display can be cancelled, too.

AP_PARKR: Parking request

Parking may be requested only for an axis participating in a synchronous control, i.e. if

the axis is either

AN_SYNCA=1: slave axis of synchronous control or

AN_SYNCM=1: master axis of synchronous control.

The parking is initiated by the axis to be parked by setting the appropriate AP_PARKR

parking request flag. The parking is acknowledged if the axis control has set the

AN_PARKA acknowledge signal. During the cancellation of parking the AP_PARKR

signal shall be reset, and one shall wait till the axis control returns the AN_PARKA=0

state.

Under parking we mean the situation where a part program is written with a

synchronous operation, but we do not want to move either the synchronous slave or the

synchronous master axis, as, for instance, on that side there is not workpiece. In such a

case either by a switch on the operator panel or by an M function we can switch on the

parking on the appropriate axis. See also the AP_SYNCR signal.

L Attention! The switch-on and switch-off of parking needs always to be carried out in

functions suppressing buffering of blocks (see the program parameter group). The

acknowledge signal is not going to be issued till the buffer is not empty. It is permitted

to operate the parking by a switch only if no program is running and the axis is in rest.

AP_SYNCR: Synchronous control request

The synchronous control is initiated by the synchronous slave axis, by setting its

AP_SYNCR synchronization request flag. The synchronous connection is created

when the axis control sets the AN_SYNCA acknowledge. At the cancellation of the

synchronous control the AP_SYNCR signal shall be reset and wait till the axis control

gives back the AN_SYNCA=0 state.

Synchronous machining is called when an axis, the synchronous slave is moved based

on the movement commands of another axis, the synchronous master. In this state it is

not possible to issue a movement command on the synchronous slave. From a part

program, the synchronous control can be switched on, respectively off, e.g., by M

functions.

We enter the number of the master axis of the synchronous slave in the N2101

Synchronous Master parameter to the axis number belonging to the synchronous slave.

288

7.13 Axis Control Variables

If the parameter value is 0, the axis is not a synchronous slave. For example, if axis 4

is a synchronous slave and the number of its master axis is 2, the parameter shall be

filled in the following way:

N2101 Synchronous Master A4=2

The displacement direction of the synchronous slave compared to the master is

determined by the #0 MSY bit of the N2102 Synchron Config parameter.

L Attention! The synchronous control is not to be confused with the position synchrony when

e.g. on a gantry-type machine two motors are moving the same axis. Then the N2102

Synchron Config parameter #4 PSN=1, while during synchronous control PSN=0 is to

be set.

L Attention! The switch-on and switch-off of the synchronous control needs always to be

carried out in functions suppressing the buffering of blocks (see the program

parameter group). The acknowledge signal is not going to be issued till the buffer is

not empty.

AP_MIXR: Axis exchange request

The axis exchange is initiated by the slave axis (to be exchanged) by setting the

AP_MIXR exchange request flag. The exchange takes place if the axis control has set

the AN_MIXA acknowledge signal. During the cancellation of the axis exchange the

AP_MIXR signal has to be reset and wait till the axis control gives back the

AN_MIXA=0 state.

In case of an axis exchange on the address of the slave axis (determined on parameters

N0100 Axis Name1, ...) an axis with a different number, the master axis can be

moved. Vice versa on the address of the master axis the slave axis is moving. From a

part program, the axis exchange can be switched on, respectively off, e.g., by M

functions.

The axis exchange refers only to the reference to the address of the axis from a part -

program, and not for the jog and handwheel movements, because these refer to axis

numbers, therefore these cases shall be handled from the PLC program!

The N2104 Composit Axis parameter, belonging to the slave axis will tell the number

of the master axis with which the slave axis shall be exchanged. If the parameter value

is 0, the axis is not to be exchanged. For example, if axis 4 is an axis to be exchanged

and the number of its exchange axis is 1, the parameter shall be filled in in the

following way:

N2104 Composit Axis A4=1

During an axis exchange both axes can work also in another channel (not in the one

which has been assigned for it by the axis assign parameter), from there it receives the

movement commands and from the other channel it receives the zero-point offset of

the original axis. After the exchange, it is possible to move the axes in both channels, -

except for the case if one of the axes is a hypothetical one. If an axis is appointed a

289

7.13 Axis Control Variables

hypothetical one in a given channel (N0106 Axis Properties #7 HYP=1), after the

exchange, in the other channel or in the same channel it is not possible to refer to it.

The fact whether the slave, respectively, the master axis shall move in the same, or in

an opposite direction compared to the original one, is determined by the N2105

Composit Config #0 MMI parameter.

L Attention! The switch-on and switch-off of the axis exchange shall always be carried out in

functions suppressing buffering of blocks (see the Program parameter group). The

acknowledge signal will not arrive till the time the buffer becomes empty.

AP_SPRPNR: Superimposed control request

Superimposed control is initiated by the slave axis by setting AP_SPRPNR

superimposed control request flag. The superimposed control will be established if the

axis control has set the AN_SPRPNA acknowledge signal. During the cancellation of

the superimposed control, the AP_SPRPNR signal shall be reset, and wait till the axis

control gives back the state AN_SPRPNA=0.

We call superimposed machining if an axis, the superimposition slave moves upon two

movement commands: The displacements received on its own address and the

displacements received from the superimposition master become added and the

movement of the slave will be the sum of the two displacements. The slave and the

master axis may be in the same, but also in two different channels. From a part

program, the superimposed control may be switched on, respectively, off, e.g., upon M

functions.

We write the number of the master axis of the superimposition slave in the N2107

Superimposed Master parameter on the axis number belonging to the superimposition

slave. If the parameter value is 0, the axis is not a super position slave. For example, if

axis 4 is a superimposition slave and the number of its master axis is 2, the parameter

shall be filled in the following way:

N2107 Superimposed Master A4=2

The direction of displacement of the superimposition slave, compared to the master, is

determined by the N2108 Superimposed Config parameter’s #0 MSU bit.

L Attention! The switch-on and switch-off of the superimposed control shall always be

carried out in functions suppressing the buffering of the blocks (see the Program

parameter group). The acknowledge signal will not arrive till the time the buffer

becomes empty.

290

7.13 Axis Control Variables

AP_DIARAD: Axis programmed in diameter

The flag state will be taken into account by the system if the value of the #5 MGD bit

of the N0106 Axis Properties parameter is 0.

On a given axis, it regulates the way of data input and position display:

In case the

N0106 Axis Properties parameter #0 DIA=0 AND the PLC flag

AP_DIARAD=0

on the given axis the data input and position display is carried out in radius.

In case the

N0106 Axis Properties parameter #0 DIA=1 OR the PLC flag AP_DIARAD=1

on the given axis the data input and position display is carried out in diameter.

The data input covers the part programs, compensations and zero-point offsets.

L Attention! The switch-over from radius to diameter, or from diameter to radius shall

always be carried out in functions suppressing the buffering of the blocks (see the

Program parameter group).

AP_SSLOP: Slave axis loop opening and takeover of only the command signal

If the axis is not a synchronous slave, its effect will be the same as that of the

AP_OPNR signal.

If the axis is a synchronous slave, i.e. on the axis AN_SYNCA=1, the position control

loop of the slave axis will be opened, the speed command signal of the master axis will

be taken over and it will be issued to the slave’s drive.

Example:

Both, the main-spindle and the sub-spindle are at the same time axes Z, i.e., both can

be moved. If we would like to machine a long axis, we can support the workpiece by

the sub-spindle. Let’s appoint axis Z of the sub-spindle as the synchronous slave of

axis Z of the main-spindle and let’s connect the two movements (AP_SYNCR=1).

After this, every time the chuck is closed on both the main and sub- spindle, in order to

prevent the over-determinedness of the chuck, by the setting AP_SSLOP=1 we can

open the position control loop on the slave axis. Axis Z of the main-spindle can be

moved, the slave takes over the speed command signals from the master and they will

move together. See also the DP_SILCK drive signal.

AP_FEEDD: Motion with feed-rate disable

It is the response signal issued for the AN_RAPR rapid motion request flag.

If AN_RAPR=0, the feed-rate movement will start if the PLC has reset the

AP_FEEDD=0 signal.

If AP_FEEDD=1 the feed-rate movement will not start.

The flag shall be used together with AP_MTNDP, AP_MTNDN motion disable flags.

This flag can be used for example for gear range changes between feed-rate and rapid

movements.

291

7.13 Axis Control Variables

AP_PLCR: PLC axis control request

Any axis, determined on the N0002 Axis Assign parameter will be handled after

power-on by the NC. PLC may request any axis from the NC and it may move it

according the content of chapter 6.15 Axis Control Instruction: MOVCMD.

PLC may ask for the axis control by setting the AP_PLCR flag. One shall always wait

till the axis control gives back the AN_PLCA=1 status. Vice versa, when the PLC

cancels axis control, it will reset the AP_PLCR flag and it has to wait for the

AN_PLCA=0 status.

L Attention! The axis request and cancellation by the PLC shall always be carried out in

functions suppressing the buffering of blocks (see the Program parameter group). The

acknowledge signal will not arrive till the time the buffer becomes empty.

AP_GOR: PLC axis go request

If the interpolator of the PLC axis is not empty, i.e. AN_IEPTY=0, the movement will

start upon the AP_GOR=1 flag status, while it will stop upon AP_GOR=0. About the

fact whether the movement goes or not, AN_GOA flag will inform. See also the

AN_GOA flag.

AP_RES: PLC axis reset

In case the AP_RES signal goes to 1:

the PLC axis will stop with deceleration,

it will delete the command currently under execution,

it will delete the command in the buffer and it will set the following flags:

AN_BEPTY=1

AN_GOA=0

AN_IEPTY=1

AP_EFD: Distance measurement disable

The flag is effective only in the open state of the position control loop (AN_OPNA=1).

If the value of the flag is 1, the axis control module will not update the axis position by

the encoder pulses and will freeze the axis position value until the flag changes over to

0 again. Beginning from this, the pulses coming from the encoder will be counted from

292

7.13 Axis Control Variables

the frozen position. This function can be used if the same encoder is used by several

axes to measure distance.

The PLC flag is in connection with the #4 EFD bit of the N0514 Servo Control

parameter.

AP_RPE: There is a valid reference point

If position control is not performed by the NC but by the drive, then the reference point

return is also performed by the drive. After the read-out of the control bits of the drive,

the PLC program informs the NC about existence of the reference point by switching

the AP_RPE flag.

This case can be specified by settings #3 ABS=1 és #4 FLO=1in the parameter N0900

Reference Type.

AP_MIRR: Request for axis direction exchange (mirroring)

The PLC program can request the axis direction exchange on an axis through the

AP_MIRR flag. The AP_MIRA flag is the acknowledge signal of the request which

should always be waited.

In this case, when the axis movement is controlled from the part program, the motion

direction of the given axis becomes opposite.

When the axis movement is controlled manually (jog buttons, handwheel), the motion

direction does not change.

If the value of the flag is:

=0: the axis will move in accordance with the part program in the original direction set

in parameter;

=1: the axis will move in accordance with the part program in the opposite direction to

that set in parameter.

L Warning! The axis direction exchange should always be carried out in the function

preventing the block buffering (see the Program parameter group).

293

7.14 Spindle Control Variables

7.14 Spindle Control Variables

The spindle control variables are such variables going from the NC to the PLC, or from the

PLC to the NC, which are indexed per spindle. All symbols published here refer to the first

spindle (indexed with 0). The appropriate variables of other spindles can be accessed by an

indexed addressing. The control handles a maximum of 16 spindles.

Variables starting with

SN go from NC to PLC (Inputs), while variables starting with

SP go from PLC to NC (Outputs).

7.14.1 Bit-type Spindle Control Variables

Inputs Outputs

Symbol Description Symbol Description

SN_RMPD Speed command signal ramped SP_SEN Spindle output signal enable

SN_NS Spindle speed reached the

commanded value (N=Ns)

SP_SSTRT Spindle start

SN_N0 Spindle speed is 0 (N=0) SP_PAR Spindle speed from parameter

SN_FLU Spindle speed fluctuation SP_NEG Spindle rotation in CCW (M4,

negative command signal)

SN_FLOFF Monitoring of fluctuation is off SP_OREQ Orientation request

SN_LPCLSD Position control loop closed SP_OSHRT Orientation in the shorter

direction

SN_ORIP Position control loop closed and

on the orientation position

SP_SSYNCR Synchronization request

SN_SINPOS Spindle in position SP_PHSHFTR Phase shift request

SN_SSYNA Synchronization acknowledge SP_POLYR Not used

SN_PHSHFTA Phase shift acknowledge SP_SEND Encoder error monitoring disable

SN_SYNCPOS Not used SP_SMTNDP Motion disable in positive

direction

SN_POLYA Polygonal turning acknowledge SP_SMTNDN Motion disable in negative

direction

SN_SMTNRP Motion request in positive

direction

SP_SDETCHR Spindle detach request

SN_SMTNRN Motion request in negative

direction

SP_SLCLR Position control loop closing

request

SN_SRAPR Rapid motion request SP_SSROFF Slave spindle loop opening and

takeover of only the command

signal

SN_SDETCHA Spindle detach acknowledge SP_SDISPD Spindle display disable

SN_SALM Alarm state on the spindle SP_FEEDD Spindle motion with feed-rate

disable

294

7.14 Spindle Control Variables

Inputs Outputs

Symbol Description Symbol Description

SN_RPE Reference point established SP_RAPD Spindle rapid motion disable

SN_SINDP Spindle in index position SP_TLCHIA Individual tool change

acknowledge

SN_TLCHI Individual tool change request SP_TLCHA Tool group change acknowledge

SN_TLCH Tool group change request SP_TLSKP Tool skip signal

SN_TLSKPA Tool skip acknowledge SP_TLCD Life counter disable

SN_TLNL Tool notice life signal SP_OSW Spindle on orientation switch

Bit spindle variables going from NC to PLC

SN_RMPD: Speed command signal ramped

The spindle handler will ramp up the command signal issued to the drive, if the

revolution number has to be increased in an absolute value, based on the parameter

N0665+n Rn S Ramp Up; in case the revolution number has to be decreased in an

absolute value, it will ramp it down based on the parameter N0673+n Rn S Ramp

Down, where “n” is the number of the gear range.

As soon as the spindle handler has finished the ramping-up or ramping-down of the

command signal, it will set the SN_RMPD flag to 1.

SN_NS: Spindle speed reached the commanded value (N=Ns)

In case the spindle speed measured from the encoder has reached the commanded

revolution number within the tolerance determined by parameters N0627 S N% and

N0628 S NW, the spindle handler will set the flag SN_NS.

If the revolution number is good in absolute value but the SN_NS signal is not

received, the direction of the encoder has to be changed in the N0609 Spindle Encoder

Config parameter (#1 ID, or #2 AD parameter), provided that the spindle is not

unipolar: #5 UNI=0.

SN_N0: Spindle speed is 0 (N=0)

In case the spindle speed measured from the encoder has reached the 0 value within

the tolerance determined on the parameter N0629 S N0, the spindle handler will set the

flag SN_N0 (together with the flag SN_NS).

SN_FLU: Spindle speed fluctuation

In case the spindle speed measured from the encoder falls outside of the tolerance

range determined by parameters N0632 S Fluct% and N0633 S FluctW, the spindle

handler will set the flag SN_FLU.

295

7.14 Spindle Control Variables

SN_FLOFF: Monitoring of fluctuation is off

In case the monitoring of spindle fluctuation is cancelled from the part program by the

command G25, the SN_FLOFF flag will be set.

SN_LPCLSD: Position control loop closed

If the spindle the position control loop is closed, the flag will be set. These cases are

the following:

 – after the execution of SP_OREQ orientation, or SP_SLCLR loop closing command,

 – after the synchronization of two spindles and the spindle is a synchronous master or

synchronous slave,

 – if the spindle is the master or slave spindle of polygonal turning (G51.2),

 – if the spindle is the master of the electronic gear box control after programming of

G81.8 function.

SN_ORIP: Position control loop closed and on the orientation position

The spindle handler sets the flag, if on the spindle the position control loop is closed

and the difference of spindle position and parameter value of N0684 Spindle Grid

Shift is in the range determined by the parameter N0743+n Rn S Inpos.

If N0684 Spindle Grid Shift=0, it is in the range of the zero-pulse.

SN_SINPOS: Spindle in position

The spindle handler sets the flag,

 – after the execution of an SP_OREQ orientation or SP_SLCLR loop closure

command, if the absolute value of the difference between the command

position issued on the spindle and the position measured from the encoder is

lower than the value determined on the N0743+n Rn S Inpos parameter.

 – In case the spindle is a synchronous slave when two spindles are synchronized, or

 – In case the spindle is the slave spindle of G51.2 polygon turning,

the difference of absolute value of cyclical positions of the master and slave

spindles (the position difference of zero-pulses by taking into consideration the

offsets, too) is lower than the value determined on the N0743+n Rn S Inpos

parameter.

SN_SSYNA: Synchronization acknowledge

It is the acknowledge flag of the SP_SSYNCR synchronization request.

If PLC requests a synchronization on a spindle, to another one, by setting the

SP_SSYNCR flag and the synchronization has been carried out, the spindle handler

will set the flag.

SN_PHSHFTA: Phase shift acknowledge

It is the acknowledge flag of the SP_PHSHFTR phase shift request.

296

7.14 Spindle Control Variables

If the PLC requests the synchronization with a phase shift with the SP_PHSHFTR=1

condition, and both the synchronization and phase shift has been carried out, the

spindle handler will set the flag SN_PHSHFTA.

SN_SYNCPOS: Not used

SN_POLYA: Polygonal turning acknowledge

In case the spindle is the slave spindle of G51.2 polygonal turning, and the

synchronization to the master spindle has been carried out, the spindle handler will set

the flag SN_POLYA.

SN_SMTNRP: Motion request in positive direction

SN_SMTNRN: Motion request in negative direction

In case of indexing a spindle, before the start of any movements the interpolator will

set the motion request flag in the appropriate direction.

If the PLC enables the movement in the appropriate direction, it has to reset one of the

appropriate flags SP_SMTNDP=0, or the SP_SMTNDN=0.

See also the SN_SRAPR, SP_RAPD, SP_FEEDD flags.

The flags can be used for example for clamping and unclamping of spindles.

SN_SRAPR: Rapid motion request

The flag is handled by the interpolator together with SN_SMTNRP, SN_SMTNRN

motion request flags.

If SN_SRAPR=0, the interpolator wants to move with feed-rate, and waits for the

SP_FEEDD=0 (motion with feed-rate enabled) and SP_RAPD=1 (rapid motion

disabled) statuses.

If SN_SRAPR=1, the interpolator wants to move with a rapid traverse, and waits for

the SP_FEEDD=1 (motion with feed-rate disabled) and SP_RAPD=0 (rapid motion

enabled) statuses.

See also SN_SMTNRP, SN_SMTNRN, SP_RAPD, SP_FEEDD flags.

The handling of this flag can be used for example for gear range changes between

feed-rate and rapid traverse movements.

SN_SDETCHA: Spindle detach acknowledge

SN_SDETCHA is the acknowledge flag of the SP_SDETCHR spindle detach request

signal.

Upon the SP_SDETCHR=1 spindle detach request the spindle handler gives back

SN_SDETCHA=1. Upon the SP_SDETCHR=0 attach request the spindle handler

gives back SN_SDETCHA=0. See also: SP_SDETCHR flag’s description.

297

7.14 Spindle Control Variables

SN_SALM: Alarm state on the spindle

In case the spindle handler on any element of the spindle control (encoder, drive

operating through EtherCAT, position control loop) recognized a servo error, it will set

the flag SN_SALM.

L Attention! The task of the PLC program is to react to the alarm signal, to stop the drive,

and to activate an emergency status! The NC will not automatically switch the

machine off, only upon the command of the PLC!

SN_RPE: Reference point established

In SN_RPE=1 status on the spindle the position of the zero-pulse is known. In case of

absolute encoders, the flag is always 1.

SN_SINDP: Spindle in index position

The value of the flag is 1, if the difference of the spindle position and its index position

is within the range determined by the N0743+n Rn S Inpos parameter.

Under an index position we mean positions, being on a spindle in discrete, equally

spaced distances from each other. E.g.: Clamping a spindle happens by pushing a bar

into a hole on a disc on which the holes are equally spaced in each 5 degrees, then the

spindle can be indexed every 5 degrees.

On the parameter N0822 Basic Angle of Spnd. Pos. we can set the indexing angle.

E.g.: In case of the above spindle clamping it will be 5.

SN_TLCHI: Individual tool change request

The flag will be set by the NC, if tool management is enabled on the parameter N2900

Tool M. Config #0 TMU=1 and

 – the life of the tool being in the given spindle has expired, or

 – the PLC sets the tool skip flag SP_TLSKP because the tool is broken.

The SN_TLCHI flag remains set till the time the PLC sets the SP_TLCHIA individual

tool change acknowledge signal. After the NC has reset the SN_TLCHI signal, the

PLC has to reset the acknowledge signal, too.

The SN_TLCHI flag will not be cleared upon a reset.

SN_TLCH: Tool group change request

The flag will be set by the NC, if tool management is enabled on the parameter N2900

Tool M. Config #0 TMU=1 and it is true for the whole tool group (tools with the same

type code) that

 – its tool life “has expired” or

 – it is “broken”.

The SN_TLCH flag will remain set till the time the PLC sets the SP_TLCHA tool

group change acknowledge signal. After the NC has reset the SN_TLCH signal, the

PLC has to reset the acknowledge signal, too.

298

7.14 Spindle Control Variables

The SN_TLCH flag will not be cleared upon a reset.

SN_TLSKPA: Tool skip acknowledge

If the PLC detects that a tool is broken, it sets the tool skip signal SP_TLSKP. The NC

will record in the tool management table the “broken” status then it will set the tool

skip acknowledge signal SN_TLSKPA, in case tool management is enabled on the

parameter the N2900 Tool M. Config #0 TMU=1.

After that, NC will set the individual tool change request signal SN_TLCHI.

SN_TLNL: Tool notice life signal

In case the tool notice life of the tool being in the spindle has expired, the NC will set

flag SN_TLNL for the period of 1 PLC cycle, if the N2900 Tool M. Config parameter

#0 TMU=1.

Bit spindle variables going from the PLC to NC

SP_SEN: Spindle output signal enable

Every time the PLC issues a command to the spindle (rotation, orientation

synchronization, polygonal turning), it has to enable the issuance of signals by setting

the flag SP_SEN.

After stopping the spindle, the flag has to be reset.

SP_SSTRT: Spindle start

Upon SP_SSTRT=1 the spindle handler will rotate the spindle with the revolution

number set.

Upon SP_SSTRT=0 the spindle handler will stop the rotation of the spindle.

See also the SP_PAR, SP_NEG flags and the SP_PRG register.

SP_PAR: Spindle speed from parameter

In SP_PAR=0 status, upon SP_SSTRT=1 the spindle handler will rotate the spindle

with speed determined in the SP_PRG register.

In SP_PAR=1 status, upon SP_SSTRT=1 the spindle handler will rotate the spindle

with the speed determined on the az N0657+n Rn S Jog Speed parameter.

SP_NEG: Spindle rotation in CCW (M4, negative command signal)

In SP_NEG=0 state, upon SP_SSTRT=1 the spindle handler will rotate the spindle in

a positive, CW or M3 direction (positive command signal for the drive).

In SP_NEG=1 state, upon SP_SSTRT=1 the spindle handler will rotate the spindle in

a negative, CCW or M4 direction (negative command signal for the drive).

299

7.14 Spindle Control Variables

In case the rotation direction of the spindle is not right, in the parameter N0609

Spindle Encoder Config we have to alter parameter bit #0 MD for changing the

rotation direction of the motor. (We should not change the rotation direction by

inverting the flag SP_NEG.)

In SP_NEG=0 status, upon SP_SSYNCR=1 synchronization request the spindle

handler will rotate the spindle in the same direction as the master is turning which is

determined in the SP_MAST register.

In SP_NEG=1 status, upon SP_SSYNCR=1 synchronization request the spindle

handler will rotate the spindle in the opposite direction as the master is turning which

is determined in the SP_MAST register. (Synchronization of sub-spindles.)

SP_OREQ: Orientation request

Upon SP_OREQ=1, the spindle handler

 – In case the spindle is rotating,

Will slow down the rotation of the spindle to the speed determined on the

N0800+n Rn S OrientSpeed parameter,

closes the position control loop (SN_LPCLSD=1),

then it will take up the position calculated from the zero-pulse, determined on

the N0684 Spindle Grid Shift parameter (to the zero-pulse if the parameter is 0)

sets the SN_ORIP flag.

 – In case the spindle is in standstill and SP_OSHRT=0,

in the direction determined on the SP_NEG flag, with the speed determined on

the N0800+n Rn S OrientSpeed parameter it will occupy the position counted

from the zero-pulse and determined on the N0684 Spindle Grid Shift parameter

(the zero-pulse if the parameter is 0),

sets the SN_ORIP flag.

 – In case the spindle is in standstill and SP_OSHRT=1, and the position of the zero-

pulse is known, furthermore, the N0607 Spindle Config parameter #4 ZOR=1

in the nearer direction, with the speed determined on the N0800+n Rn S

OrientSpeed parameter it will occupy the position counted from the zero-pulse

and determined on the N0684 Spindle Grid Shift parameter (the zero-pulse if

the parameter is 0),

sets the SN_ORIP flag.

Upon the SP_OREQ=0 the spindle handler will open the position control loop and it

will reset the SN_LPCLSD flag.

SP_OSHRT: Orientation in the shorter direction

In case the spindle is in standstill and SP_OSHRT=0, it will orientate in the direction

determined on the SP_NEG flag.

300

7.14 Spindle Control Variables

In case the spindle is in standstill and SP_OSHRT=1, and the position of the zero-

pulse is already known, furthermore, the N0607 Spindle Config parameter is #4

ZOR=1 it will orientate on the shorter way.

SP_SSYNCR: Synchronization request

The flag serves for the synchronization of two spindles. Synchronization means the

position controlled co-running of the zero-pulses of two spindles when they are

turning. The two zero-pulses may run together or in a distance from each other, set on

the N0685 Spindle Phase Shift parameter. The gain of the synchronous control can be

adjusted by the N0784+n Rn S Synchr K parameter. Also after turning off the master

spindle, the slave will follow the master. The synchronization to a master spindle is

always requested by the slave spindle.

We use a synchronization for example in cases when on a machine with a sub-spindle,

the workpiece has to be taken over by the sub-spindle as a synchronous slave, in a

rotating status. The position controlled synchronization means that if in the main

spindle we machine something on the workpiece compared to the zero-pulse of the

main spindle, in the sub-spindle on the other side we can carry out machining

compared to this. Other application can be when the sub-spindle must grasp a non-

standard (non-round) workpiece.

Before a synchronization request, we have to write the index of the master spindle into

the slave spindle’s SP_MAST register.

In case we would like to shift the two zero-pulses with the value set on the N0685

Spindle Phase Shift parameter from each other, before the synchronization request we

have to set the SP_PHSHFTR flag.

Upon the SP_SSYNCR=1 the spindle handler

 – if the revolution number of the master spindle is higher than the value determined

on the N0319+n Rn S Rapid n=1...8 parameter, it will slow it down to the value

determined on the parameter,

 – it will close the position control loop on the master spindle,

 – it will close the position control loop on the slave spindle,

 – it will increase the speed of the slave to the speed of the master, in the direction

determined on the SP_NEG flag compared to the master,

 – according to the status of the SP_PHSHFTR flag, it will bring the zero-pulses of the

two spindles to the appropriate distance,

 – it will switch on the co-running control which can be set by the N0784+n Rn S

Synchr K parameter,

 – it will set the SN_SSYNA acknowledge flag on the slave spindle and the

SN_SINPOS flag, if the absolute value of the synchronization error of the two

spindles is lower than the value determined on the N0743+n Rn S Inpos param-

eter.

Upon the SP_SSYNCR=0 the spindle handler

301

7.14 Spindle Control Variables

 – will open the position control loop on the master spindle,

 – on the master spindle, if it is rotating, it will set the speed determined in the

SP_PRG register,

 – it will open the position control loop on the slave spindle,

 – it will reset the SN_SSYNA and SN_SINPOS flags.

SP_PHSHFTR: Phase shift request

In the SP_PHSHFTR=1 status, upon SP_SSYNCR=1 synchronization request it will

set the zero-pulses of the two spindles to the distance determined on the N0685

Spindle Phase Shift parameter and on the slave spindle it will set the SN_SSYNA

acknowledge flag and the SN_SINPOS flag, if the absolute value of the

synchronization error of the two spindles is lower than the value determined on the

N0743+n Rn S Inpos parameter

In SP_PHSHFTR=0 status, upon SP_SSYNCR=1 synchronization request it will

synchronize the zero-pulses of the two spindles to each other and it will set the

SN_SSYNA acknowledge flag on the slave spindle and the SN_SINPOS flag, if the

absolute value of the synchronization error of the two spindles is lower than the value

determined on the N0743+n Rn S Inpos parameter.

SP_POLYR: Not used

SP_SEND: Encoder error monitoring disable

If we set the flag, the spindle handler will not monitor the errors of the encoder

mounted on the spindle (it will not issue encoder error signals).

SP_SMTNDP: Motion disable in positive direction

SP_SMTNDN: Motion disable in negative direction

They are the response signals issued upon the SN_SMTNRP and SN_SMTNRN

motion request flags.

Before every spindle movement (in SP_OREQ=1, or SP_SLCLR=1 status) the

interpolator sets the motion request flag with the appropriate direction

(SN_SMTNRP=1, SN_SMTNDN=1).

The spindle will not move till the PLC enables the movement in the appropriate

direction, by resetting the appropriate flag SP_SMTNDP=0, or the SP_SMTNDN=0.

The spindle will stop if the motion disable flag with the appropriate direction is set by

the PLC.

See also the SN_SRAPR, SP_RAPD, SP_FEEDD flags.

The flags may be used for example for clamping and unclamping of spindles.

302

7.14 Spindle Control Variables

SP_SDETCHR: Spindle detach request

In case the operation of a spindle has to be detached, we can request it from the system

by setting the SP_SDETCHR flag of the appropriate spindle. After the spindle handler

has stopped the operation of the spindle, it will give back the SN_SDETCHA=1

acknowledge signal. During the attaching a spindle the SP_SDETCHR flag has to be

reset, and wait till the spindle handler gives back the SN_SDETCHA=0 status.

In case the SN_SDETCHA signal is in a 1 status, the spindle handler will not operate:

it will clear on the spindle the record reference point established: SN_RPE=0,

it will not measure and will not register the position from the encoder,

it will not close the position control loop,

it will not issue any signals towards the spindle drive,

in a part program and PLC it is not possible to refer to the spindle,

the spindle does not exist.

Vice versa, in case the SP_SDETCHR=0 and the NC resets the SN_SDETCHA=0

flag, the spindle will start to exist again.

A spindle exists if on the

N0607 Spindle Config parameter #0 SEX value 1, and

AN_DETCHA=0.

L Attention! The detach and attach of a spindle shall always be carried out in a function

suppressing the buffering of the blocks (see the Program parameter group)

Example:

The spindle of a lathe need to be operated as axis C (rotary table), then it shall be used

as a spindle. Let’s say the

number of axis C is 3 (N0002 Axis Assign A3=1, N0100 Axis Name1 A3=C)

and the number of spindle S1 is 1. (N0605 Spindle Name2 S1=1)

After the power-on, it will work as a spindle:

SP_SDETCHR,#0=0, SN_SDETCHA,#0=0

AP_DETCHR,#2=1, AN_DETCHA,#2=1

If we would like to transform spindle S1 to axis C, we have to program an appropriate

buffer-suppressive function M and we have to set and reset the flags in the following

way:

SP_SDETCHR,#0=1, SN_SDETCHA,#0=1

AP_DETCHR,#2=0, AN_DETCHA,#2=0

From this on, the encoder signals arriving from the same spindle drive will not be

received by the S1 spindle control but the C axis control. The command signal will not

be issued by the S1 spindle control but by the C axis control to the spindle drive. Axis

C can be moved, and it is possible to refer to address C in a part program.

The transformation of axis C back to spindle S1 is carried out in the same way.

303

7.14 Spindle Control Variables

SP_SLCLR: Position control loop closing request

Upon SP_SLCLR=1 the spindle handler

 – In case the spindle is rotating,

will stop the rotation of the spindle,

will close the position control loop (SN_LPCLSD=1),

 – In case the spindle is in standstill, it will close the position control loop

(SN_LPCLSD=1).

Upon SP_SLCLR=0 the spindle handler will open the position control loop

(SN_LPCLSD=0).

The function can be used, e.g., for the rapid execution of the rigid tapping cycle, if it is

not necessary to hit the same bore hole again. See also: N0823 M Code for Closing S

Loop parameter and N1503 Drilling Cycles Config. parameter #1 TSC bit.

SP_SSROFF: Slave spindle loop opening and takeover of only the command signal

In case the spindle is a synchronous slave, i.e. on the spindle SN_SSYNA=1, it will

open the position control loop, the slave spindle will take over the speed command

signal of the master spindle and it will send it to the slave’s drive.

Example:

We synchronize the sub-spindle to the main spindle due to a takeover of a workpiece,

then the sub-spindle chuck grabs the workpiece, too. Afterwards, every time the chuck

is closed on both the main and sub-spindle side, in order to prevent over-

determinedness, by setting the SP_SSROFF=1 we can open on the slave spindle the

position control loop. Then the slave spindle will take over the speed command signals

from the master and they will move together. See also the DP_SILCK drive signal.

SP_SDISPD: Spindle display disable

If on a spindle, on the N0607 Spindle Config parameter #0 SEX value 1, the spindle

will automatically appear on the FST display.

If the flag SP_SDISPD=1, the given spindle will disappear from the FST display.

For example, if we detach a spindle by the SP_SDETCHR flag, its displaying can be

switched off, too.

SP_FEEDD: Spindle motion with feed-rate disable

It is the response signal issued on the SN_SRAPR rapid motion request flag.

If SN_SRAPR=0, a movement with feed-rate will start only after the PLC has reset the

SP_FEEDD=0 signal.

If SP_FEEDD=1 a movement with feed-rate will not go.

The flag shall be handled together with the SP_SMTNDP, SP_SMTNDN motion

disable flags.

304

7.14 Spindle Control Variables

SP_RAPD: Spindle rapid motion disable

It is the response signal issued on the SN_RAPR rapid motion request flag.

If SN_RAPR=1,a movement with rapid traverse will start only after the PLC has reset

the SP_RAPD=0 signal.

If SP_RAPD=1 a movement with rapid traverse will not go.

The flag shall be handled together with the SP_SMTNDP, SP_SMTNDN motion

disable flags.

SP_TLCHIA: Individual tool change acknowledge

It is the acknowledge signal of the flag SN_TLCHI.

If the PLC sets the signal SP_TLCHIA, the NC will reset the SN_TLCHI flag. After

the NC has reset the SN_TLCHI signal, the PLC has to reset the acknowledge signal,

too.

SP_TLCHA: Tool group change acknowledge

It is the acknowledge signal of the flag SN_TLCH.

If the PLC sets the SP_TLCHA signal, the NC will reset the SN_TLCH flag.After the

NC has reset the SN_TLCH signal, the PLC has to reset the acknowledge signal, too.

SP_TLSKP: Tool skip signal

If the PLC detects, that the tool in the spindle is broken, it sets the SP_TLSKP signal.

Then the NC in the tool management table will record on the tool the “broken” status

and after that it will set the SN_TLSKPA acknowledge signal.

After this the NC will set the SN_TLCHI individual tool change request signal.

After the NC has given back the SN_TLSKPA acknowledge signal, the PLC has to

reset the SP_TLSKP flag.

SP_TLCD: Life counter disable

If the PLC sets the flag, the tool life counter of the tool being in the given spindle will

stop counting.

L Attention! The flags

SP_SSTART,

SP_OREQ,

SP_SSYNCR,

SP_SLCLR

mean commands excluding each other. From these always only one flag can be set

(=1)!

305

7.14 Spindle Control Variables

SP_OSW: Spindle on orientation switch.

In the case of N0609 Spindle Encoder Config parameter #4 OSW=1, spindle

orientation will occur to interface input. Receiving the signal of the switch has to be

executed in the Int0 fast module of the PLC program in any case, because of the

sampling frequency. The state of the switch has to be copied on the SP_OSW flag in

the PLC program. The spindle control module begins to start orientation when the state

of the SP_OSW flag is 1

Accuracy of this solution is casual, measurement is requested.

7.14.2 DWORD-type Spindle Control Variables

Inputs Outputs

Symbol Description Symbol Description

SN_1 Spindle control bits handed over

from NC to PLC (DWORD)

SP_1 Spindle control bits handed over

from PLC to NC (DWORD)

SN_NCOM Spindle speed command issued to

the drive, in rev/min (DWORD)

SP_PRG Programmed spindle speed

(DWORD)

SN_NACT Current spindle speed measured

from the encoder (DWORD)

SP_ROT Spindle rotation status code (3, 4,

...) (DWORD)

SP_RNG Spindle range code (11, 12, …, 18)

(DWORD)

SP_MAST Index of the master spindle of the

spindle (0,1,2...) (DWORD)

SP_ASSIGN Assignment of the spindle to a

channel (1,2,...) (DWORD)

SP_ACTT Number of the tool being in the

spindle (DWORD)

306

7.14 Spindle Control Variables

DWORD-type spindle variables going from the NC to PLC

SN_NCOM: Spindle speed command issued to the drive, in rev/min (DWORD)

In status 1 of the SP_SSTART flag it is the value of the spindle speed command signal

issued to the spindle drive in rev/min unit.

The SN_NCOM register value:

 – If SP_PAR=0, the spindle speed determined in the SP_PRG register

by taking into consideration of the ramping up and down,

multiplied by the spindle override (SP_SOVER),

limited by N0641+n Rn S Min and N0649+n Rn S Max parameters,

in G96 state limited by the maximum spindle speed determined by the G92 S

command and the N0688 Min Spindle Speed G96 parameter.

 – If SP_PAR=1, it is the spindle speed determined on the N0657+n Rn S Jog Speed

parameter. It is influenced only by the ramping up and down, but neither the

spindle override, nor the limiting parameters are validated.

SN_NACT: Current spindle speed measured from the encoder (DWORD)

In case an encoder is mounted on the spindle, in any status of the spindle, it shows the

current speed of the spindle in rev/min units.

DWORD-type spindle variables going from the PLC to NC

SP_PRG: Programmed spindle speed (DWORD)

The PLC writes the value of the S code handed over by the channel in CN_SC register

into the appropriate SP_PRG register. Unit: rev/min.

In case of constant surface speed, in G96 status (CN_CSURFS=1), the spindle speed

written into the CN_CSPN register, calculated by the NC for the surface speed, has to

be copied into the appropriate SP_PRG register.

SP_ROT: Spindle rotation status code (3, 4, ...) (DWORD)

Into the SP_ROT register the regular rotation codes have to be written in: 3: M3, 4:

M4, 5: M5, 19: M19.

The loop closure code without orientation, determined on the N0821 No. of M Code

for Spnd. Pos parameter shall be written here.

Into this register also the M codes determined on the N0689 Spindle M Low and

N0690 Spindle M High parameters shall be written.

The rotation status code of the spindle becomes displayed out on the FST screen.

SP_RNG: Spindle range code (11, 12, …, 18) (DWORD)

In case on the spindle the range change happens upon M codes, for the 8 ranges the

M11, M12, ..., M18 codes shall be used.

307

7.14 Spindle Control Variables

The current range code of the spindle shall be written into the register, even if we

change the range to an S code. Only 11, 12, ..., 18 can be written into the register.

The spindle handler takes into consideration the range-dependant parameters of

spindles based on the SP_RNG code.

It shall be mandatorily filled in!

SP_MAST: Index of the master spindle of the spindle (0,1,2...) (DWORD)

In case of synchronization of two spindles the slave spindle will request the

synchronization by setting the SP_SSYNCR flag. The index of the master spindle shall

be determined in the SP_MAST register of the slave spindle requesting the

synchronization. (Spindle number - 1.)

SP_ASSIGN: Assignment of the spindle to a channel (1,2,...) (DWORD)

In this register we can determine, in which channel will the given spindle operate. Into

the register always the number of the channel shall be written: in case of channel 1 it

shall be 1, etc. We can refer to the spindle from a part program in only that channel to

which the spindle has been appointed by the SP_ASSIGN register.

During program running, it may be necessary to get a spindle to another channel, from

which we can be able to machine with it. The redirection may be carried out by an M

function by the PLC program.

L Attention! The overwriting of the SP_ASSIGN register shall be carried out exclusively in a

function suppressing the block buffer!

It shall be mandatorily filled in, and it shall be initialized after the power-on!

SP_ACTT: Number of the tool being in the spindle (DWORD)

In case the N2901 Search Config parameter’s bit #7 TSP is 1, the displaying of the

current tool number in the FST window is carried out from the register SP_ACTT

indexed per spindle.

The PLC program writes here the number of tool being in the given spindle. Usually it

can be used on a multi-spindle milling machines.

308

7.14 Spindle Control Variables

7.14.3 Double-type Spindle Control Variables

Inputs Outputs

Symbol Description Symbol Description

SP_SOVER Spindle override: if =1: 100%

(double)

Floating-point spindle variables going from the PLC to NC

SP_SOVER: Spindle override: if =1: 100% (double)

An override register is available per spindle. The override value shall be written into

the register in the floating-point format. If e.g.

SP_SOVER=0.32 it means 32%

SP_SOVER=1.0 it means 100%

In case of using an NCT machine control panel the status of the spindle override

switch can be taken from the MKSOVER register, or to originate it from the

MB_SMAX, MB_S100, MB_SMAX buttons.

The upper and lower limit of the spindle override shall be set in the PLC program!

L Attention! MKSOVER is an integer, DWORD-type, SP_SOVER is, on the other hand, a

floating-point double, i.e. the setting of the override requires a conversion from

integer to floating-point (FLT command). The indexation of SP_SOVER is carried out

two-by-two!

309

7.15 Channel Control Variables

7.15 Channel Control Variables

The channel control variables are such variables going from the NC to PLC, or from the PLC

to the NC which become indexed per channel. All symbols published here refer to the first

channel (with 0 index). The appropriate variables of the other channels are accessible by

indexed addressing. The control can handle a maximum of 8 channels.

Variables starting with a

CN go from NC to PLC (Inputs), whilst variables starting with

CP go from the PLC to NC (Outputs).

7.15.1 Bit-Type Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_M1STB M function 1 strobe signal CP_START Start request

CN_M2STB M function 2 strobe signal CP_STOP Stop request

CN_M3STB M function 3 strobe signal CP_JOG Jog mode request

CN_M4STB M function 4 strobe signal CP_INCR Incremental jog mode request

CN_M5STB M function 5 strobe signal CP_HNDL Handwheel mode request

CN_M6STB M function 6 strobe signal CP_REFP Reference point travel mode

request

CN_M7STB M function 7 strobe signal CP_EDIT Edit mode request

CN_M8STB M function 8 strobe signal CP_AUTO Automatic mode request

CN_SSTB S function strobe signal CP_MDI Manual data input mode request

CN_TSTB T function strobe signal CP_JOGRAP Jog with rapid traverse

CN_AUX1STB Auxiliary function 1 strobe signal CP_TAXF Request for manual mode of

moving in the tool direction

CN_AUX2STB Auxiliary function 2 strobe signal CP_TRGAF Request for manual mode of

moving in the direction

perpendicular to the tool

CN_AUX3STB Auxiliary function 3 strobe signal CP_TTCRF Request for manual mode of

moving around the tool center

point

CN_GSTB Not used CP_TBLB Request for manual mode of

moving according to the table

CN_BKBUF Executable block in the buffer CP_INTDREQ Not used

CN_STPREQ Not used CP_TLCM Tool length offset measurement

mode on

CN_ALRM Not used CP_S2TS Selection of tool offset setter

belonging to S2

CN_OPMES Not used CP_WPCM Workpiece zero offset

measurement mode on

310

7.15 Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_INTD Interrupted status CP_S2WS Selection of work offset setter

belonging to S2

CN_WTNG Waiting for the synchronization

M code(s) of another channel(s)

CP_AHND Request for zero point offset

using handwheel

CN_ITFCHK Not used CP_WMCAXF Request for feed parallel with

the misalignment compensation

CN_ITFALM Not used

CN_CSURFS Constant surface speed (G96)

CN_POLYT Polygonal turning (G51.2)

CN_INCH Data input in inches (G20)

CN_HSHP High-speed high-precision mode

(G5.1)

CN_CSACK Not used

CN_WPCNT Machined workpiece = workpiece

to be machined

CN_EGBMD EGB mode (G81.8)

CN_RTRFIN Retraction finished

CN_IPSTP Interpolator in standstill CP_SGLBK Single block mode on

CN_IPEPTY Interpolator empty CP_CNDSP Conditional stop on

CN_CBFR Cutting block feed request CP_TEST Test mode request

CN_OVDIS Override disable (G63) CP_MLCK Machine lock mode request

CN_THRD Thread cutting (G33, G34) CP_DRRUN Dry run request

CN_THRDC Thread cutting cycle (G76, G78) CP_BKRST Block restart request

CN_TAP Tapping (G74, G84) CP_BKRET Block return request

CN_RTAP Rigid tapping (G84.2...) CP_FLCK Function lock request

CN_REFPG Programmed reference point

travel (G28)

CP_ABSOFF Not used

CN_DWELL Dwell (G04) CP_CNDBK_1 Conditional block 1 on

CN_SKIP Skip function (G31) CP_CNDBK_2 Conditional block 2 on

CN_FREV Feed-rate per revolution (G95) CP_CNDBK_3 Conditional block 3 on

CN_POSCHK Waiting for the in position signal CP_CNDBK_4 Conditional block 4 on

CN_CHOP Not used CP_CNDBK_5 Conditional block 5 on

CN_CHARP Not used CP_CNDBK_6 Conditional block 6 on

CN_TLLE Life of the tool referenced by T

code expired

CP_CNDBK_7 Conditional block 7 on

CP_CNDBK_8 Conditional block 8 on

311

7.15 Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_START Start status CP_FIN Finish signal, all functions

executed

CN_STOP Stop status CP_RST Not used

CN_JOG Jog mode CP_RSTREW Not used

CN_INCR Incremental jog mode CP_CSREQ Not used

CN_HNDL Handwheel Mode CP_NOWT Waiting for synchronization M

code cancelled

CN_REFP Reference point travel mode CP_MINT Interrupt macro calling

CN_EDIT Edit mode CP_TMREN Free-purpose timer enable

CN_AUTO Automatic mode CP_TSBD Not used

CN_MDI Manual data input mode CP_EGBRRQ Retraction request in EGB mode

CN_FLCK Function lock mode CP_M1ACK M function 1 acknowledge

CN_TAXF Manual mode of moving in the

tool direction

CP_M2ACK M function 2 acknowledge

CN_TRGAF Manual mode of moving in the

direction perpendicular to the

tool

CP_M3ACK M function 3 acknowledge

CN_TTCRF Manual mode of moving around

the tool center point

CP_M4ACK M function 4 acknowledge

CN_TBLB Manual mode of moving

according to the table

CP_M5ACK M function 5 acknowledge

CN_ABSOFF Not used CP_M6ACK M function 6 acknowledge

CN_TEST Test mode CP_M7ACK M function 7 acknowledge

CN_MLCK Machine lock mode CP_M8ACK M function 8 acknowledge

CN_DRRUN Dry run mode CP_SACK S function acknowledge

CN_BKRST Block restart state CP_TACK T function acknowledge

CN_BKRET Block return state CP_AUX1ACK Auxiliary function 1

acknowledge

CN_AHND Zero point offset using

handwheel is changed

CP_AUX2ACK Auxiliary function 2

acknowledge

CN_WMCAXF The feed parallel with the

misalignment compensation is

turned on.

CP_AUX3ACK Auxiliary function 3

acknowledge

CP_GACK Not used

CN_1100 #1100 macro variable value (bit) CP_HOLD Feed-hold for all axes in the

channel

CN_1101 #1101 macro variable value (bit) CP_CBFEN Cutting block feed enable

312

7.15 Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_1102 #1102 macro variable value (bit) CP_FHNDL Feed-rate from handwheel mode

on

CN_1103 #1103 macro variable value (bit) CP_OVC Not used

CN_1104 #1104 macro variable value (bit) CP_HNDLS1 Feed-rate from the 1 handwheelst

CN_1105 #1105 macro variable value (bit) CP_HNDLS2 Feed-rate from the 2nd

handwheel

CN_1106 #1106 macro variable value (bit) CP_HNDLS3 Feed-rate from the 3rd

handwheel

CN_1107 #1107 macro variable value (bit) CP_HNDLS4 Feed-rate from the 4 handwheelth

CN_1108 #1108 macro variable value (bit) CP_LIM1DIS Stroke range 1 disable

CN_1109 #1109 macro variable value (bit) CP_LIM2DIS Stroke range 2 disable

CN_1110 #1110 macro variable value (bit) CP_LIM3DIS Stroke range 3 disable

CN_1111 #1111 macro variable value (bit) CP_LIMSEL 1B stroke range selection for all

axes

CN_1112 #1112 macro variable value (bit) CP_CHOPON Not used

CN_1113 #1113 macro variable value (bit) CP_SGOEN Use of second geometry offset

table enabled

CN_1114 #1114 macro variable value (bit) CP_SGOX Second geometry tool offset

selection on axis X

CN_1115 #1115 macro variable value (bit) CP_SGOY Second geometry tool offset

selection on axis Y

CN_1116 #1116 macro variable value (bit) CP_SGOZ Second geometry tool offset

selection on axis Z

CN_1117 #1117 macro variable value (bit) CP_OSGNX Tool offset direction selection

signal on axis X

CN_1118 #1118 macro variable value (bit) CP_OSGNY Tool offset direction selection

signal on axis Y

CN_1119 #1119 macro variable value (bit) CP_OSGNZ Tool offset direction selection

signal on axis Z

CN_1120 #1120 macro variable value (bit) CP_ROVLD Overlapping of rapid traverse

blocks disable

CN_1121 #1121 macro variable value (bit) CP_RLSOT3 Not used

CN_1122 #1122 macro variable value (bit)

CN_1123 #1123 macro variable value (bit)

CN_1124 #1124 macro variable value (bit)

CN_1125 #1125 macro variable value (bit)

CN_1126 #1126 macro variable value (bit)

CN_1127 #1127 macro variable value (bit)

313

7.15 Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_1128 #1128 macro variable value (bit)

CN_1129 #1129 macro variable value (bit)

CN_1130 #1130 macro variable value (bit)

CN_1131 #1131 macro variable value (bit)

CP_1000 #1000 macro variable (bit)

CP_1001 #1001 macro variable (bit)

CP_1002 #1002 macro variable (bit)

CP_1003 #1003 macro variable (bit)

CP_1004 #1004 macro variable (bit)

CP_1005 #1005 macro variable (bit)

CP_1006 #1006 macro variable (bit)

CP_1007 #1007 macro variable (bit)

CP_1008 #1008 macro variable (bit)

CP_1009 #1009 macro variable (bit)

CP_1010 #1010 macro variable (bit)

CP_1011 #1011 macro variable (bit)

CP_1012 #1012 macro variable (bit)

CP_1013 #1013 macro variable (bit)

CP_1014 #1014 macro variable (bit)

CP_1015 #1015 macro variable (bit)

CP_1016 #1016 macro variable (bit)

CP_1017 #1017 macro variable (bit)

CP_1018 #1018 macro variable (bit)

CP_1019 #1019 macro variable (bit)

CP_1020 #1020 macro variable (bit)

CP_1021 #1021 macro variable (bit)

CP_1022 #1022 macro variable (bit)

CP_1023 #1023 macro variable (bit)

CP_1024 #1024 macro variable (bit)

CP_1025 #1025 macro variable (bit)

CP_1026 #1026 macro variable (bit)

CP_1027 #1027 macro variable (bit)

CP_1028 #1028 macro variable (bit)

CP_1029 #1029 macro variable (bit)

CP_1030 #1030 macro variable (bit)

314

7.15 Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CP_1031 #1031 macro variable (bit)

Bit-type channel control variables going from NC to PLC

CN_M1STB: M function 1 strobe signal

CN_M2STB: M function 2 strobe signal

CN_M3STB: M function 3 strobe signal

CN_M4STB: M function 4 strobe signal

CN_M5STB: M function 5 strobe signal

CN_M6STB: M function 6 strobe signal

CN_M7STB: M function 7 strobe signal

CN_M8STB: M function 8 strobe signal

In a part program, we can write a maximum of 8 different M codes into a block, i.e. in

a block the NC is able to hand over 8 different M codes to the PLC.

In case into the part program an M function has been programmed, the channel handler

 – will write the value of the M code into the CN_MnC (n=1, 2, ..., 8) register

 – thereafter, it sets the CN_MnSTB strobe signal for the period of 1 PLC cycle.

The values of the 8 different M codes will be written by the control into 8 different

CN_MnC (n=1, 2, ..., 8) registers. 8 strobe signals CN_MnSTB (n=1, 2, ...8) belong to

the 8 handover registers. Upon the strobe signal, the PLC decodes the function based

on the received code.

In case the received code covers a function existing on the machine, the PLC resets the

CP_MnACK acknowledge flag corresponding to the strobe signal. It is enabled to set

the CP_MnACK acknowledge flag exclusively after the full execution of the function.

CN_SSTB: S function strobe signal

In case an S function has been programmed in the part program, the channel handler

 – will write the value of the spindle speed programmed on the S function to the

CN_SC register,

 – will write the number of the referred spindle to the CN_SSEL register (1...16)

 – will write the code of the range (11...18) belonging to the programmed revolution

number into the CN_RNGREQ register,

 – thereafter, it will set the CN_SSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

resets the CP_SACK acknowledge signal. It is enabled to set the CP_SACK

acknowledge flag exclusively after the full execution of the function.

315

7.15 Channel Control Variables

CN_TSTB: T function strobe signal

In case a T function has been programmed in the part program, the channel handler

 – will write the number of the tool programmed on the T function to the CN_TC

register, in a lathe channel by cutting the tool offset number called on the T

address,

 – it will write into the CN_MGZNO register that in which magazine can the referred

tool be found,

 – it will write into the CN_POTNO register that in which pot of the given magazine

can the referred tool be found,

 – it will examine whether the tool life of the referred tool, or tool group has expired or

not, and it will set the CN_TLLE flag accordingly,

 – then it will set the CN_TSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

resets the CP_TACK acknowledge signal. It is enabled to set the CP_TACK

acknowledge flag exclusively after the full execution of the function.

CN_AUX1STB: Auxiliary function 1 strobe signal

CN_AUX2STB: Auxiliary function 2 strobe signal

CN_AUX3STB: Auxiliary function 3 strobe signal

Three different addresses can be selected from among the A, B, C, U, V, W addresses

on parameters N1332+n Aux Fu Addrn (n=1..3). If we refer to the address of the three

auxiliary functions determined here in a part program, the channel handler

 – will write into the CN_AUXnC (n=1...3) register the value programed on the

address of the auxiliary function (which is always an integer DWORD),

 – then it will set the CN_AUXnSTB (n=1...3) flag for a period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

resets the CP_AUXnACK (n=1...3) acknowledge signal. It is enabled to set the

CP_AUXnACK acknowledge flag exclusively after the full execution of the function.

CN_GSTB: Not used

CN_BKBUF: Executable block in the buffer

The NC sets the flag if

 – in automatic mode (CN_AUTO=1) a program is appointed to be run in automatic

mode,

 – it is in MDI mode (CN_MDI=1),

 – in jog, incremental jog, or handwheel mode (CN_JOG=1, CN_INCR=1, or

CN_HNDL=1) we enter a block to be executed until the block is executed.

CN_STPREQ: Not used

CN_ALRM: Not used

316

7.15 Channel Control Variables

CN_OPMES: Not used

CN_INTD: Interrupted status

The flag will be set by the channel handler, if in automatic mode the running of the

program has been interrupted. An interruption will occur in the following cases:

 – During running the program we have exited from the automatic mode,

 – Emergency-stop occurs in the automatic mode.

During the interruption process, the channel handler

 – will store the status of the execution of the program,

 – the interruption position

 – the status of function acknowledge signals (CP_MnACK, CP_SACK, CP_TACK,

CP_AUXnACK),

The interrupted program, by stepping back to automatic mode, can be continued

depending on the CN_BKRST, CN_BKRET conditions.

Those functions, the acknowledge signal of which has been 0 during the interruption,

will be issued again.

CN_WTNG: Waiting for the synchronization M code(s) of another channel(s)

On multi-channel controls it is necessary to suspend the execution of the part program

running in one of the channels till one or more other channels reach a certain point in

the execution of their program. We call this as the synchronization of channels. The

synchronization of channels can be carried out by M codes. On the N2201 Waiting M

Codes Min and N2202 Waiting M Codes Max parameters we can appoint an M code

range.

The synchronization is fully carried out by the NC, the PLC has nothing to do with it.

When a channel is waiting a synchronization signal, the NC will set the CN_WTNG

flag.

CN_ITFCHK: Not used

CN_ITFALM: Not used

CN_CSURFS: Constant surface speed (G96)

In case the channel is in the G96 (constant surface speed calculation) status,

 – the NC will set the CN_CSURF flag,

 – it will calculate the spindle speed belonging to the instantaneous coordinate per

PLC cycle and write it to the CN_CTSPN register,

 – it will write the maximum spindle speed programmed by the G92 S command to the

CN_NMAX register.

317

7.15 Channel Control Variables

The task of the PLC program is to copy the value received in the CN_CTSPN register

in the CN_CSURF=1 status to the SP_PRG register of the appropriate spindle

(determined by the CP_SINP register).

CN_POLYT: Polygonal turning (G51.2)

If the channel handler is executing a G51.2 polygonal turning command, it will set the

flag. The flag will be reset by the G50.2 command.

In case the flag is in a 1 status, the PLC has to prevent the spindle appointed in the

CP_POLYSL register from executing any function.

CN_INCH: Data input in inches (G20)

The flag =0 in case of a metric data input G21.

The flag =1 in case of an inch data input G20.

The PLC has to write the increment size into the CP_INC increment register

depending on the flag and the #0 IND bit of the N0104 Unit of Measure parameter,, in

incremental jog and handle mode. Example:

 – If IND=0, CN_INCH=0 and MB_I100 has been pushed: CP_INC=0.1

 – If IND=0, CN_INCH=1 and MB_I100 has been pushed: CP_INC=0.254

CN_HSHP: High-speed high-precision mode (G5.1)

CN_CSACK: Not used

CN_WPCNT: Machined workpiece = workpiece to be machined

The workpiece counter on the control can be set by the operator on the screen

Timers/Counters. In case the number of machined workpieces has reached the number

of the workpieces to be machined, the control will set the CN_WPCNT flag for a

period of 1 PLC cycle.

The control will increase the counter of the machined workpieces to the M function

determined on the N2305 Part Count M parameter. E.g.: If the parameter =30, it will

increase the counter to every M30 function.

CN_EGBMD: EGB mode (G81.8)

If the channel handler executes a G81.8 EGB function (electronic gear box), it will set

the CN_EGBMD flag. The flag will be reset by the G80.8 function (electronic gear

box off). (See also: N1800 EGB Contr parameter group.)

CN_RTRFIN: Retraction finished

If the channel handler executes a G81.8 EGB function (electronic gear box)

(CN_EGBMD=1) and the PLC requests the retraction of the hob by setting the flag

CP_EGBRRQ=1, the NC will retract the tool (hob) in the direction and to the distance

318

7.15 Channel Control Variables

determined on the N1804 Retr. Dist. parameter. At the end of the retraction the

channel handler will set the CN_RTRFIN flag. After that the PLC has to reset the

CP_EGBRRQ=0 flag.

CN_IPSTP: Interpolator in standstill

The flag takes up the CN_IPSTP=1 status in the below cases:

 – in the channel there aren’t any programs running,

 – in the channel there is a program running but the override value is 0 CP_FOVER=0.

This is true also in G0 positioning blocks, too.

 – the channel gets to a stop status CN_STOP=1 (e.g.: upon the effect of the stop

button, in a single block mode, etc.).

CN_IPEPTY: Interpolator empty

The flag takes up the CN_IPEPTY=1 status in the below cases:

 – in the channel there aren’t any programs running,

 – in the channel there is a program running but the interpolator is empty, for example,

due to the reason that the channel is executing a function block.

CN_CBFR: Cutting block feed request

The channel handler requests from the PLC to enable movement with feed-rate in the

below cases, by the setting the flag CN_CBFR=1:

 – G01 straight interpolation,

 – G02, G03 circular interpolation,

 – G33 thread cutting,

 – in every cycle which executes any from among the above blocks.

The movement with feed-rate will not start until it is enabled by the PLC on the

CP_CBFEN=1 flag, e.g. until the spindle is rotating.

CN_OVDIS: Override disable (G63)

The channel handler signals the override and stop disabled status to the PLC by the

setting the flag CN_OVDIS=1 in the below cases:

 – In G63 override disabled status (enabled by: G61, G62, G64),

 – In G33 in thread cutting blocks (enable by other interpolation code, e.g.: G0, G1),

 – In G74, G84 tapping cycles, while it is tapping,

 – In G78 simple thread cutting cycles, when the thread is being cut,

 – In G76 multiple repetitive thread cutting cycles, when the thread is being cut.

CN_THRD: Thread cutting (G33, G34)

The channel handler sets the flag CN_THRD=1, when

 – It is executing a G33 thread cutting block (resetted by other interpolation code, e.g.:

G0, G1),

319

7.15 Channel Control Variables

 – In G78 simple thread cutting cycles, when the thread is being cut,

 – In G76 multiple repetitive thread cutting cycles, when the thread is being cut.

CN_THRDC: Thread cutting cycle (G76, G78)

The channel handler sets the flag CN_THRDC=1, when

 – In G78 simple thread cutting cycles, when the thread is being cut,

 – In G76 multiple repetitive thread cutting cycles, when the thread is being cut.

CN_TAP: Tapping (G74, G84)

The channel handler sets the flag CN_TAP=1, when

 – In G74, G84 tapping cycles while it is tapping.

CN_RTAP: Rigid tapping (G84.2...)

The channel handler sets the flag CN_RTAP=1, when

 – In G84.2, G84.3 rigid tapping cycles while it is tapping.

CN_REFPG: Programmed reference point travel (G28)

The channel handler sets the flag CN_REFPG=1, when

 – In G28 command it travels to the reference point.

CN_DWELL: Dwell (G04)

The channel handler sets the flag CN_DWELL=1, when

 – In G4 block it is executing a programmed dwell,

 – In drilling cycles a dwell is being executed.

CN_SKIP: Skip function (G31)

The channel handler sets the flag CN_SKIP=1, when

 – It is carrying out a G31 skip function.

CN_FREV: Feed-rate per revolution (G95)

The channel handler sets the flag CN_FREV=1, when

 – It is moving by a feed-rate per revolution (G95).

In case of G94 (feed-rate per minute) the flag CN_FREV=0. In a positioning block

(G0, G53) the flag will be reset even if there is a G95 status.

CN_POSCHK: Waiting for the in position signal

The channel handler sets the flag CN_POSCHK=1,

 – at the end of all rapid traverse movement (G0, G53), if the N1337 Execution Config

parameter #0 PCH=1,

 – at the end of all movement blocks, into which a G9 has been programmed,

 – at the end of all movement blocks, in a G61 exact stop status,

320

7.15 Channel Control Variables

and it will wait till the lag value on all axes participating in the movement gets within

the window determined on the N0516 Inpos parameter. After this it resets the

CN_POSCHK flag.

CN_CHOP: Not used

CN_CHARP: Not used

CN_TLLE: Life of the tool referenced by T code expired

During all tool call (T code) the channel handler checks whether the life of the tool, or

tool group has expired or not, provided that the N2900 Tool M. Config parameter #0

TMU=1.

In case the tool life has expired, the NC will set the CN_TLLE signal, simultaneously

with the CN_TSTB signal.

CN_START: Start status

It is the acknowledge signal of the CP_START start request.

When the PLC sets the CP_START signal, the channel handler checks whether

 – a program or a single block can be executed in the given mode (which are: auto,

MDI, jog, incremental jog, handwheel) or not,

 – there is an appointed program to run, or a single block entered for execution,

 – there is any other obstacle for the start, e.g. error signal.

In case the above conditions are met, the channel handler gives back the

CN_START=1 status, upon which the lamp of the start button (e.g. ML_START) can

be turned on.

The channel handler resets the CN_START status, in case the NC

 – gets into a stop status (CN_STOP=1)

 – has executed the program or the single block.

CN_STOP: Stop status

The acknowledge signal of the CP_STOP stop request.

When the PLC sets the CP_STOP signal, the channel handler checks whether

 – a program or a single block is under execution in the given mode (which are: auto,

MDI, jog, incremental jog, handwheel) or not,

 – there is any other obstacle for the stop, e.g. override and stop disabled status, or not.

In case the above conditions are met, the channel handler stops the interpolation and

gives back the CN_STOP=1 status, upon which the lamp of the start button (e.g.

ML_STOP) can be switched on.

The channel handler resets the CN_STOP status, in case the NC

 – gets into a start status (CN_START=1)

 – has executed the program or the single block.

321

7.15 Channel Control Variables

CN_JOG: Jog mode

CN_INCR: Incremental jog mode

CN_HNDL: Handwheel mode

CN_REFP: Reference point travel mode

CN_EDIT: Edit mode

CN_AUTO: Automatic mode

CN_MDI: Manual data input mode

They are the acknowledge signals of the CP_JOG, CP_INCR, CP_HNDL, CP_REFP,

CP_EDIT, CP_AUTO and CP_MDI mode request flags.

When the PLC requests a mode change on any of the CP_xxx flags, the channel

handler checks whether

 – in the mode in which the channel is, there is a program or a single block under

execution or not,

 – if there is a program execution, it will immediately stop the interpolator, or in an

override and stop disabled status it will wait till the status terminates,

 – in case it executes a single block in a jog, incremental jog or handwheel mode, or if

it executes a program in MDI mode, it will clear the whole execution,

 – in case it executes a program in an automatic mode, it will set the interrupted status

CN_INTD=1,

 – it will switch to the mode requested on the CP_xxx flag and sets the CN_xxx flag.

In status 1 of the CN_xxx flag the PLC may switch on the lamp of the appropriate

mode button (e.g. ML_xxx).

CN_FLCK: Function lock mode

It is the acknowledge signal of the CP_FLCK function lock request.

When the PLC sets the function lock request signal CP_FLCK=1, the channel handler

checks whether

 – the status of the CN_FLCK signal may be modified or not, i.e. whether the control is

in any of the automatic (CN_AUTO=1), or MDI (CN_MDI=1) modes or not,

 – if not, it switches the status of the CN_FLCK flag to its opposite.

In status 1 of the CN_FLCK flag the PLC may switch on the lamp of the machine lock

button (e.g.: ML_FLCK).

In status 1 of the CN_FLCK flag the channel handler will not hand over any function

to the PLC: it will not issue the CN_MnSTB, CN_SSTB, CN_TSTB, CN_AUXnSTB

strobe signals towards the PLC.

CN_TAXF: Manual mode of moving in the tool direction

It is the acknowledge signal of the CP_TAXF request for manual mode of moving in

the tool direction. The control switches on the flag on the 5-axis machine tools of

head-head or head-table configuration in jog, incremental jog and handwheel

modes. It does not work on the machine tools of table-table configuration.

322

7.15 Channel Control Variables

In the state CN_TAXF=1, and having selected the tool direction axis specified in the

N3201 Tool Axis Direction parameter, the control moves the tool in the tool

direction according to the angular position of the rotary axes specified in the N3204

No. of the First Rot. Ax. and N3208 No. of the Second Rot. Ax. parameters.

For example:

Let our machine tool be of head-head

configuration, i.e.N3200 Mechanical

Type=Head-Head; N3201 Tool Axis

Direction=Z, i.e. the tool is parallel with the Z

direction in the initial position of the rotary axes;

N3204 No. of the First Rot. Ax.=C and N3208

No. of the Second Rot. Ax.=B. In such a case,

when Z jog button is pushed or Z axis is

selected for handwheel moving, the motion will

be executed in the tool direction along all the

three axes (X, Y, Z) might as well, taking

positions of the B and C axes into account.

CN_TRGAF: Manual mode of moving in the direction perpendicular to the tool

It is the acknowledge signal of the CP_TRGAF request for manual mode of moving in

the direction perpendicular to the tool. The control switches on the flag on the 5-axis

machine tools of head-head or head-table configuration in jog, incremental jog and

handwheel modes. It does not work on the machine tools of table-table configuration.

In the state CN_TRGAF=1, and having selected one of the directions perpendicular

to the axis specified in the N3201 Tool Axis Direction parameter, the control moves

the tool in the plane perpendicular to the axis of the tool according to the angular

position of the rotary axes specified in the N3204 No. of the First Rot. Ax. and N3208

No. of the Second Rot. Ax. parameters.

For example:

Let our machine tool be of head-head

configuration, i.e.N3200 Mechanical

Type=Head-Head; N3201 Tool Axis

Direction=Z, i.e. the tool is parallel with the Z

direction in the initial position of the rotary axes;

N3204 No. of the First Rot. Ax.=C and N3208

No. of the Second Rot. Ax.=B. In such a case,

when X or Y jog button is pushed or X or Y

axis is selected for handwheel moving, the

motion will be executed in the plane

perpendicular to the tool along all the three axes

(X, Y, Z) might as well, taking positions of the B and C axes into account.

323

7.15 Channel Control Variables

CN_TTCRF: Manual mode of moving around the tool center point

It is the acknowledge signal of the CP_TTCRF request for manual mode of moving

around the tool center point. The control gives back the flag on the 5-axis machine

tools of all three configurations in jog, incremental jog and handwheel modes.

In the state CN_TTCRF=1, moving the rotary axes specified in the N3204 No. of the

First Rot. Ax. or N3208 No. of the Second Rot. Ax. parameter, motion will be

executed in such a way so that the position of the tool center point relative to the

appropriate point of the workpiece will remain unchanged.

CN_TBLB: Manual mode of moving according to the table

It is the acknowledge signal of the CP_TBLB request for manual mode of moving

according to the table. The control switches on the flag on the 5-axis machine tools of

table-table or head-table configuration in jog, incremental jog and handwheel

modes. It does not work on the machine tools of head-head configuration.

In the state CN_TBLB=1, the control moves the linear axes (X, Y, Z) according to

the angular position of the rotary axes specified in the N3204 No. of the First Rot.

Ax. and N3208 No. of the Second Rot. Ax. parameters in such a way so that it

considers the axis specified in the N3201 Tool Axis Direction parameter as direction

perpendicular to the table, while the other two axes as directions being in the plane

of the table.

For example:

Let our machine tool be of table-

table configuration, i.e.N3200

Mechanical Type=Table-Table;

N3201 Tool Axis Direction=Z, i.e.

the tool is parallel with the Z

direction in the initial position of the

rotary axes; N3204 No. of the First

324

7.15 Channel Control Variables

Rot. Ax.=A and N3208 No. of the Second Rot. Ax.=C. In such a case, when X or Y jog

button is pushed or Z axis is selected for handwheel moving, the motion will be executed in

the plane of the table, taking positions of the A and C axes into account. When Z jog button

is pushed or X or Y axis is selected for handwheel moving, the motion will be executed in

the direction perpendicular to the plane of the table, taking positions of the A and C axes

into account.

CN_ABSOFF: Not used

CN_TEST: Test mode

It is the acknowledge signal of the CP_TEST test mode request flag.

When the PLC sets the test mode request signal CP_TEST=1, the channel handler

checks whether

 – the status of the CN_TEST signal can be modified or not, i.e. whether the control is

in any of the automatic (CN_AUTO=1), or MDI (CN_MDI=1) modes or not,

 – if not, it changes the status of the CN_TEST flag to its opposite.

In status 1 of the CN_TEST flag the PLC may switch on the lamp of the test mode

button (e.g: ML_TEST).

In status 1 of the CN_TEST flag the channel handler

 – executes all interpolation blocks, the feed-rate blocks (G1, G2, G3, G33) too, with

an increased feed-rate, by exponentially increasing the speed depending on the

status of the override switch,

 – it does not hand over any movement commands to the position control loop, thus the

axes are not moving,

 – it does not hand over any functions to the PLC: it does not issue any of the strobe

signals CN_MnSTB, CN_SSTB, CN_TSTB, CN_AUXnSTB towards the PLC.

CN_MLCK: machine lock mode

It is the acknowledge signal of the CP_MLCK machine lock mode request.

When the PLC sets the machine lock request signal CP_MLCK=1, the channel handler

checks whether

 – the status of the CN_MLCK signal can be modified or not, i.e. whether the control

is in any of the automatic (CN_AUTO=1), or MDI (CN_MDI=1) modes or not,

 – if not, it changes the status of the CN_MLCK flag to its opposite.

In status 1 of the CN_MLCK flag the PLC may switch on the lamp of the machine

lock mode button (e.g.: ML_MLCK).

In status 1 of the CN_MLCK flag, the channel handler

 – will execute all interpolation blocks with the programmed feed-rate, by taking into

consideration the override switches (feed-rate, rapid override),

325

7.15 Channel Control Variables

 – in case the dry run is switched on CN_DRRUN=1, it will execute the feed-rate

blocks (G1, G2, G3, G33) by the increased feed-rate determined on the N0305

Max Feed parameter,

 – it does not hand over any movement commands to the position control loop, thus the

axes are not moving,

 – it does not hand over any functions to the PLC: it does not issue any of the strobe

signals CN_MnSTB, CN_SSTB, CN_TSTB, CN_AUXnSTB towards the PLC.

CN_DRRUN: Dry run mode

It is the acknowledge signal of the CP_DRRUN dry run request.

When the PLC sets the dry run request signal CP_DRRUN=1, the channel handler

checks whether

 – the status of the CN_DRRUN signal can be modified or not, i.e. whether the control

is in any of the automatic (CN_AUTO=1), or MDI (CN_MDI=1) modes or not,

 – if not, it changes the status of the CN_DRRUN flag to its opposite.

In status 1 of the CN_DRRUN flag the PLC may switch on the lamp of the dry run

mode button (e.g.: ML_DRRUN).

In status 1 of the CN_DRRUN flag the channel handler

 – executes the feed-rate blocks (G1, G2, G3, G33) by the increased feed-rate

determined on N0305 Max Feed parameter,

 – issues all movement commands to the position control loop, thus the axes will

move, provided that the machine is not locked (CN_MLCK=0),

 – hands over all functions to the PLC, provided that neither the machine

(CN_MLCK=0), nor the function is locked (CN_MLCK=0).

CN_BKRST: Block restart state

It is the acknowledge signal of the CP_BKRST block restart request.

When the PLC switches on the signal for block restart request CP_BKRST=1, the

channel handler checks whether

 – there is a program interrupted in automatic execution or not, i.e. CN_INTD=1,

 – if yes, it sets the CN_BKRST flag,

In status 1 of the CN_BKRST flag the PLC may switch on the lamp of the block

restart button (e.g.: ML_BKRST).

In an automatic mode, upon the start, the channel handler

 – issues to PLC the functions which has not been executed yet by the strobe signals

through the handover-registers till the moment of interruption,

 – it will return to the starting point of the interrupted block,

 – it continues with machining from here.

CN_BKRET: Block return state

It is the acknowledge signal of the CP_BKRET block return request.

326

7.15 Channel Control Variables

When the PLC sets the signal for requesting block return CP_BKRET=1, the channel

handler checks whether

 – there is a program interrupted in automatic execution or not, i.e. CN_INTD=1,

 – if yes, it sets the CN_BKRET flag.

In status 1 of the CN_BKRET flag the PLC may switch on the lamp of the block return

button (e.g.: ML_BKRET).

In an automatic mode, upon the start, the channel handler

 – issues to PLC the functions which has not been executed yet by the strobe signals

through the handover-registers till the moment of interruption,

 – it returns to the interruption position of the interrupted block,

 – it continues with machining from here.

CN_AHND: Zero point offset using handwheel is changed

It is the acknowledge signal of the CP_AHND zero point offset using handwheel

request. It can be changed in automatic and manual data input (MDI) mode, even in

start state too.

In this case, as it is usual in handwheel mode, selection of axis and step magnitude

have to be enabled in the PLC. For safety reason, it is recommended to limit the step

magnitude to the value of 0.001 mm, possibly 0.01 mm.

Due to the handwheel, the selected axis moves, and the displacement will be taken into

account in the row Handwheel of the Zero point table, and not in the absolute position.

Zero point offset, which is input by the handwheel, will be deleted by M30 and reset.

CN_WMCAXF: The feed parallel with the misalignment compensation is turned on

In the Jog, Incremental jog or Handwheel mode, it can be requested by the PLC on the

CP_WMCAXF flag whether the manual moving the axes should occur in accordance

with the original directions or the misalignment compensation. The CP_WMCAXF

flag is the acknowledge signal of the request. If the value of the flag is

=0: the manual move occurs in accordance with the original axis directions;

=1: the manual move occurs in accordance with the rotated axis directions.

327

7.15 Channel Control Variables

CN_1100: #1100 macro variable value (bit)

CN_1101: #1101 macro variable value (bit)

CN_1102: #1102 macro variable value (bit)

CN_1103: #1103 macro variable value (bit)

CN_1104: #1104 macro variable value (bit)

CN_1105: #1105 macro variable value (bit)

CN_1106: #1106 macro variable value (bit)

CN_1107: #1107 macro variable value (bit)

CN_1108: #1108 macro variable value (bit)

CN_1109: #1109 macro variable value (bit)

CN_1110: #1110 macro variable value (bit)

CN_1111: #1111 macro variable value (bit)

CN_1112: #1112 macro variable value (bit)

CN_1113: #1113 macro variable value (bit)

CN_1114: #1114 macro variable value (bit)

CN_1115: #1115 macro variable value (bit)

CN_1116: #1116 macro variable value (bit)

CN_1117: #1117 macro variable value (bit)

CN_1118: #1118 macro variable value (bit)

CN_1119: #1119 macro variable value (bit)

CN_1120: #1120 macro variable value (bit)

CN_1121: #1121 macro variable value (bit)

CN_1122: #1122 macro variable value (bit)

CN_1123: #1123 macro variable value (bit)

CN_1124: #1124 macro variable value (bit)

CN_1125: #1125 macro variable value (bit)

CN_1126: #1126 macro variable value (bit)

CN_1127: #1127 macro variable value (bit)

CN_1128: #1128 macro variable value (bit)

CN_1129: #1129 macro variable value (bit)

CN_1130: #1130 macro variable value (bit)

CN_1131: #1131 macro variable value (bit)

The user may set or reset macro variables #1100, #1101, ..., #1131 from a part

program. These variables are available for the PLC program through the above flags.

For example, the instruction

#1109=1

written into the part program will set the CN_1109=1 PLC flag. Instruction

#1109=0 will reset the CN_1109=0 PLC flag.

328

7.15 Channel Control Variables

Bit-type channel control variables going from the PLC to NC

CP_START: Start request

When the operator pushes the start button, the PLC program has to check whether it is

allowed to start from the machine’s side or not. If it is allowed, it will set the

CP_START start request flag, by which it requests the start status from the channel

handler.

In CP_START=1 status the channel handler will check whether a machining can be

started in the channel or not. If yes, it will acknowledge the request with the

CN_START=1 status.

In case of using an NCT machine control panel the MB_START flag will give the

status of the start button.

CP_STOP: Stop request

When the operator pushes the stop button, the PLC program has to check whether it is

allowed to stop from the machine’s side or not. If it is allowed, it will set the

CP_STOP stop request flag, by which it requests the stop status from the channel

handler.

In CP_STOP=1 status the channel handler will check whether the machining can be

stopped in the channel or not. If yes, it will acknowledge the request with a

CN_STOP=1 status.

In case of using an NCT machine control panel the MB_STOP flag will give the status

of the stop button.

CP_JOG: Jog mode request

CP_INCR: Incremental jog mode request

CP_HNDL: Handwheel mode request

CP_REFP: Reference point travel mode request

CP_EDIT: Edit mode request

CP_AUTO: Automatic mode request

CP_MDI: Manual data input mode request

When the operator pushes any of the mode changing buttons, the PLC program has to

check whether it is allowed to change the mode from the machine’s side or not. If it is

allowed, it will set the CP_xxx mode change request flag belonging to the mode button

pushed.

In CP_xxx=1 status, the channel handler will check whether the requested mode can

be exchanged or not. If yes, it will acknowledge the request by the CN_xxx=1 status of

the appropriate mode flag.

In case of using an NCT machine control panel the MB_JOG, MB_INCR,

MB_HNDL, MB_REFP, MB_EDIT, MB_AUTO és az MB_MDI flags will give the

statuses of the mode changing buttons.

329

7.15 Channel Control Variables

CP_JOGRAP: Jog with rapid traverse

When the operator pushes the jog rapid traverse button, the PLC program has to check

whether it is allowed to move the axes with rapid traverse, from the machine’s side or

not. If it is allowed, it will set the CP_JOGRAP jog with rapid traverse flag.

In the CP_JOGRAP=1 state the axis control moves the axes belonging to the channel

 – in jog mode with a rapid traverse, if it is pushed together with the appropriate

direction selecting jog button,

 – during the execution of the program, it increases the programmed F feed-rate by the

multiplier determined on the N0313 Feed Mult parameter.

In case of using an NCT machine control panel the MB_JOGRAP flag will give the

status of the jog rapid button. The button’s lamp (ML_JOGRAP) will be handled by

the CP_JOGRAP flag.

CP_TAXF: Request for manual mode of moving in the tool direction

When the operator pushes the button, the PLC requests the mode by switching on the

CP_TAXF flag. The control acknowledges the request by switching on the CN_TAXF

flag. The CN_TAXF flag will be switched on by the control in one of the manual

modes only. For detailed description of the manual mode of moving in the tool

direction, see the description of the CN_TAXF flag.

CP_TRGAF: Request for manual mode of moving in the direction perpendicular to the tool

When the operator pushes the button, the PLC requests the mode by switching on the

CP_TRGAF flag. The control acknowledges the request by switching on the

CN_TRGAF flag. The CN_TRGAF flag will be switched on by the control in one of

the manual modes only. For detailed description of the manual mode of moving in the

direction perpendicular to the tool, see the description of the CN_TRGAF flag.

CP_TTCRF: Request for manual mode of moving around the tool center point

When the operator pushes the button, the PLC requests the mode by switching on the

CP_TTCRF flag. The control acknowledges the request by switching on the

CN_TTCRF flag. The CN_TTCRF flag will be switched on by the control in one of

the manual modes only. For detailed description of the manual mode of moving

around the tool center point, see the description of the CN_TTCRF flag.

CP_TBLB: Request for manual mode of moving according to the table

When the operator pushes the button, the PLC requests the mode by switching on the

CP_TBLB flag. The control acknowledges the request by switching on the CN_TBLB

flag. The CN_TBLB flag will be switched on by the control in one of the manual

modes only. For detailed description of the manual mode of moving according to the

table, see the description of the CN_TBLB flag.

330

7.15 Channel Control Variables

CP_TLCM: Tool length offset measurement mode on

Tool length offset measurement mode can be used in lathe channels in which a tool

setter has been mounted. The length offset measurement mode becomes switched on

by the PLC by setting the CP_TLCM flag.

The setting of the flag may be carried out for the unfolding of the tool setter, or upon

pushing any button specified by the PLC program.

When the PLC sets the CP_TLCM bit

 – the channel automatically switches into Jog mode: CN_JOG=1. The mode cannot be

left till the CP_TLCM flag state is TRUE.

 – In such cases the feed-rate of the movement made by the jog buttons is taken by the

interpolator from the N0319 T Meas Feed parameter. It is possible to move

only one axis at one time, i.e. it excludes the moving of several axes at the

same time.

 – the display side exchanges the offset setting screen belonging to the channel of the

offset measurement flag.

CP_S2TS: Selection of tool offset setter belonging to S2

A channel is able to handle the signals of a maximum of 2 tool setters. Two tool setters

can be used, e.g., on lathes with sub-spindle.

The system selects the probe to be used based on the CP_S2TS PLC bit status. If the

CP_S2TS value

 =0: it will use the probe selected on the N3012 Sensor Input of Tool Setter S1

parameter,

 =1: it will use the probe selected on the N3013 Sensor Input of Tool Setter S2

parameter.

331

7.15 Channel Control Variables

CP_WPCM: Workpiece zero offset measurement mode on

The workpiece zero offset measurement mode can be used in lathe channels and

usually it measures the Z-direction offset of the of the workpiece. The workpiece zero

offset measurement mode becomes switched on by the PLC by setting the CP_WPCM

flag.

The switch-on of the flag may be carried out during the switch-on of the probe, or

upon any button determined by the PLC program.

When the PLC switches on the CP_WPCM bit

 – the NC side will automatically switch into Jog mode: CN_JOG=1. The mode cannot

be quit till the time the status of the CP_WPCM flag is TRUE.

 – in such cases the feed-rate of the movement by the jog buttons is taken by the

interpolator from the N0319 T Meas Feed parameter. It is possible to move

only one axis at one time, i.e. it excludes the moving of several axes at the

same time.

 – the display side exchanges the offset screen belonging to the channel of the flag of

the offset measurement.

CP_S2WS: Selection of work offset setter belonging to S2

A channel is able to handle the signals of a maximum of 2 work zero setters. Two

work zero setters can be used, e.g., on lathes with sub-spindle.

The system selects the probe to be used based on the CP_S2WS PLC bit status. If the

CP_S2WS value

 =0: it will use the probe selected on the a N3014 Sensor Input of Workpiece Setter S1

parameter,

 =1: it will use the probe selected on the a N3015 Sensor Input of Workpiece Setter S2

parameter.

It uses the latter one if on a one-turret machine with sub-spindle a work setter probe is

mounted to both spindles.

CP_AHND: Request for zero point offset using handwheel

When the operator pushes the button, the PLC requests the mode by switching on the

CP_AHND flag. The control acknowledges the request by switching on the

CN_AHND flag. The CN_AHND flag will be switched on by the control in automatic

or manual data input (MDI) mode only. For detailed description of the zero point

offset using handwheel, see the description of the CN_AHND flag.

CP_WMCAXF: Request for feed parallel with the misalignment compensation

In the Jog, Incremental jog or Handwheel mode, it can be requested by the PLC that

the manual moving the axes should occur in accordance with the misalignment

compensation.:

=0: request for manual move in accordance with the original axis directions,

332

7.15 Channel Control Variables

=1: request for manual move in accordance with the rotated axis directions.

CP_SGLBK: Single block mode on

In case the single block mode button is pushed, the PLC program has to switch the

value of the CP_SGLBK flag to its opposite.

In CP_SGLBK=1 status the channel handler, after executing all blocks takes up a stop

status CN_STOP=1, i.e. it stops machining.

In case of using an NCT machine control panel the MB_SGLBK flag gives the single

block mode button status. The lamp of the button (ML_SGLBK) is handled by the

CP_SGLBK flag.

CP_CNDSP: Conditional stop on

In case the conditional stop button is pushed, the PLC program has to switch the value

of the CP_CNDSP flag to its opposite.

If the execution of the program runs on M01 code, the channel handler will check the

status of the CP_CNDSP flag. In CP_CNDSP=1 status it will stop machining and take

up a stop status CN_STOP=1. In an opposite case CP_CNDSP=0 there is no stopping.

In case of using an NCT machine control panel the MB_CNDSP flag will give the

status of the conditional stop button. The lamp of the button (ML_CNDSP) will be

handled by the CP_CNDSP flag.

CP_TEST: Test mode request

When the operator pushes the test mode button, the PLC program will set the

CP_TEST test mode request flag, by which it will request the test mode from the

channel handler.

In CP_TEST=1 status the channel handler will check whether it is possible to switch

on the test mode in the channel. If yes, it will acknowlwdge the request with a

CN_TEST=1 status.

In case of using an NCT machine control panel the MB_TEST flag will give the status

of the test button.

CP_MLCK: Machine lock mode request

When the operator pushes the machine lock button, the PLC program will set the

CP_MLCK machine lock mode request flag, by which it will request the machine lock

mode from the channel handler.

In CP_MLCK=1 status the channel handler will check whether it is possible to switch

on the machine lock mode in the channel. If yes, it will acknowledge the request by the

CN_MLCK=1 status.

In case of using an NCT machine control panel az MB_MLCK flag will give the

machine lock button’s status.

333

7.15 Channel Control Variables

CP_DRRUN: Dry run request

When the operator pushes the dry run button, the PLC program will set the

CP_DRRUN dry run request flag, by which it will request the dry run mode from the

channel handler.

In CP_DRRUN=1 status the channel handler will check whether it is possible to

switch on the dry run mode in the channel. If yes, it will acknowledge the request by

the CN_DRRUN=1 status.

In case of using an NCT machine control panel, MB_DRRUN flag will give the dry

run button’s status.

CP_BKRST: Block again request

When the operator pushes the block again button, the PLC program will write the

CP_BKRST block again request flag to 1, by which it requests from the channel

handler to restart the block.

In CP_BKRST=1 status the channel handler will check whether it is possible to switch

on the restart of the block in the channel. If yes, it will confirm the request by the

CN_BKRST=1 state.

In case of using an NCT machine control panel, MB_BKRST flag will give the block

again button’s status.

CP_BKRET: Block return request

When the operator pushes the block return button, the PLC program is going to set the

CP_BKRET block return request flag, by which it will request from the channel

handler to return to the interruption point.

In CP_BKRET=1 status the channel handler will check whether it is possible to switch

on the block return in the channel. If yes, it will acknowledge the request by the

CN_BKRET=1 status.

In case of using an NCT machine control panel the MB_BKRET flag will give the

block return button’s status.

CP_FLCK: Function lock request

When the operator pushes the Function lock button, the PLC program will set the

CP_FLCK function lock request flag, by which it requests from the channel handler

the closing of the function issuance.

In CP_FLCK=1 status the channel handler will check whether the function lock mode

can be switched on or not in the channel. If yes, it will acknowledge the request by the

CN_FLCK=1 state.

In case of using an NCT machine control panel, MB_FLCK flag will give the status of

the function lock button.

CP_ABSOFF: Not used

334

7.15 Channel Control Variables

CP_CNDBK_1: Conditional block 1 on

CP_CNDBK_2: Conditional block 2 on

CP_CNDBK_3: Conditional block 3 on

CP_CNDBK_4: Conditional block 4 on

CP_CNDBK_5: Conditional block 5 on

CP_CNDBK_6: Conditional block 6 on

CP_CNDBK_7: Conditional block 7 on

CP_CNDBK_8: Conditional block 8 on

It is possible to set 8 different conditions per channel. In case in the part program a

block starts with the a /n (n=1, ..., 8) instruction, the channel handler will check before

the execution of the block whether the n condition is fulfilled or not, i.e. whether theth

status of the CP_CNDBK_n flag is 1 or not. If

 – CP_CNDBK_n=0 it will execute the block,

 – CP_CNDBK_n=1 it will not execute the block and it will step on the next one.

In case of using an NCT machine control panel, the MB_CNDBK flag will give the

status of a conditional block button. The lamp of the button (ML_CNDBK) will be

handled by the CP_CNDBK_n flag selected by the PLC programmer for the button.

CP_FIN: Finish signal, all functions executed

PLC program indicates by a CP_FIN=1 state to the channel handler that it has carried

out all functions. In CP_FIN=1 state the channel handler

 – in a start status, will take the next block from the buffer and execute it,

 – in case of execution in single block mode, it will take up a stop status and wait for

the start,

 – at the end of the program, i.e. in case of an empty buffer, it will reset the start status.

In the PLC program it is allowed to set the CP_FIN signal if the statuses of all the

function acknowledge signals (CP_MnACK, CP_SACK, CP_TACK, CP_AUXnACK)

are 1 and from the PLC program’s side there aren’t other reasons for suspending the

execution of the part program.

CP_RST: Not used

CP_RSTREW: Not used

CP_CSREQ: Not used

CP_NOWT: Waiting for synchronization M code cancelled

On multi-channel controls it is necessary to suspend the execution of the part program

running in one of the channels till the time one or more other channels reach a certain

point in the execution of the program. We call this the synchronization of channels. It

is possible to carry out the synchronization of channels by M codes. We can determine

335

7.15 Channel Control Variables

an M code range on the N2201 Waiting M Codes Min and N2202 Waiting M Codes

Max parameters.

The synchronization will be carried out fully by the NC, and PLC does not have to deal

with it.

In case we have written a program in a way that it will wait for the synchronization M

code of the other channel, or channels but we would like to run the program only

alone, without the synchronization to programs running in the other channels, the

channel handler

 – in CP_NOWT=1 status will skip the synchronization M codes, i.e. it will not wait

for the channels in which the flag CP_NOWT is true.

CP_MINT: Interrupt macro calling

CP_TMREN: Free-purpose timer enable

In the Timer row of Timers/counters window of the control, a time can be read out

which shows the value of the free-purpose timer, in the form of

day/hour/minute/second/millisecond units.

The free-purpose timer

 – will be started by the PLC by the CP_TMREN=1 status,

 – will be stopped by the PLC by the CP_TMREN=0 status.

The timer value can be overwritten/read out

 – from the control panel,

 – from the part program, through #3001 macro variable.

CP_TSBD: Not used

CP_EGBRRQ: Retraction request in EGB mode

In case the channel handler executes a G81.8 EGB function (electronic gear box) it

will set the CN_EGBMD flag.

In status 1 of the CN_EGBMD flag the PLC may request the retraction of the tool

(hob) by setting the CP_EGBRRQ flag. Then the NC

 – will pull out the tool in the direction and to the distance determined on the N1804

Retr. Dist. parameter,

 – at the end of the retraction the channel handler will set the CN_RTRFIN flag.

After that, the PLC has to reset the CP_EGBRRQ=0 flag.

336

7.15 Channel Control Variables

CP_M1ACK: M function 1 acknowledge

CP_M2ACK: M function 2 acknowledge

CP_M3ACK: M function 3 acknowledge

CP_M4ACK: M function 4 acknowledge

CP_M5ACK: M function 5 acknowledge

CP_M6ACK: M function 6 acknowledge

CP_M7ACK: M function 7 acknowledge

CP_M8ACK: M function 8 acknowledge

In a part program, it is possible to write into a block a maximum of 8 different M

codes, i.e. in a block 8 different M codes can be handed over by the NC to the PLC.

In case into the part program an M function has been programmed, the channel handler

will set the CN_MnSTB strobe signal for the period of 1 PLC cycle. Upon the signal,

PLC will decode the function based on the received code.

If the received code contains a function existing on the machine, the PLC will

 – CP_MnACK=0 reset the acknowledge flag corresponding to the strobe signal.

After the execution of the function the PLC

 – CP_MnACK=1 will set the acknowledge flag.

Based on the status of the CP_MnACK flags, the channel handler registers which M

functions have been executed from the block under execution. By interrupting, then

restarting the program, the not-yet-executed functions will be given out again by the

channel handler to the PLC.

After power-on, the state of acknowledge signals shall be initialized by the PLC

program (CP_MnACK=1).

CP_SACK: S function acknowledge

In case in the part program an S function has been programmed, the channel handler

will set the CN_SSTB flag for the period of 1 PLC cycle. Upon the strobe signal the

PLC

 – CP_SACK=0 will reset the S function acknowledge flag.

After the execution of the function the PLC

 – CP_SACK=1 will set the acknowledge flag.

Based on the status of the CP_SACK flags, the channel handler registers whether the S

function has been executed from the block under execution or not. By interrupting,

then restarting the program, the not-yet-executed S function will be given out again by

the channel handler to the PLC.

After power-on, the state of acknowledge signals shall be initialized by the PLC

program (CP_SACK=1).

337

7.15 Channel Control Variables

CP_TACK: T function acknowledge

In case in the part program a T function has been programmed, the channel handler

will set the CN_TSTB flag for the period of 1 PLC cycle. Upon the strobe signal the

PLC

 – CP_TACK=0 will reset the T function acknowledge flag.

After the execution of the function the PLC

 – CP_TACK=1 will set the acknowledge flag.

Based on the status of the CP_TACK flags, the channel handler registers whether the T

function has been executed from the block under execution or not. By interrupting,

then restarting the program, the not-yet-executed T function will be given out again by

the channel handler to the PLC.

After power-on, the state of acknowledge signals shall be initialized by the PLC

program (CP_TACK=1).

CP_AUX1ACK: Auxiliary function 1 acknowledge

CP_AUX2ACK: Auxiliary function 2 acknowledge

CP_AUX3ACK: Auxiliary function 3 acknowledge

In case in the part program an auxiliary function has been programmed, the channel

handler will set the CN_AUXnSTB flag, belonging to the auxiliary function, for a

period of 1 PLC cycle. Upon the strobe signal the PLC

 – CP_AUXnACK=0 resets the acknowledge flag of the appropriate auxiliary function.

After the execution of the function, the PLC

 – CP_AUXnACK=1 sets the appropriate acknowledge flag.

The channel handler, based on the status of CP_AUXnACK flags registers whether

from the block under execution it has executed the given auxiliary function or not. By

interrupting the program and then restarting it again the channel handler will issue the

not yet executed auxiliary functions to the PLC.

After power-on the state of acknowledge signals shall be initialized by the PLC

program (CP_AUXnACK=1).

CP_GACK: Not used

CP_HOLD: Feed-hold for all axes in the channel

If the PLC sets the flag, the channel handler unconditionally stops the movement of all

axes belonging to the channel.

It differs from the CP_STOP flag by the fact that while in the override and stop

disabled status (G63) the stop is ineffective, the CP_HOLD will be effective also in

such cases.

Due to the above, during thread cutting or tapping (G74, G84) at the shutdown of the

spindle CP_HOLD flag shall be used for stopping the feed-rate, respectively, the feed-

rate can be stopped through the CP_HOLD flag by shutting down the spindle.

338

7.15 Channel Control Variables

CP_CBFEN: Cutting block feed enable

The channel handler requests to enable of the feed-rate movement from the PLC by

setting the CN_CBFR=1 flag.

The feed-rate (movement) will not start until it is enabled by the PLC on the

CP_CBFEN=1 flag. The enable of the feed-rate can be linked to various conditions

from the PLC program’s side, for example, for spindle rotation on cutting machines,

for the switch-on of laser or flame on cutting machines, etc.

CP_FHNDL: Feed-rate from handwheel mode on

If CP_FHNDL flag is set during the execution of the program, the interpolator in the

given channel will not move according to the programmed feed-rate (G94, or G95 F),

but according to pulses arriving from the handwheel. The speed of the movement

depends on:

 – the size of increment selection

 – the speed of rotation of the handwheel.

By using the CP_HNDLSn flags it has to be selected which handwheel shall be used

by the channel.

The function can be used, e.g., on multi-channel machines for the collision test of

programs.

CP_OVC: Not used

CP_HNDLS1: Feed-rate from the 1. handwheel

CP_HNDLS2: Feed-rate from the 2. handwheel

CP_HNDLS3: Feed-rate from the 3. handwheel

CP_HNDLS4: Feed-rate from the 4. handwheel

In case the feed-rate from handwheel mode is switched on (CP_FHNDL=1) the

channel handler can determine on the above flags which one to use from among the 4

possible handwheels for the function, by setting the appropriate CP_HNDLSn flag.

CP_LIM1DIS: Stroke range 1 disable

CP_LIM2DIS: Stroke range 2 disable

CP_LIM3DIS: Stroke range 3 disable

In the control it is possible to specify 3 different stroke ranges per axis which can be

enabled on parameter bits the #0 RE1, #1 RE2, #2 RE3 of the N1000 Range Enable

parameter.

The PLC program, on all axes belonging to a given channel, may disable any of the 3

stroke ranges, by setting the appropriate CP_LIMnDIS flag.

L Attention! In such a case the control will not handle the disabled stroke range!

339

7.15 Channel Control Variables

CP_LIMSEL: 1B stroke range selection for all axes

It is a stroke range selection per channel from the PLC for every axis of the channel.

In case the

N1001 StrkCont parameter #4 ABA=1

in the given channel the CP_LIMSEL PLC flag will be effective. CP_LIMSEL flag

will tell that in the range No. 1 which stroke range parameter group

CP_LIMSEL=0: 1A,

CP_LIMSEL=1: 1B

shall be valid for all axes of the channel, in both directions.

The modification of the stroke range selection shall be carried out in a standstill status

of the axes.

L See also: AP_LIMSELP and AP_LIMSELN flags.

CP_CHOPON: Not used

CP_SGOEN: Use of second geometry offset table enabled

The flag is effective exclusively in a lathe channel.

On lathes using a linear turret, it is advisable to introduce a second geometry offset

table. The second geometry offset table has the same length as the first one. When

referencing to the geometry offset, values stored in the second geometry offset table, in

case of fulfilment of certain conditions, shall be added to the values stored in the first

table.

In the second geometry offset table the position of the tool holders in the machine

coordinate system can be determined for axes X, Y, Z. By this it becomes possible to

determine in the first geometry offset table the real X, Y, Z length of the tool, i.e., in

the first geometry table the values measured in an external tool measuring device can

be determined directly. Thus the offset value taken into consideration will be:

offset = 1. geometry offset + 2. geometry offset + wear offset

If the #4 SGC bit of the N1414 Comp. Config on Lathes parameter is:

 =0: the second geometry offset table does not exist and will not be displayed,

 =1: the second geometry offset table does exist, will be displayed and the taking into

consideration of offset values are controlled by PLC flags.

In case the CP_SGOEN second geometry offset table enable flag is

 =0 the channel handler will not take into consideration the second geometry offset,

 =1 the channel handler will take into consideration the second geometry offset

during the calling of the offset by code T.

See also the CP_SGOX, CP_SGOY, CP_SGOZ flags.

The CP_SGOEN can be used if, for example, in a lathe channel where there is also a

rotary and linear turret, and it is not necessary to call the 2. geometry offset for tools

being in the rotary turret, but it is necessary for the tools in the linear one.

340

7.15 Channel Control Variables

CP_SGOX: Second geometry tool offset selection on axis X

CP_SGOY: Second geometry tool offset selection on axis Y

CP_SGOZ: Second geometry tool offset selection on axis Z

If the use of the 2. geometry offset is enabled CP_SGOEN=1 in the channel, on axes

X, Y, Z of the channel their use can be separately enabled:

 CP_SGOX=1 on axis X,

 CP_SGOY=1 on axis Y,

 CP_SGOZ=1 on axis Z

enables the use of the 2. geometry offset.

See also the CP_OSGNX, CP_OSGNY, CP_OSGNZ flags.

CP_OSGNX: Tool offset direction selection signal on axis X

CP_OSGNY: Tool offset direction selection signal on axis Y

CP_OSGNZ: Tool offset direction selection signal on axis Z

If the use of the 2. geometry offset is enabled in the channel CP_SGOEN=1 and also

on the given axis by flags CP_SGOX, CP_SGOY, CP_SGOZ, then we can control the

sign (direction) of compensation amount, per channel:

the offset will be taken into consideration

 CP_OSGNX=1 on axis X with an opposite sign,

 CP_OSGNY=1 on axis Y with an opposite sign,

 CP_OSGNZ=1 on axis Z with an opposite sign

offset = !(1. geometry offset + 2. geometry offset + wear offset)

It can be used if the direction of any of the tools mounted on the axis is the same as the

positive direction of the axis.

CP_ROVLD: Overlapping of rapid traverse blocks disable

The flag can be used if the overlapping of rapid traverse blocks is enabled on the bit #0

ROL of parameter N0407 Acc Contr.

In case the overlapping has to be disabled in certain cases, the PLC program can do

that by setting CP_ROVLD=1 flag.

CP_RLSOT3: Not used

CP_1000: #1000 macro variable (bit)

CP_1001: #1001 macro variable (bit)

CP_1002: #1002 macro variable (bit)

CP_1003: #1003 macro variable (bit)

CP_1004: #1004 macro variable (bit)

CP_1005: #1005 macro variable (bit)

341

7.15 Channel Control Variables

CP_1006: #1006 macro variable (bit)

CP_1007: #1007 macro variable (bit)

CP_1008: #1008 macro variable (bit)

CP_1009: #1009 macro variable (bit)

CP_1010: #1010 macro variable (bit)

CP_1011: #1011 macro variable (bit)

CP_1012: #1012 macro variable (bit)

CP_1013: #1013 macro variable (bit)

CP_1014: #1014 macro variable (bit)

CP_1015: #1015 macro variable (bit)

CP_1016: #1016 macro variable (bit)

CP_1017: #1017 macro variable (bit)

CP_1018: #1018 macro variable (bit)

CP_1019: #1019 macro variable (bit)

CP_1020: #1020 macro variable (bit)

CP_1021: #1021 macro variable (bit)

CP_1022: #1022 macro variable (bit)

CP_1023: #1023 macro variable (bit)

CP_1024: #1024 macro variable (bit)

CP_1025: #1025 macro variable (bit)

CP_1026: #1026 macro variable (bit)

CP_1027: #1027 macro variable (bit)

CP_1028: #1028 macro variable (bit)

CP_1029: #1029 macro variable (bit)

CP_1030: #1030 macro variable (bit)

CP_1031: #1031 macro variable (bit)

The user may query 32 PLC flags from the part program through macro variables. The

macro variables, available for the user per each channel for the communication with

the PLC are: #1000, #1001, ..., #1031.

For example, if the instruction

#1025EQ1 GOTO30

written into the part program will jump on the block N30, if CP_1025 flag is 1.

342

7.15 Channel Control Variables

7.15.2 DWORD-type Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_1 Channel control bits handed over

from NC to PLC DWORD1

CP_1 Channel control bits handed over

from PLC to NC DWORD1

CN_2 Channel control bits handed over

from NC to PLC DWORD2

CP_2 Channel control bits handed over

from PLC to NC DWORD2

CN_3 Channel control bits handed over

from NC to PLC DWORD3

CP_3 Channel control bits handed over

from PLC to NC DWORD3

CN_1132 #1132 macro variable value

(DWORD)

CP_4 Channel control bits handed over

from PLC to NC DWORD4

CN_M1C Code of M function 1 (DWORD) CP_JOGFD Jog feed-rate selection (DWORD)

CN_M2C Code of M function 2 (DWORD) CP_SINP Number of spindle machining

(1,2...) (DWORD)

CN_M3C Code of M function 3 (DWORD) CP_CSAX Not used

CN_M4C Code of M function 4 (DWORD) CP_POLYSL Number of slave spindle of poly-

gonal turning (1,2...) (DWORD)

CN_M5C Code of M function 5 (DWORD) CP_ACTT Number of the current tool

(DWORD)

CN_M6C Code of M function 6 (DWORD) CP_MGR1 M code in group 1 to be displayed

(DWORD)

CN_M7C Code of M function 7 (DWORD) CP_MGR2 M code in group 2 to be displayed

(DWORD)

CN_M8C Code of M function 8 (DWORD) CP_MGR3 M code in group 3 to be displayed

(DWORD)

CN_SC Code of S function (DWORD) CP_MGR4 M code in group 4 to be displayed

(DWORD)

CN_SSEL Number of spindle to which S code

refers (DWORD)

CP_MGR5 M code in group 5 to be displayed

(DWORD)

CN_RNGREQ Number of range belonging to code

S (DWORD)

CP_MGR6 M code in group 6 to be displayed

(DWORD)

CN_TC Code of T function (DWORD) CP_MGR7 M code in group 7 to be displayed

(DWORD)

CN_AUX1C Code of auxiliary function 1

(DWORD)

CP_MGR8 M code in group 8 to be displayed

(DWORD)

CN_AUX2C Code of auxiliary function 2

(DWORD)

CP_MGR9 M code group 9 to be displayed

(DWORD)

CN_AUX3C Code of auxiliary function 3

(DWORD)

CP_MGR10 M code group 10 to be displayed

(DWORD)

CN_CTSPN Spindle speed in case of G96

(DWORD)

CP_MGR11 M code in group 11 to be

displayed (DWORD)

343

7.15 Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_NMAX Value of the maximum spindle

speed in case of G96 (G92 S_)

(DWORD)

CP_MGR12 M code in group 12 to be

displayed (DWORD)

CN_MGZNO Number of magazine belonging to

the T code (DWORD)

CP_MGR13 M code in group 13 to be

displayed (DWORD)

CN_POTNO Pot number belonging to the T

code (DWORD)

CP_MGR14 M code in group 14 to be

displayed (DWORD)

CP_MGR15 M code in group 15 to be

displayed (DWORD)

CP_MGR16 M code in group 16 to be

displayed (DWORD)

CP_1032 #1032 macro variable (DWORD)

CP_OFFSNO Number of offset to be used at tool

measurement (DWORD)

DWORD-type channel control variables going from the NC to PLC

CN_1132: #1132 macro variable value (DWORD)

The user may set or reset macro variables #1100, #1101, ..., #1131 from a part

program. These PLC flags may be written also in a DWORD format through the #1132

macro variable.

Instruction

#1132=130=2 + 27 1

sets the flags CN_1101=1 and CN_1107=1.

In the same way, the PLC may make a query in a DWORD format on the CN_1100,

CN_1101, ... CN_1131 bits through the CN_1132 variable.

CN_M1C: Code of M function 1 (DWORD)

CN_M2C: Code of M function 2 (DWORD)

CN_M3C: Code of M function 3 (DWORD)

CN_M4C: Code of M function 4 (DWORD)

CN_M5C: Code of M function 5 (DWORD)

CN_M6C: Code of M function 6 (DWORD)

CN_M7C: Code of M function 7 (DWORD)

CN_M8C: Code of M function 8 (DWORD)

In a part program we can write a maximum of 8 different M codes into a block, i.e. in a

block 8 different M codes can be handed over by the NC to the PLC.

In case into the part program an M function has been programmed, the channel handler

 – will write the value of the M code into the CN_MnC (n=1, 2, ..., 8) register

344

7.15 Channel Control Variables

 – the CN_MnSTB strobe signal will be set by the NC for the period of 1 PLC cycle.

The values of the 8 different M codes the control writes into 8 different CN_MnC

(n=1, 2, ..., 8) registers. There are 8 strobe signals belonging to the 8 code registers

CN_MnSTB (n=1, 2, ...8). Upon the strobe signal, based on the received code, the

function is decoded by the PLC.

If the received code covers a function existing on the machine, the PLC will reset the

CP_MnACK acknowledge flag corresponding to the strobe signal. It is enabled to set

the CP_MnACK acknowledge flag exclusively after the full execution of the function.

CN_SC: Code of S function (DWORD)

In case in the part program an S function has been programmed, the channel handler

 – will write the value of the spindle speed programmed on the S function to the

CN_SC register,

 – will write into the CN_SSEL register the number of the referred spindle (1...16)

 – will write into the CN_RNGREQ register the code of the range belonging to the

programmed spindle speed (11...18),

 – then it will set the CN_SSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

it will reset the CP_SACK acknowledge signal. It is enabled to set the CP_SACK

acknowledge flag only after the full execution of the function.

The code received in the CN_SC register shall be written into the SP_PRG register of

the spindle appointed by the CN_SSEL register during the execution of the function.

CN_SSEL: Number of spindle to which S code refers (DWORD)

In case in the part program an S function has been programmed, the channel handler

 – will write the value of the spindle speed programmed on the S function to the

CN_SC register,

 – will write into the CN_SSEL register the number of the referred spindle (1...16)

 – will write into the CN_RNGREQ register the code of the range belonging to the

programmed spindle speed (11...18),

 – then it will set the CN_SSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

it will reset the CP_SACK acknowledge signal. It is enabled to set the CP_SACK

acknowledge flag only after the full execution of the function.

The channel handler sets the number of spindle set in the CN_SSEL register according

to the reference made in the part program.

We can refer to the spindles from a part program under address S, or in case of an

extended name, under an S+2-character address. In case of a reference under a

extended address we can determine the 2 and 3 character of the address on thend rd

N0605 Spindle Name2 and N0606 Spindle Name3 parameters. The first character is

345

7.15 Channel Control Variables

always and mandatorily S. In case the last character is a number, during data input we

have to use an = mark.

If there are several spindles on the machine and we do not want to use extended

addresses, we can refer to a given spindle under addresses’ S and P, where on S we

determine the spindle speed, and on P the number of the spindle to which the S code

refers.

The channel handler, based on the programmed Sxx, or Ss Pp code determines to

which spindle the reference has been made in the part program, and it will write the

number of the referred spindle to the CN_SSEL register.

In case of using extended addresses, let’s say the address of the 3 spindle is S3.rd

In case of programming S3=1000,

the handover registers of the appropriate channel will receive the following data:

CN_SC=1000

CN_SSEL=3

In case of referring to addresses S and P the above reference is:

S1000 P3

The same values will get into the handover registers.

On the N0604 Default Spindle parameter we can appoint a spindle per channel, to

which we can refer under address S. If e.g. the parameter value is 2, we can refer to the

2 spindle both under address S2 and S. In both cases CN_SSEL=2 will be handednd

over by the channel handler.

The PLC program issues all commands to the spindle determined in the CN_SSEL

register

 – M3, M4, M5 and M19,

 – the loop closing command set on the N0823 M Code for Closing S Loop parameter,

 – the synchronization command referring to the slave spindle (M code),

 – and the M code serving for the selection of slave spindle of polygonal turning.

At the same time several spindles can be rotated in a channel from the program. In

such cases let’s write:

N10 S1=1000 M3

N20 S2=1500 M4

If a spindle has to be stopped from a program, let’s write:

N100 S1=0 M5

N110 S2=0 M5

CN_RNGREQ: Number of range belonging to code S (DWORD)

In case in the part program an S function has been programmed, the channel handler

– will write the value of the spindle speed programmed on the S function to the

CN_SC register,

 – will write into the CN_SSEL register the number of the referred spindle (1...16)

346

7.15 Channel Control Variables

 – will write into the CN_RNGREQ register the code of the range belonging to the

programmed spindle speed (11...18),

 – then it will set the CN_SSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

it will reset the CP_SACK acknowledge signal. It is enabled to set the CP_SACK

acknowledge flag only after the full execution of the function.

The channel handler decodes the range of the given spindle into which the

programmed spindle speed falls in:

 – In case the speeds between the ranges overlap each other, as usually on lathes, the

CN_RNGREQ register cannot be used (a decoding is carried out in such a case,

too). In such a case the range change shall be selected by an M code

(mandatorily to M11, M12, ..., M18), in order to enable the user to decide

which will be the optimum range of cutting.

 – In case the speeds between the ranges do not overlap each other, as usually on

milling machines, the CN_RNGREQ register can be used.

In such a case the range change can be carried out in a PLC program without

programming separate M functions, it is not necessary to introduce M functions.

The channel handler will decode the CN_RNGREQ register in the following way:

 If S#N0650 R1 S Max parameter value: then CN_RNGREQ=11,

 if S#N0651 R2 S Max parameter value: then CN_RNGREQ=12,

and so on.

CN_TC: Code of T function (DWORD)

In case in the part program a T function has been programmed, the channel handler

 – will write into the CN_TC register the number of the tool programmed on the T

function, in a lathe channel cutting down the offset number called under

address T,

 – will write into the CN_MGZNO register, in which magazine can the referred tool be

found,

 – will write into the CN_POTNO register, in which pot of the given magazine can the

referred tool be found,

 – will check whether the life of the referred tool or tool group has expired or not and it

will set the CN_TLLE flag accordingly,

 – then it will set the CN_TSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

it will reset the CP_TACK acknowledge signal. It is enabled to set the CP_TACK

acknowledge signal only after the full execution of the function.

Into the CN_TC register always the number (type number) of tool referred to in the

part program shall be written, even if in case of using the tool management table, when

there can be more tools with the same type number in the magazine. In such a case the

347

7.15 Channel Control Variables

position of the tool to be changed can be read out from CN_MGZNO and CN_POTNO

registers.

CN_AUX1C: Code of auxiliary function 1 (DWORD)

CN_AUX2C: Code of auxiliary function 2 (DWORD)

CN_AUX3C: Code of auxiliary function 3 (DWORD)

On the N1332+n Aux Fu Addrn (n=1..3) parameter it is possible to appoint three

different ones from among the A, B, C, U, V, W addresses. In case in a part program,

we refer to the address of the three auxiliary functions determined here, the channel

handler

 – will write the value programmed under the address of the auxiliary function into the

CN_AUXnC (n=1...3) register (always an integer DWORD),

 – then it will set the CN_AUXnSTB (n=1...3) flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC decodes the codes written into the above registers and

it resets the CP_AUXnACK (n=1...3) acknowledge signal. It is enabled to set the

CP_AUXnACK acknowledge flag only after the full execution of the function.

CN_CTSPN: Spindle speed in case of G96 (DWORD)

In case the channel is in a G96 (constant surface speed calculation) status,

 – the NC will set the CN_CSURF flag,

 – the NC will calculate the spindle speed belonging to the instantaneous coordinate

and write it into the CN_CTSPN register,

 – it will write the maximum spindle speed programmed by the G92 S instruction into

the CN_NMAX register.

The task of the PLC program is to copy the value received in the CN_CTSPN register

into the SP_PRG register of the appropriate (determined by the CP_SINP register)

spindle in the CN_CSURF=1 status.

CN_NMAX: Value of the maximum spindle speed in case of G96 (G92 S_) (DWORD)

If the channel is in a G96 (constant surface speed calculation) status,

 – the NC will set the CN_CSURF flag,

 – the NC will calculate the spindle speed belonging to the instantaneous coordinate

and write it into the CN_CTSPN register,

 – it will write the maximum spindle speed programmed by the G92 S instruction into

the CN_NMAX register.

The PLC programmer needn’t cut the value written into SP_PRG register with the

value in CN_NMAX register, it will be done by the spindle control before outputting

the command signal.

348

7.15 Channel Control Variables

CN_MGZNO: Number of magazine belonging to T code (DWORD)

CN_POTNO: Pot number belonging to T code (DWORD)

In case in the part program a T function has been programmed, the channel handler

 – will write the number of tool programmed on the T function into the CN_TC

register, in a lathe channel by cutting down the offset number called under

address T,

 – it will write into the CN_MGZNO register, in which magazine can the referred tool

be found,

 – it will write into the CN_POTNO register, in which pot of the given magazine can

the referred tool be found,

 – it will check whether the life of the referred tool or tool group has expired or not and

it will set the CN_TLLE flag accordingly,

 – then it will set the CN_TSTB flag for the period of 1 PLC cycle.

Upon the strobe signal, the PLC will decode the codes written into the above registers

and it will reset the CP_TACK acknowledge signal. It is enabled to set the CP_TACK

acknowledge signal only after the full execution of the function.

In case the N2900 Tool M. Config parameter’s #0 TMU=1 bit is set on the machine,

the tool management table is operating. In such a case the CN_MGZNO and

CN_POTNO registers shall be handled!

The tool management function shall be set up in the below cases on the control:

 – if we would like to apply life management on the tools,

 – if we would like to refer to the tools stored in the magazine from the part program

not based on pot codes but tool codes,

 – if the tool change applied on the machine requests a random tool pot management.

Into the tool management table we can write in the T codes of tools applied, i.e. their

type numbers, to which we refer in the part program.

In case there are more tools in the cartridge which are doing the same machining

operations and we want to use life management for these tools, we have to register

these tools with the same type number in the table. In a part program, under address T

we have to refer to the type number and the tool management will decide which tool

with the same type number will it apply. Usually it applies the tool with the lowest but

not-yet-expired tool life. The tool management table is common, i.e., it is common for

all channels.

The tool management handles a maximum of 4 magazines. Besides this, any spindle

on the machine tool, into which a tool may be clamped, can be defined as a spindle

magazine on the N2922 Spindle Magazines parameter. To the spindle magazines, on

the previous parameter, we can define a standby magazine for the storage of tools

being in the changer arm.

Into the CN_TC register always the number of the tool referred to in the part program

(type number) will be entered, even if using the tool management table, when there can

be several tools with the same type number in the magazine.

349

7.15 Channel Control Variables

In case of using a tool management table, the tool management will write into the

 C N _MGZNO register, that in which magazine can the referred tool be found,

respectively, into the

 CN_POTNO register, in which pot of the given magazine can the tool be found.

Interpretation of the CN_MGZN register:

 Meaning of CN_MGZN=0: the referred tool cannot be found in any of the magazines,

 Meaning of CN_MGZN=1, 2, 3, 4: the tool is in one of the 1., 2., 3., 4. magazines,

 Meaning of CN_MGZN=10, 20, 30, ... : the tool is in one of the 1., 2., 3., ... spindles,

 Meaning of CN_MGZN=11, 21, 31, ... : the tool can be found in the standby

magazine (changer arm) belonging to the 1., 2., 3., ... spindle.

Interpretation of the CN_POTNO register:

 If CN_MGZN=0, it does not have any meaning,

 if CN_MGZN=1, 2, 3, 4, then CN_POTNO=1, 2, 3, ... in the Tool Management para-

meter group the value set on the length of the given magazine,

 if CN_MGZN=10, 20, 30, ..., then CN_POTNO=1, (it is in 1., 2., 3., ... spindle)

 if CN_MGZN=11, 21, 31, ..., then CN_POTNO=1. (It is in the arm belonging to 1, 2,

3, ... spindle).

350

7.15 Channel Control Variables

DWORD-type channel control variables going from the PLC to NC

CP_JOGFD: Jog feed-rate selection (DWORD)

In case on the N0316 Jog F Contr parameter the JFT option is selected (the parameter

value is 1), in jog mode the feed-rate value is set by the channel handler based on the

CP_JOGFD PLC register value, according to an exponential function. The feed-rate is

issued always in the 1/min units.

The value of the CP_JOGFD register shall be linked to the status of the override

switch. In case of an NCT machine control panel, to the value of the MKFOVER

register.

The below table, depending on the value of the CP_JOGFD register shows the feed-

rate values from 0 to 15, if the JFT parameter is set. Upon higher CP_JOGFD values

the row will continue.

CP_JOGFD
G21

mm/min

G20

in/min

rotary axis

E/min

0 0 0 0

1 2 0.08 0.4

2 3.2 0.12 0.64

3 5 0.2 1

4 7.9 0.3 1.58

5 12.6 0.5 2.52

6 20 0.8 4

7 32 1.2 6.4

8 50 2 10

9 79 3 15.8

10 126 5 25.2

11 200 8 40

12 320 12 64

13 500 20 100

14 790 30 158

15 1260 50 252

CP_SINP: Number of spindle machining (1,2...) (DWORD)

The PLC program has to assign the number of active the spindle carrying out the

machining in the CP_SINP register per channel: CP_SINP=1, 2, 3, ...

The channel handler takes the encoder pulses from the encoder of the spindle

machining

 – in case of G95 feed-rate per revolution,

 – during G33 thread cutting,

 – in case of G84.2, G84.3 rigid tapping it waits from the active spindle for the

SN_LPCLSD loop closed signal and it will tap with the active spindle,

351

7.15 Channel Control Variables

 – in case of G51.2 polygon turning the master spindle will always be the active

spindle, respectively

The PLC program

 – will always enable the feed-rate in a cutting block based on the rotation status of the

spindle machining determined in the CP_SINP register, by the CP_CBFEN

flag,

 – in case of G96 constant surface speed control, in a CN_CSURF=1 status it will copy

the value received in the CN_CTSPN register to the SP_PRG register of the

spindle machining determined by the appropriate CP_SINP register.

The same spindle may be assigned to several channels. For instance, on a 2 path lathe,

by assigning the left-side spindle to both channels, on the same workpiece it is possible

for both paths to work with a feed-rate per revolution. The programer of the part may

decide to which channel’s axis X shall the constant surface speed calculated by the

control (it has to program the G96 code in the necessary channel).

The machine tool builder can decide how to select the spindle machining. The

appointment of the active spindle may be determined by using M codes. For example:

 M31 code S1 is active,

 M32 code S2 is active, etc.

L Attention! The M function appointing the active spindle shall be a buffer suppressing

function, as the execution of the code has an effect on the preparation of the blocks.

CP_CSAX: Not used

CP_POLYSL: Number of slave spindle of polygonal turning (1,2...) (DWORD)

In the CP_POLYSL register one shall write per channel the number of the spindle

which will be the slave spindle of polygonal turning, i.e. in which the tool will rotate.

The master spindle of the polygonal turning will be appointed by the CP_SINP

register.

Before issuing the G51.2 polygonal turning command, by an M function the PLC

program

 – has to select the slave spindle by determining the CP_POLYSL register

 – the spindle control SP_SEN=1 shall be enabled

 – the spindle drive has to be switched on.

CP_ACTT: Number of the current tool (DWORD)

In case the N2901 Search Config parameter’s #7 TSP bit is 0, the displaying of the

current tool number in the FST window will be carried out from the CP_ACTT

register, indexed per channel.

The PLC program will write here the number of the exchanged tool.

CP_MGR1: M code in group 1 to be displayed (DWORD)

352

7.15 Channel Control Variables

CP_MGR2: M code in group 2 to be displayed (DWORD)

CP_MGR3: M code in group 3 to be displayed (DWORD)

CP_MGR4: M code in group 4 to be displayed (DWORD)

CP_MGR5: M code in group 5 to be displayed (DWORD)

CP_MGR6: M code in group 6 to be displayed (DWORD)

CP_MGR7: M code in group 7 to be displayed (DWORD)

CP_MGR8: M code in group 8 to be displayed (DWORD)

CP_MGR9: M code in group 9 to be displayed (DWORD)

CP_MGR10: M code in group 10 to be displayed (DWORD)

CP_MGR11: M code in group 11 to be displayed (DWORD)

CP_MGR12: M code in group 12 to be displayed (DWORD)

CP_MGR13: M code in group 13 to be displayed (DWORD)

CP_MGR14: M code in group 14 to be displayed (DWORD)

CP_MGR15: M code in group 15 to be displayed (DWORD)

CP_MGR16: M code in group 16 to be displayed (DWORD)

On the N1341 M GR Low 1, ..., N1356 M GR Low 16 and the N1357 M GR High 1,

..., N1372 M GR High 16 parameters 16 different M code groups can be specified. On

the parameter marked as Low the lowest-number code of the group shall be written, -

and on the High the highest-number code of the group shall be written.

The parameters shall be set in a way that the codes in an M code group should

represent each other excluding functions.

The block reader filters the M codes in a way that from among M codes belonging to

the same group only one can be in the given block, otherwise it will issue a

Contradictory M-codes error message.

The values set on the parameter are taken into consideration by the control also during

the search for a block, by listing M codes. From among M codes belonging to the same

group it will list only the code determined for the last time. Let’s take a look on the

following M codes:

M51: chuck clamp on spindle S1

M52: chuck unclamp on spindle S1

M53: chuck unclamp on spindle S1 when it is rotating

Let’s set the parameter in the following way:

N1341 M GR Low 1=51

N1357 M GR High 1=53

Clamping status:

M54: clamping S1 inward

M55: clamping S1 outward

The parameters:

N1342 M GR Low 2=54

N1358 M GR High 2=55

353

7.15 Channel Control Variables

During block search, from among the M51, M52, M53 codes it will sort out only the

one programmed as the last one and it will have it executed by the operator. The same

applies to the M54, M55 group, too. From among the appropriate machine statuses,

only one will be written out in the CP_MGR1, 2 registers, e.g. after the clamping of

the chuck the content of registers:

CP_MGR1=51 – chuck clamped on spindle S1 and

CP_MGR2=54 – clamped inward on spindle S1.

The M GR Low n, M GR High n pair corresponds to the CP_MGRn register. The

beginning and ending number of those M code groups shall be written on the

parameters which are written by the PLC program

 – to the CP_MGR1, ..., CP_MGR16 registers, and which become displayed in the M

codes window.

CP_1032: #1032 macro variable (DWORD)

The user may make queries on PLC flags from the part program through macro

variables. Per every channel, altogether 32 bits are available for the user for the

communication with the PLC: #1000, #1001, ..., #1031. These variables may be

queried also in a double-word format through the #1032 macro variable.

For instance, the command

IF #1032EQ16 GOTO30

written into the part program, will jump on the N30 block, if the #1004=1 (CP_1004

flag is true), the others are false.

CP_OFFSNO: Number of offset to be used at tool measurement (DWORD)

During manual measurement of tool length/work zero offset with a setter, the offset

number where the tool length compensation value is written/from where the length

compensation is taken to calculate the work offset, in case the value of the N3016

Tool/WP Setter Config parameter’s #0 ONS bit is:

 =0: the operator selects it manually on the control panel,

 =1: the PLC selects it in the CP_OFFSNO register.

For example, if the operator wishes to measure the tools in a way that the offset

number is the same as the number of the tool (e.g. T1212), the PLC program will write

into the CP_OFFSNO register the number of the current tool. Thus, after the tool

exchange, the measuring window will jump to the offset with the number equals to the

current tool, it is not necessary to select manually the offset number to be measured.

354

7.15 Channel Control Variables

7.15.3 Double-type Channel Control Variables

Inputs Outputs

Symbol Description Symbol Description

CN_1133 #1133 macro variable value (double) CP_INC Size of step in incremental jog and

handwheel mode (double)

CN_1134 #1134 macro variable value (double) CP_FOVER Feed-rate override: if =1: 100%

(double)

CN_1135 #1135 macro variable value (double) CP_ROVER Rapid traverse override: if =1:

100% (double)

CN_GC Not used CP_COV Not used

CN_G1DAT Not used CP_1033 #1033 macro variable (double)

CN_G2DAT Not used CP_1034 #1034 macro variable (double)

CN_G3DAT Not used CP_1035 #1035 macro variable (double)

Double-type channel control variables going from NC to PLC

CN_1133: #1133 macro variable value (double)

CN_1134: #1134 macro variable value (double)

CN_1135: #1135 macro variable value (double)

From a part program, the user, by giving values to #1133, #1134, #1135 macro

variables may hand over floating-point data to the PLC program per channel. These

data can be read out by the PLC program directly from the CN_1133, CN_1134,

CN_1135 registers.

The command

#1134=167.832

written into the part program writes the number 167.832 to the CN_1134 PLC register.

CN_GC: Not used

CN_G1DAT: Not used

CN_G2DAT: Not used

CN_G3DAT: Not used

355

7.15 Channel Control Variables

Double-type channel control variables going from PLC to NC

CP_INC: Size of step in incremental jog and handwheel mode (double)

In incremental jog (CN_INCR=1), handwheel (CN_HNDL=1) and feed-rate from

handwheel modes (CP_FHNDL=1) the size of step shall be written into the CP_INC

register per channel in floating-point format.

The selection of the step size, in case of an NCT machine control panel is carried out

from the

MB_I1, MB_I10, MB_I100, MB_I1000 buttons.

The selection of the step size, in case of an NCT external handwheel is carried out

from the

HB_I1, HB_I10, HB_I100, HB_I1000

flags.

Into the CP_INC register always a floating-point number shall be written. The unit of

the number to be written in is determined by the #0 IND bit of the N0104 Unit of

Measure parameter, which shows the output unit. (The unit in which the position

measurement is carried out.)

If CP_INC=0.01 and

 IND=0: CP_INC=0.01 means 0.01 mm

 IND=1: CP_INC=0.01 means 0.01 inch

Depending on the input unit applied in the control the data shall be converted. For the

conversion the CN_INCH flag can be used. If the flag

 CN_INCH= 0: a G21 metric data input

 CN_INCH=1: a G20 inch data input

is valid.

For example when the button MB_I10 (0.01) has been pushed:

 – in case of IND=0 (metric measurement) CN_INCH=0 (G21 metric data input) a

 CP_INC=0.01 (step size 0.01 mm) shall be written

 – in case of IND=0 (metric measurement) CN_INCH=1 (G20 inch data input)

a CP_INC=0.0254 (step size 0.0254 mm = 0.0254/25.4 = 0.01 inch) shall be

written.

CP_FOVER: Feed-rate override: if =1: 100% (double)

It is the feedrate override value per channel. A floating-point number. If, for example

CP_FOVER=1.0 means 100%

CP_FOVER=1.427 means 142.7%

In case of using an NCT machine control panel, the status of the override switch shall

be taken from the MKFOVER register.

The upper limit of the feed-rate override shall be set in the PLC program!

356

7.15 Channel Control Variables

L Attention! MKFOVER is of an integer DWORD type, CP_FOVER is of a floating-point

double, thus the setting of the override requires a conversion from integer to floating-

point (FLT instruction). The indexation of CP_FOVER happens two-by-two!

CP_ROVER: Rapid traverse override: if =1: 100% (double)

It is the value of the rapid override per channel. It is a floating-point number. If e.g.

CP_ROVER=0.272 means 27.2%

CP_ROVER=1.0 means 100%

In case of using an NCT machine control panel, the value of the rapid override can be

taken also from the MKFOVER register.

The upper limit of the rapid override is 100%, and the channel handler will not let it

further than this!

L Attention! The MKFOVER is of an integer DWORD type, CP_ROVER is a floating-point

double, thus the setting of the override requires a conversion from integer to floating-

point (FLT instruction). The indexation of CP_ROVER happens two-by-two!

CP_COV: Not used

CP_1033: #1033 macro variable (double)

CP_1034: #1034 macro variable (double)

CP_1035: #1035 macro variable (double)

The PLC program, by writing into the CP_1033, CP_1034, CP_1035 registers may

hand over floating-point data directly to the part program. The part program may use

the data through #1033, #1034, #1035 macro variables.

The instruction

#100=#1134

written into the part program writes the floating-point number written into the

CP_1134 PLC register to the #100 macro variable.

357

Index in alphabetical order

Index in Alphabetical Order:

. (dot). 15

, (comma). 13, 18

: (colon). 17

!. 24

+F. 76

-F. 77

*. 25

*F. 78

/F. 79

%. 23

#. 24, 25

#$. 25

@. 23

ACOS.. 86

ActPosAx. 118

ActPosSp. 120

ADD.. 71

ALR. 102

ALRF. 102

AN_AXALM. 279

AN_BEPTY. 282

AN_DETCHA. 278

AN_EGBS. 281

AN_GOA. 283

AN_IEPTY.. 283

AN_INDP.. 282

AN_INPOS. 279

AN_LUBR. 279

AN_MIRA. 283

AN_MIXA. 281

AN_MIXM.. 282

AN_MTNRN. 279

AN_MTNRP. 279

AN_OPNA.. 278

AN_OTN. 280

AN_OTP. 280

AN_PARKA. 281

AN_PLCA. 282

AN_RAPR. 279

AN_REFEND. 280

AN_REFP1. 280

AN_REFP2. 280

AN_REFP3. 280

AN_REFP4. 280

AN_RPE. 280

AN_SPRPNA.. 281

AN_SPRPNM. 282

AN_SYNCA. 281

AN_SYNCM. 282

AND.. 67

ANINPUTS. 245, 246

AP_DECSW. 286

AP_DETCHR. 284

AP_DIARAD.. 291

AP_DISPD. 288

AP_EFD.. 292

AP_END. 285

AP_FEEDD. 291

AP_FLWU. 285

AP_GOR. 292

AP_JOGN. 286

AP_JOGP.. 286

AP_LCK. 287

AP_LIMN. 287

AP_LIMP. 287

AP_LIMSELN. 287

AP_LIMSELP. 287

AP_MIRR. 293

AP_MIXR. 289

AP_MTNDN. 286

AP_MTNDP. 286

AP_OPNR. 285

AP_PARKR. 288

AP_PLCR. 292

AP_RAPD. 286

AP_RES. 292

358

Index in Alphabetical Order

AP_RPE. 293

AP_SPRPNR. 290

AP_SSLOP. 291

AP_SYNCR. 288

ARTL. 63

ARTR. 63

ASHL. 61

ASHR. 61

ASIN.. 85

ATAN. 87

AxesTime. 121

base address. 13

BCD. 92

BIN. 91

byte. 12

CANErr.. 121

CEQ. 98

CGE. 98

CGT. 98

ChannelsTime.. 121

CLE.. 98

closed contact. 32, 33

closing element. 41

CLT.. 98

CMP. 97

CN_1100.. 328

CN_1101.. 328

CN_1102.. 328

CN_1103.. 328

CN_1104.. 328

CN_1105.. 328

CN_1106.. 328

CN_1107.. 328

CN_1108.. 328

CN_1109.. 328

CN_1110.. 328

CN_1111.. 328

CN_1112.. 328

CN_1113.. 328

CN_1114.. 328

CN_1115.. 328

CN_1116.. 328

CN_1117.. 328

CN_1118.. 328

CN_1119.. 328

CN_1120.. 328

CN_1121.. 328

CN_1122.. 328

CN_1123.. 328

CN_1124.. 328

CN_1125.. 328

CN_1126.. 328

CN_1127.. 328

CN_1128.. 328

CN_1129.. 328

CN_1130.. 328

CN_1131.. 328

CN_1132.. 344

CN_1133.. 355

CN_1134.. 355

CN_1135.. 355

CN_ABSOFF. 325

CN_AHND. 327

CN_ALRM. 316

CN_AUTO. 322

CN_AUX1C. 348

CN_AUX1STB.. 316

CN_AUX2C. 348

CN_AUX2STB.. 316

CN_AUX3C. 348

CN_AUX3STB.. 316

CN_BKBUF. 316

CN_BKRET. 326

CN_BKRST. 326

CN_CBFR. 319

CN_CHARP. 321

CN_CHOP. 321

CN_CSACK. 318

CN_CSURFS. 317

CN_CTSPN. 348

CN_DRRUN.. 326

CN_DWELL.. 320

359

Index in alphabetical order

CN_EDIT. 322

CN_EGBMD. 318

CN_FLCK. 322

CN_FREV. 320

CN_G1DAT.. 355

CN_G2DAT.. 355

CN_G3DAT.. 355

CN_GC. 355

CN_GSTB. 316

CN_HNDL. 322

CN_HSHP. 318

CN_INCH. 318

CN_INCR. 322

CN_INTD.. 317

CN_IPEPTY. 319

CN_IPSTP. 319

CN_ITFALM. 317

CN_ITFCHK. 317

CN_JOG.. 322

CN_M1C. 344

CN_M1STB. 315

CN_M2C. 344

CN_M2STB. 315

CN_M3C. 344

CN_M3STB. 315

CN_M4C. 344

CN_M4STB. 315

CN_M5C. 344

CN_M5STB. 315

CN_M6C. 344

CN_M6STB. 315

CN_M7C. 344

CN_M7STB. 315

CN_M8C. 344

CN_M8STB. 315

CN_MDI. 322

CN_MGZNO. 349

CN_MLCK. 325

CN_NMAX. 348

CN_OPMES.. 317

CN_OVDIS. 319

CN_POLYT. 318

CN_POSCHK. 320

CN_POTNO.. 349

CN_REFP. 322

CN_REFPG. 320

CN_RNGREQ. 346

CN_RTAP. 320

CN_RTRFIN. 318

CN_SC. 345

CN_SKIP. 320

CN_SSEL.. 345

CN_SSTB. 315

CN_START. 321

CN_STOP. 321

CN_STPREQ. 316

CN_TAP. 320

CN_TAXF. 322

CN_TBLB. 324

CN_TC.. 347

CN_TEST. 325

CN_THRD. 319

CN_THRDC. 320

CN_TLLE. 321

CN_TRGAF.. 323

CN_TSTB. 316

CN_TTCRF. 324

CN_WMCAXF. 327

CN_WPCNT. 318

CN_WTNG. 317

CNCBufferCount. 121

CNE. 98

CNT. 52, 54

column. 41

CommandAx. 118

CommandSp.. 120

comment.. 42

CompenValAx. 119

ComPosAx. 117

ComPosSp. 119

ComVelAx. 118

ComVelSp. 119

360

Index in Alphabetical Order

COS. 83

CP_1000. 341

CP_1001. 341

CP_1002. 341

CP_1003. 341

CP_1004. 341

CP_1005. 341

CP_1006. 342

CP_1007. 342

CP_1008. 342

CP_1009. 342

CP_1010. 342

CP_1011. 342

CP_1012. 342

CP_1013. 342

CP_1014. 342

CP_1015. 342

CP_1016. 342

CP_1017. 342

CP_1018. 342

CP_1019. 342

CP_1020. 342

CP_1021. 342

CP_1022. 342

CP_1023. 342

CP_1024. 342

CP_1025. 342

CP_1026. 342

CP_1027. 342

CP_1028. 342

CP_1029. 342

CP_1030. 342

CP_1031. 342

CP_1032. 354

CP_1033. 357

CP_1034. 357

CP_1035. 357

CP_ABSOFF. 334

CP_ACTT.. 352

CP_AHND. 332

CP_AUTO. 329

CP_AUX1ACK. 338

CP_AUX2ACK. 338

CP_AUX3ACK. 338

CP_BKRET. 334

CP_BKRST. 334

CP_CBFEN. 339

CP_CHOPON.. 340

CP_CNDBK_1. 335

CP_CNDBK_2. 335

CP_CNDBK_3. 335

CP_CNDBK_4. 335

CP_CNDBK_5. 335

CP_CNDBK_6. 335

CP_CNDBK_7. 335

CP_CNDBK_8. 335

CP_CNDSP. 333

CP_COV.. 357

CP_CSAX. 352

CP_CSREQ. 335

CP_DRRUN. 334

CP_EDIT. 329

CP_EGBRRQ. 336

CP_FHNDL. 339

CP_FIN.. 335

CP_FLCK. 334

CP_FOVER. 356

CP_GACK. 338

CP_HNDL. 329

CP_HNDLS1. 339

CP_HNDLS2. 339

CP_HNDLS3. 339

CP_HNDLS4. 339

CP_HOLD. 338

CP_INC. 356

CP_INCR. 329

CP_JOG. 329

CP_JOGFD.. 351

CP_JOGRAP. 330

CP_LIM1DIS. 339

CP_LIM2DIS. 339

CP_LIM3DIS. 339

361

Index in alphabetical order

CP_LIMSEL. 340

CP_M1ACK.. 337

CP_M2ACK.. 337

CP_M3ACK.. 337

CP_M4ACK.. 337

CP_M5ACK.. 337

CP_M6ACK.. 337

CP_M7ACK.. 337

CP_M8ACK.. 337

CP_MDI. 329

CP_MGR1. 352

CP_MGR10. 353

CP_MGR11. 353

CP_MGR12. 353

CP_MGR13. 353

CP_MGR14. 353

CP_MGR15. 353

CP_MGR16. 353

CP_MGR2. 353

CP_MGR3. 353

CP_MGR4. 353

CP_MGR5. 353

CP_MGR6. 353

CP_MGR7. 353

CP_MGR8. 353

CP_MGR9. 353

CP_MINT. 336

CP_MLCK. 333

CP_NOWT.. 335

CP_OFFSNO. 354

CP_OSGNX.. 341

CP_OSGNY.. 341

CP_OSGNZ. 341

CP_OVC. 339

CP_POLYSL. 352

CP_REFP. 329

CP_RLSOT3. 341

CP_ROVER. 357

CP_ROVLD.. 341

CP_RST. 335

CP_RSTREW. 335

CP_S2TS. 331

CP_S2WS. 332

CP_SACK. 337

CP_SGLBK. 333

CP_SGOEN. 340

CP_SGOX. 341

CP_SGOY. 341

CP_SGOZ. 341

CP_SINP. 351

CP_START. 329

CP_STOP.. 329

CP_TACK. 338

CP_TAXF. 330

CP_TBLB.. 330

CP_TEST. 333

CP_TLCM. 331

CP_TMREN.. 336

CP_TRGAF. 330

CP_TSBD. 336

CP_TTCRF. 330

CP_WMCAXF.. 332

CP_WPCM. 332

DA-i/I EE. 247

DANI. 246

DEG. 95

DIFD. 38

DIFU. 37

DirectPlcBit. 117

DirectPlcDouble.. 117

DirectPlcInt. 117

DIV.. 74

DN_BVERR. 253

DN_CHERR1. 254

DN_CMEERR. 254

DN_CURERR. 253

DN_CWDER1. 254

DN_ECTERR. 254, 260

DN_EDERR1.. 253, 260

DN_EDERR2.. 253

DN_ENA. 251

DN_ERR. 255, 261

362

Index in Alphabetical Order

DN_ERROR. 253, 260

DN_FOLERR. 254

DN_HALERR. 254

DN_HASERR.. 254

DN_INC. 251, 260

DN_OVHERR. 255

DN_PDPINT. 254

DN_PRGERR.. 254

DN_PRM1. 251

DN_PRM2. 251

DN_PRMERR. 254

DN_RDY. 251

DN_SRTERR. 254

DN_STAT. 255, 261

Double word. 11

DP_CTRL.. 255, 261

DP_EMG. 252

DP_ENA1.. 251

DP_ENA2.. 251

DP_ERRCLR. 253, 260

DP_MOD1. 252

DP_MOD2. 252

DP_POSLCK. 252

DP_PRM1. 252

DP_PRM2. 252

DP_SILCK. 253

DS-i/I EE. 247

DWORD. 11

EGBcCurrAx. 119

EGBvTarAx. 118

END. 106

ENDAT.. 256

ETPC. 242

EXP.. 88

Exponent.. 26

FCMP. 97

FIX. 94

FL_CY. 28

FL_EQ. 29

FL_ER. 28

FL_GT. 28

FL_LT.. 29

FL_OF. 28

FL_UF. 28

FLEQ. 98

FLGE. 98

FLGT. 98

FLLE.. 98

FLLT.. 98

FLNE. 98

FLT. 93

FolErrAx.. 118

FolErrSp. 119

FUP.. 285

HardwareTime. 121

HB_AXIS4. 237

HB_AXIS5. 237

HB_AXIS6. 237

HB_AXIS7. 237

HB_AXIS8. 237

HB_AXISX. 237

HB_AXISY. 237

HB_AXISZ.. 237

HB_B12. 238

HB_B13. 238

HB_I1. 237

HB_I10. 237

HB_I100. 237

HB_I1000. 238

HWMOVE. 238

I16.. 240

I16S.. 240

I32.. 240

IEEE754. 26

IN_1. 245

IN_1ENn.. 245

Infinity. 27

Input Not of a Memory Bit. 32

Input of a Memory Bit. 30

Int0. 21

JME. 107

JMP.. 107

363

Index in alphabetical order

ladder diagram. 8

LOG. 89

M GR High n. 353

MACR. 114

MACW.. 115

Main Program. 21

Mantissa. 26

MB_AUTO. 234

MB_BKRET. 234

MB_BKRST. 234

MB_CNDBK. 235

MB_CNDSP. 235

MB_DRRUN. 234

MB_EDIT. 234

MB_FLCK. 234

MB_HNDL. 234

MB_I1. 235

MB_I10. 235

MB_I100. 235

MB_I1000. 235

MB_INCR. 234

MB_JOG. 234

MB_JOGn. 235

MB_JOGRAP. 235

MB_MDI. 234

MB_MLCK. 234

MB_REFP. 234

MB_S100. 236, 309

MB_SGLBK. 235

MB_SMAX. 236, 309

MB_SMIN. 236

MB_START.. 234

MB_STOP. 234

MB_TEST. 234

Measured. 121

Mechanical Type. 323, 324

MK15. 230

MK19. 230

MKFOVER. 236

MKSOVER. 236

ML_AUTO.. 234

ML_BKRET.. 234

ML_BKRST.. 234

ML_CNDBK. 235

ML_CNDSP.. 235

ML_DRRUN. 234

ML_EDIT.. 234

ML_FLCK. 234

ML_HNDL.. 234

ML_INCR. 234

ML_JOG. 234

ML_JOGn. 235

ML_JOGRAP. 235

ML_MDI. 234

ML_MLCK. 234

ML_REFP. 234

ML_SGLBK.. 235

ML_START.. 234

ML_STOP. 234

ML_TEST. 234

MOV. 45

MOVCMD. 110

MOVF. 46

MR. 123

MR, MW function codes

10. 127

100. 164

101. 165

102. 167

103. 171

104. 176

105. 179

106. 180

107. 183

108. 185

11. 129

201. 211

202. 218

31. 131

32. 133

34. 135

35. 137

364

Index in Alphabetical Order

40. 139

60. 140

61. 141

62. 142

63. 143

70. 145

81. 149

90. 151

MR, MW funkció kódok

300. 193

303. 195

304. 198

306. 200

307. 202

308. 204

309. 206

41. 208

MSG. 102

MSGF. 102

MUL. 73

MVN.. 45

MW.. 124

N_ACTMSG.. 276

N_CLRMSG.. 272

N_FIRSTCC. 271

N_MONDIS. 272

N_MONST. 271

N_MSG.. 262

N_MSG0.. 272

N_MSG1.. 272

N_MSG2.. 272

N_MSG3.. 272

N_MSG4.. 272

N_MSG5.. 272

N_MSG6.. 272

N_MSG7.. 272

N_MSG8.. 272

N_MSG9.. 272

N_MSGA. 272

N_NCREADY. 271

N_NVECAT. 273

N_NVRAMOK.. 271

N_OFF. 271

N_ON. 271

N_P100MS. 271

N_P1M. 271

N_P1S.. 271

N_P2MS. 271

N_P2T.. 271

N_PDB1. 267

N_PDW1. 267

N_Pij.. 267

N_PTEDT.. 273

N_SIMU. 273

N_SW. 263

N_SW0. 264

N_SWN. 263

N_SWP.. 264

N_TLEDT.. 273

N_TLMD. 273

N_TLSRCH. 273

N_TLSV. 273

NActSp. 120

NaN.. 27

NCommandSp. 120

NCTDriveMess.. 122

NEG. 66

Negated Query of a Double Word. 33

negated relay coil. 35

Normalized number. 26

Not a Number. 27

NSetSp. 120

O16. 240

O8R.. 240

O8RM.. 240

offset. 13

open contact. 30, 31

OR.. 67

Output Not to a Memory Bit.. 35

Output to a Memory Bit. 34

P_CHSEL. 276

P_COMPG. 274

365

Index in alphabetical order

P_COMPW. 274

P_DIR. 274

P_HnAS. 239

P_HOLD0. 274

P_MAC. 274

P_MONREQ. 273

P_MSG.. 262

P_PAR. 275

P_PLC. 275

P_PRGE. 274

P_PTTAB.. 275

P_RUNAUT.. 275

P_RUNMDI. 275

P_SHTDNREQ. 274

P_SVRC.. 275

P_TLTAB.. 274

P_TRCTR. 274

P_WOFFS. 274

PitchAx. 119

PLC Doublen. 267

PlcBit. 117

PlcCycle. 121

PlcDouble.. 117

PlcInt. 117

PlcTime. 121

PosErrAx. 118

PosErrSp. 120

Pulse Generation for Falling Edge. 38

Pulse Generation for Rising Edge. 37

PWR.. 80

Query of a Double Word. 31

RAD. 96

RealTime. 121

relay circuit. 8

relay coil.. 34

REM.. 102

Remark.. 42

REMF.. 102

Resetting a Memory Bit. 36

RET. 108

ROT. 56

RotaryAx. 121

row. 41

RST. 36

sampling interval. 9

SBN. 108

SBS. 108

SCP. 116

SEC. 43

SENS. 244

SET. 36

Setting a Memory Bit. 36

SHTR. 60

Sign bit. 26

SIN. 82

SN_FLOFF.. 296

SN_FLU. 295

SN_LPCLSD. 296

SN_N0. 295

SN_NACT. 307

SN_NCOM. 307

SN_NS. 295

SN_ORIP. 296

SN_PHSHFTA.. 296

SN_POLYA. 297

SN_RMPD. 295

SN_RPE. 298

SN_SALM. 298

SN_SDETCHA. 297

SN_SINDP.. 298

SN_SINPOS.. 296

SN_SMTNRN. 297

SN_SMTNRP. 297

SN_SRAPR. 297

SN_SSYNA. 296

SN_SYNCPOS. 297

SN_TLCH. 298

SN_TLCHI.. 298

SN_TLNL. 299

SN_TLSKPA. 299

SP_ACTT.. 308

SP_ASSIGN.. 308

366

Index in Alphabetical Order

SP_FEEDD.. 304

SP_MAST. 308

SP_NEG. 299

SP_OREQ.. 300

SP_OSHRT. 300

SP_OSW.. 306

SP_PAR. 299

SP_PHSHFTR. 302

SP_POLYR.. 302

SP_PRG. 307

SP_RAPD.. 305

SP_RNG. 307

SP_ROT. 307

SP_SDETCHR. 303

SP_SDISPD. 304

SP_SEN. 299

SP_SEND. 302

SP_SLCLR. 304

SP_SMTNDN.. 302

SP_SMTNDP. 302

SP_SOVER. 309

SP_SSROFF. 304

SP_SSTRT. 299

SP_SSYNCR. 301

SP_TLCD. 305

SP_TLCHA. 305

SP_TLCHIA. 305

SP_TLSKP. 305

SQRT. 81

StraightnessAx. 119

SUB. 72

Subnormal or denormalized number. . . 27

SyncErrAx. 119

SyncErrSp. 121

SyncVSlaveSp. 121

SyncVTargetSp.. 120

TachAx. 118

TachRealAx. 118

TachRealSp.. 122

TachSp. 120

TAN. 84

TN_INPn1. 243

TN_INPn2. 243

TN_INPn3. 243

TN_TSn. 243

TOFFD. 49

TOND. 48

Tool Axis Direction. 323, 324

TP_OUTn1. 243

TP_OUTn2. 243

TPLC. 9

TPULSE. 50

TSliceErr.. 121

TTLAI.. 256

ECAT-TACHO. 256

ECAT-TTLASM. 256

TTLCAN. 256

WORD. 12

XOR. 67

Zero.. 27

367

Index in alphabetical order

368

	1 The PLC Programming Language
	1.1 Sampling and Handling of Inputs and Outputs
	1.2 The Order of Execution of a PLC Program
	1.3 Editing PLC Programs

	2 Memory Used by the PLC Program
	2.1 Addressing of Double Words (DWORD)
	2.2 Indexed Addressing of Double Words (DWORD) with Operator “,”
	2.3 Direct Addressing of Bits with Operator “.”
	2.4 Indirect Addressing of Bits with Operator “:”
	2.5 Indexed Addressing of Bits with Operator “,”
	2.6 Addressing Floating-point Numbers (double)
	2.7 Indexed Addressing of Floating-point Numbers (double) with Operator “,”

	3 Modules of the PLC Program
	3.1 The Main Program
	3.2 The Int0 Module
	3.3 Updating the PLC Memory

	4 Data Managed by the PLC Program
	4.1 Managing Bit-type Data
	4.2 Query of Rising Edge of Memory Bits with Operator “@”
	4.3 Query of Falling Edge of Memory Bits with Operator “%”
	4.4 Immediate Query of Inputs, Immediate Issue of Outputs with Operator “!”
	4.5 Definition of Decimal, Signed Number with Operator “#”
	4.6 Definition of Hexadecimal Number With Operator “#$”
	4.7 Definition of BCD Number without Sign with Operator “#$”
	4.8 Definition of Floating-point Number with Operator “*”
	4.9 Double Precision Representation of Floating-point Numbers in IEEE754 Standard

	5 Status Bits Set by PLC Instructions
	5.1 FL_ER Error Flag
	5.2 FL_UF Underflow Flag
	5.3 FL_OF Overflow Flag
	5.4 FL_CY Carry Flag
	5.5 FL_GT Greater than Flag
	5.6 FL_EQ Equal Flag
	5.7 FL_LT Lower than Flag

	6 Instructions of the PLC Program
	6.1 Bit Operation Instructions
	6.1.1 Open Contact: Input of a Memory Bit
	6.1.2 Open Contact: Query of a Double Word
	6.1.3 Closed Contact: Input Not of a Memory Bit
	6.1.4 Closed Contact: Query Not of a Double Word
	6.1.5 Relay Coil: Output to a Memory Bit
	6.1.6 Negated Relay Coil: Output Not to a Memory Bit
	6.1.7 Setting a Memory Bit: the SET Instruction
	6.1.8 Resetting a Memory Bit: the RST Instruction
	6.1.9 Pulse Generation for Rising Edge: the DIFU Instruction
	6.1.10 Pulse Generation for Falling Edge: the DIFD Instruction
	6.1.11 Bit Operation Instructions and the Operator “!” in the Two Modules

	6.2 Basic Rules of Connections of Ladder Network
	6.2.1 Connecting elements
	6.2.2 Commenting the Logic Sectors of a Ladder Diagram: the SEC Instruction

	6.3 Data Movement Instructions
	6.3.1 Movement of Double Words: the MOV and the MVN Instructions
	6.3.2 Movement of Floating-point data: the MOVF Instruction

	6.4 Timers
	6.4.1 On-delay Timer: TOND
	6.4.2 Off-delay Timer: TOFFD
	6.4.3 Programmable Pulse Width: TPULSE

	6.5 Counters
	6.5.1 Simple Counter CNT
	6.5.2 Up-down Counter CNTR

	6.6 Rotation Control Instruction: ROT
	6.7 Data Shift Instructions
	6.7.1 Shift Register: SHTR
	6.7.2 Shift Instructions: ASHL, ASHR
	6.7.3 Rotate Instructions: ARTL, ARTR

	6.8 Logic Instructions
	6.8.1 Complement Instruction: NEG
	6.8.2 Two-operand Instructions: AND, OR, XOR

	6.9 Integer Arithmetic Instructions
	6.9.1 Signed, Integer Addition, without Carry: ADD
	6.9.2 Signed, Integer Subtraction, without Carry: SUB
	6.9.3 Signed, Integer Multiplication: MUL
	6.9.4 Signed, Integer Division: DIV

	6.10 Floating-point Mathematical Instructions
	6.10.1 Floating-point Addition: +F
	6.10.2 Floating-point Subtraction: -F
	6.10.3 Floating-point Multiplication: *F
	6.10.4 Floating-point Division: /F
	6.10.5 Exponential Power: PWR
	6.10.6 Square Root: SQRT
	6.10.7 Sine: SIN
	6.10.8 Cosine: COS
	6.10.9 Tangent: TAN
	6.10.10 Arc Sine: ASIN
	6.10.11 Arc Cosine: ACOS
	6.10.12 Arc Tangent: ATAN
	6.10.13 Natural Exponent: EXP
	6.10.14 Natural Logarithm: LOG

	6.11 Conversion Instructions
	6.11.1 BCD to Binary Conversion: BIN
	6.11.2 Binary to BCD Conversion: BCD
	6.11.3 Signed Integer to Floating-point Conversion: FLT
	6.11.4 Floating-point to Signed Integer Conversion: FIX
	6.11.5 Radian to Degree Conversion: DEG
	6.11.6 Degree to Radian Conversion: RAD

	6.12 Comparison Instructions
	6.12.1 The CMP and the FCMP Instructions
	6.12.2 Contact Type Comparison Instructions

	6.13 Messages Sent from the PLC Program
	6.13.1 Instructions Sending Messages: MSG, MSGF, ALR, ALRF, REM, REMF

	6.14 Program Control Instructions
	6.14.1 End of Module Instruction: END
	6.14.2 Conditional Branch: the JMP and JME Instructions
	6.14.3 Subroutine Call: the SBS, SBN and RET instructions

	6.15 Axis Control Instruction: MOVCMD
	6.16 Read and Write of Common Macro Variables
	6.16.1 Read of Common Macro Variables: the MACR Instruction
	6.16.2 Write of Common Macro Variables: the MACW Instruction

	6.17 Query of the Internal Variables of the NC: the SCP Instruction
	6.18 Reading and Writing NC Memory Arrays
	6.18.1 NC Memory Array Read: the MR Instruction
	6.18.2 NC Memory Array Write: the MW Instruction

	6.19 Transferring Data between Non-volatile Memory and PLC
	6.19.1 PLC Data Read from Non-volatile Memory
	6.19.2 PLC Data Write to Non-volatile Memory

	6.20 Reading and Writing Parameters from the PLC Program
	6.20.1 Reading the DWORD-type Parameters
	6.20.2 Reading the Double-type Parameters
	6.20.3 Writing the DWORD-type Parameters
	6.20.4 Writing Double-type Parameters

	6.21 Assigning a Program for Execution
	6.21.1 Assigning a Program Specified with its Program Number for Automatic Execution

	6.22 Network Communication Instructions
	6.22.1 Opening the Network Connection
	6.22.2 Closing the Network Connection
	6.22.3 Receiving the Network Data Packet
	6.22.4 Sending the Network Data Packet

	6.23 Opening a Window in the Screen of the Control
	6.24 Dumping the Drive Data
	6.25 Writing the Position Data
	6.26 Reading and Writing Data of Tool Management Table
	6.26.1 The Tool Management Table
	6.26.2 The Cartridge Management Table
	6.26.3 The Tool Pattern Table
	6.26.4 Exchange of Data Numbers in Cartridge Table
	6.26.5 Search of Empty Pot
	6.26.6 Register New Tool Data in Tool Management Table
	6.26.7 Writing Each Tool Management Data of a Tool
	6.26.8 Reading Each Tool Management Data of a Tool
	6.26.9 Deletion of All Tool Management Data of a Tool
	6.26.10 Writing a Tool Management Data of a Tool
	6.26.11 Reading a Tool Management Data of a Tool
	6.26.12 Searching a Tool by User Data

	6.27 Writing and Reading the Data of the Pallet Management Table
	6.27.1 The Pallet Management Table
	6.27.2 Data Interchange Between Two Different Places of Two Different Pallet Magazines
	6.27.3 Rewriting the Pallet Data
	6.27.4 Reading the Data of the Pallet
	6.27.5 Rewriting a Pallet Management Data of the Pallet
	6.27.6 Reading a Pallet Management Data of the Pallet
	6.27.7 Searching a pallet by its data number value
	6.27.8 Reading out the pallet magazine’s values of given data number
	6.27.9 Assigning a program accessible by its pallet identifier for automatic execution

	6.28 Mailbox Communication between the PLC program and an Arbitrary Ethercat Device
	6.28.1 Reading the Data of the EtherCAT Mailbox
	6.28.2 Writing the Data of the EtherCAT Mailbox

	6.29 Codes of Execution of MR, MW Instructions

	7 Communication between the PLC Program and the NC
	7.1 NCT Machine Control Panels
	7.2 NCT Handwheels
	7.3 Two-state, 24V Interface In- and Outputs
	7.4 In- and Outputs of NCT Probe Interface Cards
	7.5 NCT Sensor Inputs
	7.6 NCT Analog Inputs
	7.7 In- and Outputs of EtherCAT NCT Drives
	7.8 Encoder Receiver and Analog/Stepping Motor/CAN Drive Interface Cards
	7.9 Function Buttons Accessible from the PLC
	7.10 Position Switches
	7.11 Access to Parameter Group PLC Constants
	7.12 Common Variables
	7.12.1 Bit-type Common Variables
	7.12.2 DWORD-type Common Variables

	7.13 Axis Control Variables
	7.13.1 Bit-type Axis Control Variables

	7.14 Spindle Control Variables
	7.14.1 Bit-type Spindle Control Variables
	7.14.2 DWORD-type Spindle Control Variables
	7.14.3 Double-type Spindle Control Variables

	7.15 Channel Control Variables
	7.15.1 Bit-Type Channel Control Variables
	7.15.2 DWORD-type Channel Control Variables
	7.15.3 Double-type Channel Control Variables

	Index in Alphabetical Order

