
NCT®

Machine Tool Controls

PLC Programmer’s Manual
From SW Version x.066 (M) (L)

Produced and developed by NCT Automation kft.
H1148 Budapest Fogarasi út 7
: Letters: 1631 Bp. P.O. Box 26
F Phone: (+36 1) 467 63 00
F Fax:(+36 1) 467 63 09

E-mail: nct@nct.hu
Home Page: www.nct.hu

mailto:nct@nct.hu

3

Contents

1 General Description.. 5
1.1 Fundamental Terms. 5
1.2 Structure and function of PLC program. 8
1.3 Processing of PLC Input and Output Signals. 9
1.4 Synchronizing Functions with Interpolation. 10

2 PLC Program Variables. 11
2.1 Variables of Connection between PLC and Machine Tool.. 11

2.1.1 Signal from Machine to PLC (Interface Input Lines).. 11
2.1.2 Signals from PLC to Machine (Interface Output Lines). 16

2.2 Variables of Connection between PLC and NC. 19
2.2.1 Flags from NC to PLC (Input Flags). 19
2.2.2 Flags from PLC to NC (Output Flags). 68
2.2.3 Registers from NC to PLC (Input Registers). 119
2.2.4 Registers from PLC to NC (Output Registers).. 136

2.3 Local Variables of PLC Program. 157
2.3.1 Auxiliary Register OP and Status Register. 159
2.3.2 Tool Pot Table. 162
2.3.3 Freely available Table of PLC Program. 164

2.4 Local Registers of PLC Program. 165
2.4.1 Up/Down Counters.. 165
2.4.2 20-msec Timers. 165
2.4.3 Second Timers. 165
2.4.4 Minute Timers. 165
2.4.5 PLC Constants. 165

3 Standard Modules of PLC Program. 166
3.1 Module :000. 166
3.2 Module :001. 166
3.3 Module :002. 166
3.4 Module :197. 167
3.5 Module :198. 167
3.6 Module :199. 168
3.7 Module :200. 168

4 Instruction Set of PLC Program Language. 169
4.1 Switch Statements.. 169
4.2 Condition Testing Statements. 170
4.3 Creating Conditions with Flags. 171
4.4 Combination of Conditions.. 173
4.5 Loading constant into register OP.. 174
4.6 Loading value of variable into register OP. 174
4.7 Storing Value from Register OP into Variable. 178
4.8 Arithmetic Statements with Register OP. 181
4.9 Logic Statements with Register OP. 187
4.10 Relational Expressions with Register OP. 192

4

4.11 Goto Statements. 197
4.12 Use of Up/Down Counters. 198
4.13 Condition Test on Timers.. 199
4.14 Search Statements.. 199
4.15 Reading and writing the memory of NC. 203
4.16 Arithmetic Operations. 207

5 Compiling and Loading PLC Program into NC Control. 215

6 APPENDIX. 217
6.1 Summary of the Variables of the Connection between PLC and NC.. 217
6.2 The Bit Map of Machine Control Board 2. 230
6.3 Error Messages of the PLC Compiler. 231
6.4 Listing of Global Messages. 234
6.5 Listing of Push-button Codes. 237
6.6 Codes of Screen Menu and Action Menu.. 240
6.7 Timing Diagrams of PLC Variables.. 244
6.8 The Sample. plc Program. 256
6.9 The Axrandom.plc Sample Program . 306

ALPHABETICAL INDEX. 326

February 5, 2010

1 General Description

5

 The monitor unit, the data input keyboard and the softkeys

1 General Description

1.1 Fundamental Terms

To clearly understand this handbook some fundamental terms have to be elicited.
Control: The entire device controlling the machine tool, storing the part programs and interpreting
them in the course of program execution.
NC: A part of the control, which stores and preprocesses part programs, and transfers their
commands to the servos and PLC.
PLC: It interprets commands coming from the NC not referring to servos and sends them to the
machine tool.
Operator’s panel: It consists of the monitor unit and the keyboard. The keyboard is made up of
two parts, of the NC or data input keyboard, which contains editing keys, data input keys and
softkeys,

as well as of machine control board, which frames the operation mode push-buttons, the manual

1 General Description

6

Machine Control Board for Milling Machines

Machine Control Board for Turning Machines

movement buttons and other switches, buttons and lamps. The machine control board may be
integrated in the control.

1 General Description

7

Coordination between control and
machine tool is done by the PLC.
The PLC is one of the programs
running in the control, which is
connected with:
 – the machine tool through the
interface board(s) built in the
control,
 – the machine control board
through flags, perhaps interface
input lines,
 – the NC through input and
output flags, as well as registers.
The above mentioned interface
input and output lines, as well as
input and output flags and
registers are variables in the PLC
program, the detailed description
of whose is discussed in chapter
2.
Besides the memory area, which
stores local variables and within this memory area two special tables accessible from control
panel, which support tool handling are at disposal in the PLC. Among the local variables of PLC
program there are also counters and timers.

1 General Description

8

1.2 Structure and function of PLC program

The PLC program of NCT controls is written in a special, high-level language developed
especially for this task. In this language bit variables (flags) can be switched on and off, as well
as condition tests can be done on the variables. The register communication and operations are
supported by word (16 bit) value assigning, data transfer, arithmetic, logic and condition test
statements. The values of parameters and macro variables in the NC memory can be accessed by
special commands. Finally it enables execution of 8, 16, 32 bit, signed, fix-point, binary
arithmetical basic operations.
The structure of PLC program is obligatory, so that by executing it cyclically, it should fit the
control function to the machine tool. Therefore the PLC program receives from the control a T
msec long time slice in every 20 msec, when the PLC activities can be executed.
The activities to be executed by the PLC program can run in two levels (modules) within the T-
msec-long PLC time slice. The length of the T msec time slice is different in different types of
controls.

Level No. 1, module :001
Level No. 1 is executed from the beginning in every PLC time slice, thus in every 20 msec. The
complete execution of this level is mandatory in all PLC time slices. If it does not happen, error
message PLC TIMEOUT1 is displayed by the control. The beginning of level No. 1 is indicated
by label :001, while its end by statement J1 in the source language text of PLC program.

Level No. 0, module :000
The execution of level No. 0 is done after the execution of PLC program level No. 1 in the part
time left from the 5 msec. PLC module level No. 0 is not obligatorily executed within a time
slice, it can last for more time slices. In case level No. 0 has been executed, the rest time of the
PLC is returned to the NC. The beginning of level No. 0 is indicated by label :000, while its end
slice by statement J0 in the source language text of PLC program.
As seen above it is advisable to use module :001 (level No. 1) for supervisory actions. Such
actions may be the watching of and reacting on the flag state of alarms, limits, signals coming
from reference position switches or operator’s interventions, as well as receiving commands sent
by the NC in the course of command execution.

1 General Description

9

Module :000 (Level No. 0) can be used by tasks, the execution of which takes a longer time, as
e.g. spindle handling.
Certain commands are disabled in the PLC program level No. 1, yet other ones, the executing
time of which is long, are not advisable to use.
In emergency cases there may be need to answer input signals instantly. This can be done with
the help of module :002.

Level No. 2, module :002
Module :002 is called by the NC in each

t=5 msec (in control types NCT98, NCT99, NCT2000)
t=2 msec (in control types NCT990, NCT100, NCT115)
t=1 msec (in control types NCT101, NCT104)

provided module call is enabled. Module :002 must be short in source code and must be executed
as fast as it is possible, otherwise error message PLC TIMEOUT2 is displayed by the NC. The
beginning of level No. 2 is indicated by label :002, while its end by statement J2 in the source
language text of PLC program. Call of module :002 is enabled or disabled by flag Y546.

1.3 Processing of PLC Input and Output Signals

Generally PLC program handles state of interface I/O lines and I/O flags indirectly, according to
their code stored in RAM. State of input lines is updated at the beginning of PLC time slice by
directly reading input signals and by storing their state code into RAM. The state of output signals
is updated at the end of PLC slice by writing the code of output flags stored in RAM to the output
lines. The output lines are connected effectively at this moment.
Th difference between level
No. 1 (module :001) and
level No. 0 (module :000)
is that level No. 0 observes
input lines updated in every
20 msec, while module
:000 does not. The interface
input lines and input flags
seem synchronized by the
level No. 0. This means,
that at the beginning
module :000 observes the
input RAM code received
at the beginning of the time
slice till module :000 goes
to command J0, even if it
takes more time slices. This
means, that within one PLC
slice the program executed
in level No. 1 observes
different input states from
the ones observed by that
executed in level No. 0. The above mentioned synchronizing does not occur in the handling of
interface output lines and output flags, therefore output lines switched on or off in a given PLC
slice by module :000 are updated at the end of the PLC time slice the same as the ones switched

1 General Description

10

on or off in level No. 1.
Handling of output lines and input lines by their RAM codes is needed partly to execute PLC
programs as fast as possible, partly for synchronizing reasons. The difference between the input
RAM codes of levels No. 0 and 1 is only due to synchronizing reasons.
For level No. 2. or module :002 neither output and input updating, nor input synchronizing is
done. For handling the most essential output lines and input lines two special commands are
found in module :002, with the help of which the input signal(s) of the interface board can be
tested directly (command Ppqr), and with which the output signal(s) can be set right away
(commands UOpqr, DOpqr). Thus these output lines and input lines are not processed through
RAM. This time no synchronizing is implemented. On the other hand the executing time of these
commands is five times slower than the commands processed through RAM. Therefore the use
of these commands is only advisable in case rapid intervention is needed.

1.4 Synchronizing Functions with Interpolation

A part program may contain:
 - only interpolation commands (interpolation block)
 - only function commands (function block), and
 - miscellaneous commands containing both interpolation and function.
Most of the function blocks, or blocks containing also functions demand PLC actions. Exceptions
are the program controlling functions, as e.g. command M99 Pnnnn, which executes subprogram
call.
During program processing commands of miscellaneous blocks are sent to interpolator and to the
PLC simultaneously. That is the control executes interpolation and function at the same time. The
task of PLC programmer is to synchronize the two actions if needed as the function of the
structure of the machine and the applied technology.
Let us see an example on the above discussed matters by examining the positioning command G0
and the spindle start and stop as a function beside it.

G0 Xx Yy M3
G0 Xx Yy M4
G0 Xx Yy M5
G0 Xx Yy M19

In the above case spindle rotation switch on or off or spindle orientation can be done parallel to
the positioning, i.e. when executing these blocks there is no need for synchronizing.
The situation is different if spindle is switched on parallel to a milling command.

G1 Xx Yy Ff M3
G1 Xx Yy Ff M4

The interpolation cannot be started till the spindle reaches the desired revolution speed, i.e. the
interpolation must be synchronized.
If spindle rotation stop or spindle orientation is programmed in a milling block the situation is
reversed.

G1 Xx Yy Ff M5
G1 Xx Yy Ff M19

The function, i.e. the spindle stop or spindle orientation must be executed only after the execution
of interpolation.
The synchronizing of interpolation and function is supported by output and input flags.

2.1.1 Signals from Machine to PLC (Interface Input Lines)

11

2 PLC Program Variables

Reference can be made to PLC program variables with 1 or 2 characters followed by 2, 3 or 4
digits.

2.1 Variables of Connection between PLC and Machine Tool

The physical connection between the machine tool and the PLC is implemented by the INT
(interface) board or boards built in the control. INT boards are capable of receiving or emitting
two-state (TRUE=24V/FALSE=0V) and level 24V=.signals.

2.1.1 Signal from Machine to PLC (Interface Input Lines)

Reference can be made to synchronized interface input lines stored in RAM with character I and
three digits.

Ipqr
The value range of the first digit:

p=0,1,2,3
The second digit is decimal and its value range is

q=0,1,2,3,4,5,6,7,8,9
The third digit defines the serial number of a bit within the selected byte and is therefore octal.
Its value range is

r=0,1,2,3,4,5,6,7

Reference to input lines of INT interface boards
The first digit (p) defines the board, one the input lines of which is to be referred to. At most 4
INT interface boards can be built in the NCT controls. Therefore reference has to be made to the
first board with string I0qr, to the second one with string I1qr, to the third one with string I2qr,
while to the fourth one with string I3qr.

p=0,1,2,3
The second digit (q) defines the byte within the selected board, in which the desired input line
can be found. For on a board 48 (56) input lines are available the second digit can alter from 0
to 5 (6).

q=0,1,2,3,4,5,(6)
The third digit (r) defines the bit within the selected byte. Therefore the values of r may be as
follows:

r=0,1,2,3,4,5,6,7
The NCT controls have a 16-bit bus, that is why the interface input flags are updated word by
word in the memory from INT boards. This way in the view of signal processing 16 input lines
can be regarded as totally simultaneous.
It follows that the second indexes of input lines are regarded as simultaneous:

q=1,0
q=3,2
q=5,4

Reference can be made to certain groups of interface input lines as to word operands. In case of
word operands reference is made to input line groups in the PLC program by dropping the last
digit:

2.1.1 Signals from Machine to PLC (Interface Input Lines)

12

Ipq

If reference is not to be made to input lines synchronized and stored in RAM, but directly to the
state of input lines on interface board, it can be done with the help of statement

Ppqr
in case of a bit operand and with the help of statement

Pqr
in case of a word operand, where interpretation of indexes p, q, r corresponds to that of Ipqr.

In module :001, i.e. on level No. 1 also the change test of input lines is enabled. The change test
can be executed with the help of statement

Vpqr
on bit operand, while with the help of statement

Vpq
on word operand, where interpretation of indexes p, q, r corresponds to that of Ipqr.
Result of statement Vpqr is 1 if the value of input line Ipqr of the previous PLC time slice differs
from that valid in the current time slice.

1 interface board can be optionally equipped with 4 12-bit AD (analog to digital) convertersst

capable of receiving analog inputs. Their values can be displayed through registers RH035, ...,
RH038.

The below table summarizes the correspondence between the input connection points of interface
boards and the input lines in the PLC program.

Reference to Input Lines of Connector I1 of INT Interface Boards:

 Connection Point 1 INT board 2 INT board 3 INT board 4 INT boardst nd rd th

35 I000 I100 I200 I300

32 I001 I101 I201 I301

14 I002 I102 I202 I302

13 I003 I103 I203 I303

37 I004 I104 I204 I304

36 I005 I105 I205 I305

18 I006 I106 I206 I306

17 I007 I107 I207 I307

29 I010 I110 I210 I310

28 I011 I111 I211 I311

10 I012 I112 I212 I312

9 I013 I113 I213 I313

2.1.1 Signals from Machine to PLC (Interface Input Lines)

 Connection Point 1 INT board 2 INT board 3 INT board 4 INT boardst nd rd th

13

31 I014 I114 I214 I314

30 I015 I115 I215 I315

12 I016 I116 I216 I316

11 I017 I117 I217 I317

25 I020 I120 I220 I320

24 I021 I121 I221 I321

6 I022 I122 I222 I322

5 I023 I123 I223 I323

27 I024 I124 I224 I324

26 I025 I125 I225 I325

8 I026 I126 I226 I326

7 I027 I127 I227 I327

21 I030 I130 I230 I330

20 I031 I131 I231 I331

2 I032 I132 I232 I332

1 I033 I133 I233 I333

23 I034 I134 I234 I334

22 I035 I135 I235 I335

4 I036 I136 I236 I336

3 I037 I137 I237 I337

2.1.1 Signals from Machine to PLC (Interface Input Lines)

 Available in types NCT2000, 100, 104, NCT1151

14

Reference to Input Lines of Connector I2 of INT Interface Boards:

Connection Point 1 INT board 2 INT board 3 INT board 4 INT boardst nd rd th

35 I040 I140 I240 I340

32 I041 I141 I241 I341

14 I042 I142 I242 I342

13 I043 I143 I243 I343

37 I044 I144 I244 I344

36 I045 I145 I245 I345

18 I046 I146 I246 I346

17 I047 I147 I247 I347

29 I050 I150 I250 I350

28 I051 I151 I251 I351

10 I052 I152 I252 I352

9 I053 I153 I253 I353

31 I054 I154 I254 I354

30 I055 I155 I255 I355

12 I056 I156 I256 I356

11 I057 I167 I257 I357

251 I060 I160 I260 I360

241 I061 I161 I261 I361

61 I062 I162 I262 I362

51 I063 I163 I263 I363

271 I064 I164 I264 I364

261 I065 I165 I265 I365

81 I066 I166 I266 I366

71 I067 I167 I267 I367

2.1.1 Signals from Machine to PLC (Interface Input Lines)

Connection Point 1 INT board 2 INT board 3 INT board 4 INT boardst nd rd th

 Optional in types NCT100, 104, NCT1152

15

12 A1: RH035

22 GND1

32 A2: RH036

42 GND2

202 A3: RH037

212 GND3

222 A4: RH038

232 GND4

2.1.2 Signals from PLC to Machine (Interface Output Lines)

16

2.1.2 Signals from PLC to Machine (Interface Output Lines)

Reference to interface output lines stored in RAM can be made with character Y and three digits:
Ypqr

The value range of the first digit:
p=0,1,2,3

The second digit is decimal and its value range is
q=0,1,2,3,4,5,6,7,8,9

The third digit defines the serial number of a bit within the selected byte and is therefore octal.
Its value range is

r=0,1,2,3,4,5,6,7

Reference to output lines of INT interface boards
The first digit (p) defines the board, one the output lines of which is to be referred to. At most
4 INT interface boards can be built in the NCT controls. Therefore reference has to be made to
the first board with string I0qr, to the second one with string Y1qr, to the third one with string
Y2qr, while to the fourth one with string Y3qr, so

p=0,1,2,3
The second digit (q) defines the byte within the selected board, in which the desired output line
can be found. For on a board 32 output lines are available the second digit can alter from 0 to 3.

q=0,1,2,3
The third digit (r) defines the bit of the selected byte. Therefore the values of r may be as follows:

r=0,1,2,3,4,5,6,7
The NCT controls have a 16-bit bus, that is why the interface output lines are updated word by
word from the RAM. This way in the view of signal transfer 16 output lines can be regarded as
totally simultaneous.
It follows that the second indexes of output flags are regarded as simultaneous:

q=1,0
q=3,2

Reference can be made to certain groups of interface output flags, as to word operands. In case
of word operands reference is made to output line groups in the PLC program by dropping the last
digit:

Ypq

If reference is not made to output lines via RAM, but the state of output lines is to be changed
directly, it can be done with the help of statement

Opqr
in case of a bit operand and with the help of statement

Opq
in case of a word operand. Interpretation of indexes p, q, r corresponds to that of Ypqr.

2.1.2 Signals from PLC to Machine (Interface Output Lines)

17

Reference to Output Lines of Connector O1 of INT Interface Boards:

Connection Point 1 INT board 2 INT board 3 INT board 4 INT boardst nd rd th

14 Y000 Y100 Y200 Y300

12 Y001 Y101 Y201 Y301

31 Y002 Y102 Y202 Y302

29 Y003 Y103 Y203 Y303

30 Y004 Y104 Y204 Y304

13 Y005 Y105 Y205 Y305

16 Y006 Y106 Y206 Y306

15 Y007 Y107 Y207 Y307

6 Y010 Y110 Y210 Y310

4 Y011 Y111 Y211 Y311

21 Y012 Y112 Y212 Y312

23 Y013 Y113 Y213 Y313

7 Y014 Y114 Y214 Y314

5 Y015 Y115 Y215 Y315

24 Y016 Y116 Y216 Y316

22 Y017 Y117 Y217 Y317

10 Y020 Y120 Y220 Y320

8 Y021 Y121 Y221 Y321

25 Y022 Y122 Y222 Y322

27 Y023 Y123 Y223 Y323

26 Y024 Y124 Y224 Y324

9 Y025 Y125 Y225 Y325

28 Y026 Y126 Y226 Y326

11 Y027 Y127 Y227 Y327

20 Y037 Y130 Y230 Y330

34 Y031 Y131 Y231 Y331

32 Y032 Y132 Y232 Y332

1 Y033 Y133 Y233 Y333

2.1.2 Signals from PLC to Machine (Interface Output Lines)

Connection Point 1 INT board 2 INT board 3 INT board 4 INT boardst nd rd th

18

2 Y034 Y134 Y234 Y334

35 Y035 Y135 Y235 Y335

3 Y036 Y136 Y236 Y336

33 Y037 Y137 Y237 Y337

2.2.1 Flags from NC to PLC (Input Flags)

19

2.2 Variables of Connection between PLC and NC

The PLC and the NC communicate through RAM with the help of flags (1-bit variables) and
registers (16-bit variables). In the view of PLC there are input and output flags and registers. Input
flags and registers are set by the NC, while those of the output by the PLC.

2.2.1 Flags from NC to PLC (Input Flags)

Reference to input flags can be done with character I and three digits similarly to interface input
flags stored in RAM:

Ipqr
The first digit must be equal to or greater than 4. The value range of the first digit:

p=4,5,6,7,8,9
The value range of the second digit (q):

q=0,1,2,3,4,5,6,7,8,9
The third one (r) defines the serial number of a bit within the selected byte and is therefore octal.
Its value range is:

r=0,1,2,3,4,5,6,7

In case of word operand reference to an input flag group can be made in the PLC program by
dropping the last digit:

Ipq

In module :001, i.e. on level No. 1 also the change test of input flags is enabled. The change test
can be executed with the help of statement

Vpqr
in case of a bit operand, while with the help of statement

Vpq
in case of a word operand. Interpretation of indexes p, q, r corresponds to that of Ipqr.
The result of statement Vpqr is 1 if the value of input flag Ipqr of the previous PLC time slice
differs from that valid in the current time slice.

In the followings a full list of input flags is shown:

2.2.1 Flags from NC to PLC (Input Flags)

20

Flag Identity Meaning of Flag if Value=1 (TRUE)

I400 Reference point return mode push-button

I401 Manual handle mode push-button

I402 Incremental jog mode push-button

I403 Jog mode push-button

I404

I405 Manual data input mode push-button

I406 Automatic mode push-button

I407 Edit mode push-button

If Y520=1 (operation mode selected by softkey from NC keyboard, action menu MODES), or
Y532=1 (selected from machine control board 2) the current state of mode push-buttons is sent
by the NC through flags I400, ..., I407.
If Y520=1 (mode buttons operate from SW control panel) mode switch is executed by means of
selecting one of screens OPEATOR’S PANEL, POSITION or CHECK.

Afterwards action menu MODES F must be selected after pressing action menu button .1

In this case the captions of the different modes appear on softkeys. The desired mode can be
selected as the effect of the appropriate softkey.
If Y532=1 mode buttons operate from machine control board 2 and all modes can be displayed
directly by means of push-buttons.

L Warning!
Always only one of Y520 or Y532 can be 1, i.e. modes can be selected exclusively from either
softkeys or machine control board 2!

I400: Reference point return mode push-button

The flag is set to 1, if operator activates softkey REFERENCE or mode push-button .

I401: Manual handle mode push-button

The flag is set to 1, if operator activates softkey HNDL or mode push-button .

I402: Incremental jog mode push-button

The flag is set to 1, if operator activates softkey INCR or mode push-button .

I403: Jog mode push-button

The flag is set to 1, if operator activates softkey JOG or mode push-button .

I404: -

2.2.1 Flags from NC to PLC (Input Flags)

21

I405: Manual data input mode push-button

The flag is set to 1, if operator activates softkey MDI or mode push-button .

I406: Automatic mode push-button

The flag is set to 1, if operator activates softkey AUTO or mode push-button .

I407: Edit mode push-button

The flag is set to 1, if operator activates softkey EDIT or mode push-button key .

Y403 Y402 Y401 Y400 Y407 Y406 Y405

 I403 I402 I401 I400 I407 I406 I405

Arrangement of mode buttons on machine control board 2

2.2.1 Flags from NC to PLC (Input Flags)

22

Flag Identity Meaning of Flag if Value=1 (TRUE)

I410 1 axis selector push-buttonst

I411 2 axis selector push-buttonnd

I412 3 axis selector push-buttonrd

I413 4 axis selector push-buttonth

I414 5 axis selector push-buttonth

I415 6 axis selector push-buttonth

I416 7 axis selector push-buttonth

I417 8 axis selector push-buttonth

If Y521=1 (axis selected by softkey from NC keyboard, action menu AXES) the current state of
axis push-buttons is sent by the NC through flags I410, ..., I417.
The axes are indexed according to the axis arrangement seen in display: X, Y, Z, U, V, W, A, B,
C. If a letter is not selected for an axis, the next one takes its place.

I410, ..., I417: 1 , ..., 8 axis selector push-buttonst th

The flag is set to 1, if the operator activates the 1 , ..., 8 axis softkey push-button.st th

2.2.1 Flags from NC to PLC (Input Flags)

23

Flag Identity Meaning of Flag if Value=1 (TRUE)

I420 1 increment push-button

I421 10 increment push-button

I422 100 increment push-button

I423 1000 increment push-button

I424

I425

I426 Automatic tool length measurement softkey

I427 JOG rapid traverse push-button

If Y522=1 (increment selected by softkey from NC keyboard, action menu INCR), or Y532=1
(selected from machine control board 2) the current state of increment push-button is sent by the
NC through flags I420, ..., I423.
If Y522=1 (increment size selection operates from SW control panel) increment size is chosen
by means of opening one of screens OPEATOR’S PANEL, POSITION or CHECK.

Afterwards action menu INCR F must be selected after pressing action menu button . In3

this case the captions of the different incremenet sizes (1, 10, 100, 1000) appear on softkeys. The
desired increment can be selected as the effect of the appropriate softkey.
If Y532=1 increment size selection operates from machine control board 2 and all increment sizes
can be activated directly by means of push-buttons.

L Warning!
Always only one of Y520 or Y532 can be 1, i.e. increment sizes can be selected exclusively from
either softkeys or machine control board 2!

I420: 1 increment push-button

The flag is set to 1, if the operator activates the <1> increment softkey or the push-button.

I421: 10 increment push-button

The flag is set to 1, if the operator activates the <10> increment softkey or the push-button.

I422: 100 increment push-button

The flag is set to 1, if the operator activates the <100> increment softkey or the push-

button.

I423: 1000 increment push-button

The flag is set to 1, if the operator activates the <1000> increment softkey or the push-

button.

2.2.1 Flags from NC to PLC (Input Flags)

24

I426: Automatic tool length measurement softkey
In case of lathe controls select action menu T. LENG MEASUR (length offset measurement)F4

within screen OFFSETS . Press action menu button . Softkey AUTO MEAS F appearsF5 3

among the actions. In case this softkey is pressed value of I426 is set to 1.

If Y530=1 (JOG selected by softkey from NC keyboard), or Y531=1 (selected from machine
control board 1), or Y532=1 (machine control board 2) the current state of JOG rapid traverse
push-button is sent by the NC through flag I427.

I427: JOG rapid traverse push-button

The flag is set to 1 if operator activates the rapid traverse push-button.

Y420 Y421 Y422 Y423

 I420 I421 I422 I423

Arrangement of increment buttons on

machine control board 2

2.2.1 Flags from NC to PLC (Input Flags)

25

Flag Identity Meaning of Flag if Value=1 (TRUE)

I430 JOG 1 push-button

I431 JOG 2 push-button

I432 JOG 3 push-button

I433 JOG 4 push-button

I434 JOG 5 push-button

I435 JOG 6 push-button

I436 JOG 7 push-button

I437 JOG 8 push-button

I430, ..., I437: JOG 1, ..., 8 push-buttons
It can only be used if Y531=1 (selected from machine control
board 1), or Y532=1 (selected from machine control board 2)
is in effect. In this case if flag is set to 1 the appropriate axis
direction push-button has been activated on either machine
control board.
The diagram shows the arrangement and numeration of JOG
buttons on machine control board 1 and machine control board
2. If for example button (1) is pressed, then flag I430 is set to
1. If caption X+ is indicated on top of the button (1), the axis
direction flag X+ needs to be switched on. (The caption-
specific arrangement of JOG buttons may alter.)
In case of machine control board 2 each push-button is
equipped with a lamp switched through flags Y427, Y450,
...Y457.

Y450 Y451 Y452

1 2 3

 I430 I431 I432

Y453 Y427 Y454

4 5

 I433 I427 I434

Y455 Y456 Y457

6 7 8

 I435 I436 I437

Arrangement of JOG buttons on

machine control board 2

2.2.1 Flags from NC to PLC (Input Flags)

26

Flag Identity Meaning of Flag if Value=1 (TRUE)

I440 Test push-button

I441 Machine lock push-button

I442 Dry run push-button

I443 Block restart push-button

I444 Block return push-button

I445 Conditional stop push-button

I446 Conditional block skip push-button

I447 Single block mode push-button

If Y523=1 (state selection from NC) or Y532=1 (from machine control board 2) the signals of
state buttons are sent by the NC through flags I440, ..., I447.
If Y523=1 (state selection operates from SW control panel) state is chosen by means of opening
one of screens OPEATOR’S PANEL, POSITION or CHECK.

Afterwards action menu STATES F must be selected after pressing action menu button .5

In this case the captions of the available states appear on softkeys. The desired state can be
selected as the effect of the appropriate softkey.
If Y532=1 state selection operates from machine control board 2 and all states can be displayed
directly by means of push-buttons.

L Warning!
Always only one of Y520 or Y532 can be 1, i.e. states can be selected exclusively from either
softkeys or machine control board 2!

I440: Test push-button

The state of the flag goes high if operator presses softkey TEST or push button .

I441: Machine lock push-button
The state of the flag goes high if operator presses softkey MACHINE LOCK or push button

.

I442: Dry run push-button

The state of the flag goes high if operator presses softkey DRY RUN or push button .

I443: Block restart push-button

The state of the flag goes high if operator presses softkey BLOCK RESTART or push button

.

2.2.1 Flags from NC to PLC (Input Flags)

27

I444: Block return push-button
The state of the flag goes high if operator presses softkey BLOCK RETURN or push button

.

I445: Conditional STOP push-button

The state of the flag goes high if operator presses softkey COND STOP or push button .

I446: Conditional block push-button

The state of the flag goes high if operator presses softkey COND. BLOCK or push button .

I447: Single block mode push-button

The state of the flag goes high if operator presses softkey SINGLE BLOCK or push button .

Y447 Y446 Y445

 I447 I446 I445
Y440 Y441 Y442

 I440 I441 I442
Y443 Y444 Y472

 I443 I444 I472

Arrangement of state buttons

on machine control board 2

2.2.1 Flags from NC to PLC (Input Flags)

28

Flag Identity Meaning of Flag if Value=1 (TRUE)

I450 1 user’s push-buttonst

I451 2 user’s push-buttonnd

I452 3 user’s push-buttonrd

I453 4 user’s push-buttonth

I454 5 user’s push-buttonth

I455 6 user’s push-buttonth

I456 7 user’s push-buttonth

I457 8 user’s push-buttonth

Flag Identity Meaning of Flag if Value=1 (TRUE)

I460 9 user’s push-buttonth

I461 10 user’s push-buttonth

I462 11 user’s push-buttonth

I463 12 user’s push-buttonth

I464 13 user’s push-buttonth

I465 14 user’s push-buttonth

I466 15 user’s push-buttonth

I467 16 user’s push-buttonth

I450, ..., I467: 1 , ..., 16 user’s push-buttonst th

The user can - as written in the Insallation Manual of the NC control - connect buttons or rotary
switches to definite places of the operator’s panel matrix. This way the application of at most 16
flags is possible. If flag Y537=1 the state of user’s buttons or rotary switches is sent by the NC
to the PLC through input flags I450, ..., I457, I460, ..., I467. It can be used for example for testing
state of axis and increment selector switches placed on top of the external handwheel boxes.

Assignment of input flags in case of applying NCT external handwheel

I450 - X axis selected
I451 - Y axis selected
I452 - Z axis selected
I453 - 4 axis selectedth

I454 - 5 axis selectedth

I455 - 6 axis selectedth

I456 -
I457 -

I460 - 1 increment
I461 - 10 increment
I462 - 100 increment

2.2.1 Flags from NC to PLC (Input Flags)

29

I463 -
I464 - =1: enable mode switch/axis selection from machine keyboard,

=0: external handwheel mode
I465 - external handwheel plugged
I466 -
I467 -

2.2.1 Flags from NC to PLC (Input Flags)

30

Flag Identity Meaning of Flag if Value=1 (TRUE)

I470 Start push-button

I471 Stop push-button

I472 Function lock push-button

I473

I474 M3 push-button

I475 M4 push-button

I476 M5 push-button

I477 RESET push-button

If Y531=1, or Y532=1 (selection of machine control board 1 or 2) the state of push-buttons M3,
M4, M5 and RESET are sent by the NC through flags I474, ..., I477. If Y532=1 (selection of
machine control board 2) also the state of START, STOP and function lock push-buttons are sent
by the NC.

I470: Start push-button

The flag is set to 1 if operator activates Start push-button. It is used only when applying

machine control board 2.

I471: Stop push-button

The flag is set to 1 if operator activates Stop push-button. It is used only when applying

machine control board 2.

I472: Function lock push-button

The flag is set to 1 if operator activates function lock push-button. It is used only when

applying machine control board 2.

I474: M3 push-button

The flag is set to 1 if operator activates push-button M3 .

I475: M4 push-button

The flag is set to 1 if operator activates push-button M4 .

Y470 Y471

 I470 I471

Arrangement of start and

stop buttons on machine

control board 2

2.2.1 Flags from NC to PLC (Input Flags)

31

I476: M5 push-button

The flag is set to 1 if operator activates push-button M5 .

I477: RESET push-button
The flag is set to 1 if operator activates RESET push-button.

Y474 Y476 Y475

 I474 I476 I475

Arrangement of spindle

rotation buttons on machine

control board 2

2.2.1 Flags from NC to PLC (Input Flags)

32

Flag Identity Meaning of Flag if Value=1 (TRUE)

I480 1 user’s push-button of machine control board 2 st

I481 2 user’s push-button of machine control board 2 nd

I482 3 user’s push-button of machine control board 2 rd

I483 4 user’s push-button of machine control board 2 th

I484 5 user’s push-button of machine control board 2 th

I485 6 user’s push-button of machine control board 2th

I486 7 user’s push-button of machine control board 2 th

I487 8 user’s push-button of machine control board 2 th

8 lighted push-buttons are mounted on machine control board 2 the function of which is defined
by the machine builder. Hereby the machine builder must also take care of push-button labels or
captions. The following functions in the order of importance are expedient to be defined for these
buttons:
– If more than four axes are built in the machine the axis selector buttons of the 4 , 5 , etc.th th

axes are to be put here. In this case condition Y521=0 must be true, i.e. the axes are not
selected from SW control panel (softkeys).

– Coolant-operating buttons.
– Rapid traverse override buttons; four rapid traverse rates can be selected here:

– Tool clamp/unclamp etc.

 I480, ..., I487: 1 , ..., 8 user’s push-button of machinest th

control board 2
If one of the 8 user’s push-buttons is activated on the machine
control board 2, the appropriate flag is set to 1.

Advised arrangement of rapid traverse

override buttons

Y487 Y486 Y485 Y484

 I487 I486 I485 I484
Y483 Y482 Y481 Y480

 I483 I482 I481 I480

Arrangement of user buttons on

machine control board No.2

2.2.1 Flags from NC to PLC (Input Flags)

33

Flag Identity Meaning of Flag if Value=1 (TRUE)

I490

I491

I492

I493

I494

I495

I496

I497

2.2.1 Flags from NC to PLC (Input Flags)

34

Flag Identity Meaning of Flag if Value=1 (TRUE)

I500 PLC defined softkey 1

I501 PLC defined softkey 2

I502 PLC defined softkey 3

I503 PLC defined softkey 4

I504 PLC defined softkey 5

I505 PLC defined softkey 6

I506 PLC defined softkey 7

I507 PLC defined softkey 8

If Y524=1 (selected by PLC softkeys from NC keyboard) signs of the 8 optionally used softkeys
offered by the NC is sent through flags I500, ..., I507. (If Y524=0 these softkeys are not offered
by the NC.) The caption of the softkeys can be defined by the PLC programmer in module :197.
The softkeys can be reached by means of selecting one of screens OPERATOR’S PANEL,
POSITION or CHECK.

Afterwards action menu MACHINE F must be selected after pressing action menu button .6

In this case the captions defined by the PLC programmer in module :197 appear on softkeys.

I500, ..., I507: PLC defined softkey 1, ..., 8
The flag is set to 1 if operator presses softkey 1, ..., 8.

2.2.1 Flags from NC to PLC (Input Flags)

35

Flag Identity Meaning of Flag if Value=1 (TRUE)

I510 First call of module :001

I511 Automatic operation interrupted

I512

I513

I514

I515

I516

I517 Parts required = Parts count

I510: First call of module :001
The flag is 1 during the full period of the first running of module :001 after power-on. It is used
in PLC program for gating of initialization procedure after power-on.

I511: Automatic operation interrupted
This flag is set to 1 if automatic operation is interrupted due to emergency state, change of
operation mode or RESET. In this case caption INTD is displayed in the 3 field of status bar.rd

The PLC programmers should take care of storing functions not executed into the suspended
block, and after canceling INTD state, of executing them, provided automatic operation is
restarted unconditionally or with condition BLOCK RESTART. To enable the modification of
functions by means of manual data input in suspended state is also a task of the programmer, e.g.
to overwrite spindle revolution so that by returning to automatic operation the new S is valid.

I517: Parts required = Parts count
If in the TIME/COUNTER table the value of PARTS COUNT has reached the value of PARTS
REQUIRED the flag is set to 1.
The value of parts count is increased by one
- by means of commands M02 and M30, if parameter 9024 PRTCNTM =0,
- by means of command Mnn, if parameter 9024 PRTCNTM=nn.
(The value of PARTS COUNT equals to the value of parameter 9022 PRTCOUNT, so does the
value of PARTS REQUIRED to the value of parameter 9023 PRTREQRD.)

2.2.1 Flags from NC to PLC (Input Flags)

36

Flag Identity Meaning of Flag if Value=1 (TRUE)

I520 1 M function strobe, code in register RH000st

I521 2 M function strobe, code in register RH001nd

I522 3 M function strobe, code in register RH002rd

I523 4 M function strobe, code in register RH003th

I524 5 M function strobe, code in register RH004th

I525 S function strobe, code in register RH005

I526 T function strobe, code in register RH006

I527 “A” function strobe, code in register RH007

I520, ..., I524: 1 , ..., 5 M function strobest th

At most 5 functions M, which are sent to PLC can be written within a program block. According
to the order written in the block NC writes the first loaded M data into register RH000 and sets
flag I520 to 1, it writes the 2 M data into register RH001 and sets flag I521 to 1, and so on.nd

The PLC programmer determines the order of the execution of the different functions M within
the given block.

I525: S function strobe
If function S is written within a program block data S is stored into input register RH005 and the
NC sets flag I525 to 1, namely it validates the value of register RH005.

I526: T function strobe
If function T is written within a program block data T is stored into input register RH006 and the
NC sets flag I526 to 1, namely it validates the value of register RH006..

I527: “A” function strobe
If address A is enabled for function (parameter 0183 A.MISCEL=1), and function A is written
within a program block data A is stored into input register RH007 and the NC sets flag I527 to
1 namely it validates the value of register RH007.

2.2.1 Flags from NC to PLC (Input Flags)

37

Flag Identity Meaning of Flag if Value=1 (TRUE)

I530 “B” function strobe, code in register RH008

I531 “C” function strobe, code in register RH009

I532 Chopping Function Strobe, Code on Flag I675

I533

I534

I535

I536 Valid push-button code in register RH049

I537 Message on screen

I530: “B” function strobe
If address B is enabled for function (parameter 0186 B.MISCEL=1), and function B is written
within a program block data B is stored into input register RH008 and the NC sets flag I530 to
1 namely it validates the value of register RH008..

I531: “C” function strobe
If address C is enabled for function (parameter 0189 C.MISCEL=1), and function C is written
within a program block data C is stored into input register RH009 and the NC sets flag I531 to
1 namely it validates the value of register RH009.

I532: Chopping Function Strobe, Code on Flag I675
If chopping on command G81.1 or chopping off command G80 is executed NC strobes flag I532
and indicates command on or off by setting or resetting of flag I675.

I536: Valid push-button code in register RH049
If a button is pushed on data input keyboard flag I536 is set to 1 and the button code appears in
register RH049. Push-button codes are specified in chapter 6.5 Listing of Push-button Codes on
page 237.

I537: Message on screen
If a message is displayed in the message field, i.e. in the 2 line of screen, no matter which one,nd

NC or PLC had sent it, this flag is set to 1. The message code can be found in register RH020.
The code table contains the codes and their description in chapter 6.4 Listing of Global Messages
234 on page.

2.2.1 Flags from NC to PLC (Input Flags)

38

Flag Identity Meaning of Flag if Value=1 (TRUE)

I540 Status of Machine on output

I541 Status of NC Ready signal

I542 Machine on output disabled

I543 Module :000 started from beginning

I544

I545 Programmed reference point return (G28)

I546 Executable block in buffer

I547 Stop request from NC

I540: Status of Machine on output
MACHINE ON output is a 24V output found on interface board. In case MACHINE ON output
is on
- other outputs of interface board receive power supply,
- the measuring system closes position control loop (otherwise it only measures),
- the NC enables any movement start,
- or PLC action.
In case MACHINE ON output is off the NC registers EMG (emergency stop) status and disables
all above actions.

Flag I540 serves for testing state of MACHINE ON output. MACHINE ON output is the logic
multiplication of the following signals:

MACHINE ON=(machine on request) and (NC ready) and (no crash), i.e.
I540=(Y540) and (I541) and (I542),

that is MACHINE ON signal is on only if the PLC requests power-on, the NC is ready and there
is no crash, e.g. servo error.

I541: Status of NC Ready signal
The status of NC Ready signal can be tested separately through flag I541.

I542: Machine on output disabled
If the NC observes fatal error (servo, feedback, encoder) and the machine magnetic must be
turned off this flag is set to 1.

I543: module :000 start from beginning
This flag is set to 1 in the PLC cycle, in which module :000 is started from the beginning. If in
the same cycle module :000 does not reach statement J0 it is set to 0 in the next cycle. If module
:000 is always terminated in the starting cycle the flag always remains 1.

I545: Programmed reference point return (G28)
If the control executes programmed reference point return (G28) this flag is set to 1.

I546: Executable block in buffer
If a block is ready to be executed by pressing START this flag is set to 1.

2.2.1 Flags from NC to PLC (Input Flags)

39

I547: STOP request from NC
If the NC arrives at STOP state during execution, e.g. due to an error, or in single block mode this
flag is set to 1. In this case it is the PLC programmer’s task to turn on the STOP lamp.

2.2.1 Flags from NC to PLC (Input Flags)

40

Flag Identity Meaning of Flag if Value=1 (TRUE)

I550 Interpolator stopped

I551 Interpolator empty (terminated)

I552 Override disabled

I553 Spindle rotation request

I554 Thread cutting (G33)

I555 Thread cutting cycle (G76, G78)

I556

I557

L The flags below are effective only in case of axes selected for start from NC at flags Y630,
..., Y637.

I550: Interpolator stopped
If the flag

=0 the interpolator is in START state
=1 the interpolator is in STOP state.

The interpolator STOP state does not correspond to STOP state of the control (STOP lamp is on).
This flag is set to 1 due to RESET (neither START, nor STOP lamp is on), or during plain
function block (START lamp is on), or perhaps in FEED HOLD state (Y542=1). If the flag is set
to 1 (STOP state) it does not mean, that the given axis has been already stopped, in order to do
this the appropriate flag I560, ..., I567 (1 , ..., 8 axis in position) must also be set to 1. st th

I551: Interpolator empty (terminated)
If the flag

=0 interpolator is active: it is in motion, or stopped but there is still path left
=1 interpolator has been terminated: empty.

This flag is set to 1 due to RESET. If I550=0 and I551=0 the control is in START state, but not
only in this case. If I550=1 and I551=0 the control is in STOP state, but not only in this case.

I552: Override disabled
This flag is set to 1 if override and feed STOP is disabled on the control due to technological
reasons when executing commands
 – G33, G34, G63, G76, G78, G84, G84.1 in case of turning control,
 – G33, G63, G74, G84 in case of milling control.

I553: Spindle rotation request
The interpolator sets this flag to 0 before starting one of commands G0, G4, G28, G29, G30, G31,
G53 and single axis movements (JOG, manual handle, reference point return) In this case the
interpolator starts the movement unconditionally, independent of the state of output flag Y650
(spindle rotates).
The interpolator sets this flag to 1 before executing commands G1, G2, G3, G33, G34 if spindle
does not take part in the interpolation (I651=0 or I661=0 spindle loop not closed).
In this case the interpolator does not start the movement till the PLC permits it by setting output
flag Y650 (spindle rotates) to 1.

2.2.1 Flags from NC to PLC (Input Flags)

41

In case of miscellaneous blocks (containing both interpolation and function) this flag can be used
for synchronizing interpolator and PLC activities. For during block execution the interpolator and
the PLC to receive their part of the given block at the same time the PLC must be aware of the
following cases:

G0 Xx Yy M3
G0 Xx Yy M4
G0 Xx Yy M5
G0 Xx Yy M19

Spindle rotation request (I553=0) is not transferred by the interpolator, the spindle can be started
or stopped parallel to the movement.

G1 Xx Yy Ff M3
G1 Xx Yy Ff M4

The interpolator sets flag I553 and waits with movement start till the PLC executes command M3
or M4 (switches on spindle) and permits movement with flag Y650 (spindle rotates).

G1 Xx Yy Ff M5
G1 Xx Yy Ff M19

During block execution flag I553 is set. The PLC must wait until the interpolator becomes empty
(I551=1) and the spindle can be stopped (M5) only than.

I554: Thread cutting (G33)
If this flag is set to 1 the interpolator executes a thread cutting interpolation G33 or G34. In this
case switching STOP state (Y471) on is disabled, only the spindle may be stopped.

I555: Thread cutting cycle (G76, G78)
If the turning machine control is doing thread cutting in one of the cycles G76 or G78 this flag
is set to 1. (Flags override disabled I552=1 and thread cutting I554=1 are also set.) In this case
both pressing the STOP button and setting flag Y471 (STOP state) are to be enabled too in order
to be effective the thread cutting cycle stop function, detailed in programming manual. This
function generates interrupted (INTD) state, therefore it must be handled.

2.2.1 Flags from NC to PLC (Input Flags)

42

Flag Identity Meaning of Flag if Value=1 (TRUE)

I560 1 axis in positionst

I561 2 axis in position nd

I562 3 axis in position rd

I563 4 axis in position th

I564 5 axis in position th

I565 6 axis in position th

I566 7 axis in position th

I567 8 axis in position th

I560, ..., I567: 1 , ..., 8 axis in positionst th

If the appropriate axis is within the tolerance interval set at parameters 4261 INPOS1, ..., 4268
INPOS8 compared to the difference between the current position and the desired position the
state of the appropriate input flag I560, ..., I567 is 1 (TRUE).

2.2.1 Flags from NC to PLC (Input Flags)

43

Flag Identity Meaning of Flag if Value=1 (TRUE)

I570 1 axis lubrication request st

I571 2 axis lubrication request nd

I572 3 axis lubrication request rd

I573 4 axis lubrication request th

I574 5 axis lubrication request th

I575 6 axis lubrication request th

I576 7 axis lubrication request th

I577 8 axis lubrication request th

I570,...,I577: 1 ,...,8 axis lubrication requestst th

Flags for lubrication according to the path already done. If the axis has already finished path set
at parameter 0161 LUBCONST1, ..., 0168 LUBCONST8 on the appropriate axis the NC sets
the appropriate flag I57n to 1. The flag is on for 20 msec period.

2.2.1 Flags from NC to PLC (Input Flags)

44

Flag Identity Meaning of Flag if Value=1 (TRUE)

I580

I581

I582

I583

I584

I585

I586

I587

2.2.1 Flags from NC to PLC (Input Flags)

45

Flag Identity Meaning of Flag if Value=1 (TRUE)

I590

I591

I592

I593

I594

I595

I596

I597

2.2.1 Flags from NC to PLC (Input Flags)

46

Flag Identity Meaning of Flag if Value=1 (TRUE)

I600

I601

I602 Program execution in DNC

I603 Program execution in NCT DNC

I604 Message acknowledged

I605 Transmission error

I606 Data transmitted from memory

I607 Data received in memory

I602: Program execution in DNC
The flag is 1 in case DNC program execution is selected on control. This may occur if DNC menu
of Run action menu of DIRECTORY screen is selected, or if flag Y602 is set to 1.

I603: Program execution in NCT DNC
The flag is 1 in case NCT DNC program execution is selected on control. This may occur if NCT
DNC menu of Run action menu of DIRECTORY screen is selected from data input keyboard, or
in case flag Y603 is set to 1.

I604: Message acknowledged
PLC strobes flag Y604 with command U604 and waits until flag I604 turns to 1. Afterwards flag
Y604 must be switched off by means of command D604. This pair of flags is for synchronizing
manual handle machining executed on PC. (Both manual data input mode and manual handle
mode are on: Y405AY401).

I605: Transmission error
If the PLC program initiates data transfer by setting either flag Y605 or Y606 to 1 and
transmission error occurs this flag is set to 1 by the NC. After it the PLC program should reset
transmission command flags by the instructions D605 or D606. The NC gives the error message
the following cases:
 – Overrun error during reception (data are coming more quickly than the PLC evaluates them).
 – If the I/O channel is busy. E.g.: The PLC program initiates data transfer during part program

input/output trough serial port.
 – Hardware error (eg.: parity, overrun) happens during data input.

I606: Data transmitted from memory
If the PLC desires to send data from memory (F010, ..., F499) through a periphery it sets flag
Y606 to 1. After the data output had occured the NC sets I606 to 1. Then the PLC should set flag
Y606 to 0, hereat the data transfer is finished. Befor the PLC program would send new data it
must wait until flag I606 is set to 0.
The start address of valid data is contained by register RH051, while the number of bytes to be
sent (record length) by register RH052. The number of periphery, through which the data is sent
is defined at register RH053.

2.2.1 Flags from NC to PLC (Input Flags)

47

I607: Data received in memory
The PLC program opens input channel by setting flag Y605 to 1. If all bytes specified in register
RH055 has arrived to the memory location specified by registers RH054 the NC sets flag I607
to 1. If he PLC has evaluated the data sent by the NC it sets flag Y607 to 1. As a handshake NC
will then reset I607. This means that the selected memory area can be overwritten.

2.2.1 Flags from NC to PLC (Input Flags)

48

Flag Identity Meaning of Flag if Value=1 (TRUE)

I610 1 axis motion requestst

I611 2 axis motion request nd

I612 3 axis motion request rd

I613 4 axis motion request th

I614 5 axis motion request th

I615 6 axis motion request th

I616 7 axis motion request th

I617 8 axis motion request th

I610,...,I617: 1 , ..., 8 axis motion requestst th

Before the interpolator sends motion command to an axis in the given path calculation cycle, it
asks for motion request on the appropriate axis. It waits until the PLC permits the motion
command in level 0 with the appropriate flag Y610, ..., Y617 set to 0.
These flags can be used for example for mechanical fixing of axes, or if a motor drives more axes
to set the movable axes. If these are unnecessary, when initializing flags Y610, ..., Y617 are set
to 0 (motion request) and so the interpolator works continuously. After the motion request flag
has been ceased, before fixing an axis or switching over the axis switch the given axis must reach
its desired position. (See flags I560, ..., I567).

2.2.1 Flags from NC to PLC (Input Flags)

49

Flag Identity Meaning of Flag if Value=1 (TRUE)

I620 1 axis rapid traverse request st

I621 2 axis rapid traverse request nd

I622 3 axis rapid traverse request rd

I623 4 axis rapid traverse request th

I624 5 axis rapid traverse request th

I625 6 axis rapid traverse request th

I626 7 axis rapid traverse request th

I627 8 axis rapid traverse request th

I620,...,I627: 1 , ..., 8 axis rapid traverse requestst th

Before the interpolator sends rapid traverse motion command (G0, G28, G29, G30, G53,
activating JOG rapid traverse push-button) to an axis, in the given path calculation cycle it sends
a rapid traverse request on the appropriate axis. Flags I620, ..., I627 are always transferred
together with the motion request flags. It waits until the PLC permits the motion command with
the appropriate flag Y610, ..., Y617 set to 0.
These flags can be used for example if different mechanical transmissions need to be connected
to feed motions and to rapid traverse movements on an axis.

2.2.1 Flags from NC to PLC (Input Flags)

50

Flag Identity Meaning of Flag if Value=1 (TRUE)

I630

I631

I632

I633

I634

I635

I636

I637

2.2.1 Flags from NC to PLC (Input Flags)

51

Flag Identity Meaning of Flag if Value=1 (TRUE)

I640 G51.2: polygonal turning

I641 polygonal turning, reverse direction (Q<0)

I642

I643

I644

I645

I646

I647

LAvailable only in turning machine controls

I640: G51.2: polygonal turning
The flag turns to high if program block G51.2 P_ Q _ is to be executed. The ratio of P/Q defines
the ratio of revolution of the main spindle (workpiece) and the slave spindle (tool). Programmed
absolute value of P is available in register RH040 while value Q in register in RH041. The
revolution of the tool spindle is calculated according the formula below:

The PLC program should turn the tool spindle to the revolution calculated before, then it should
request synchronization via flags Y655 or Y665.
Command G50.2 turns polygonal turning off and flag I640goes to low. The PLC program should
cancel the synchronization of the two spindles, then turn the tool spindle off.

I641: Polygonal turning, reverse direction (Q<0)
The direction of revolution of the tool spindle is determined by the sign of address Q in blocks
G51.2 P_ Q _. If the value of address Q is negative flag I641 turns to 1. The PLC program should
turn the tool spindle in the same direction as the main spindle if flag I641=0 and the reverse one
if it is 1, then should request synchronization the same or the counter direction by flags Y656 or
Y666.

2.2.1 Flags from NC to PLC (Input Flags)

52

Flag Identity Meaning of Flag if Value=1 (TRUE)

I650 1 spindle command signal ramping readyst

I651 1 spindle orientation readyst

I652 1 spindle in positionst

I653 State G96 on active spindle

I654 State G25 on active spindle

I655 Revolution fluctuated on active spindle

I656 S 1 spindle n=nst

I657 1 spindle n=0st

I650: 1 spindle command signal ramping readyst

The control sends the 1 spindle command signal to the drive by linearly ramping as set atst

parameters (5041 S1 ACCT, 5061 S1 DECT). If after a while the command signal does not
change the NC sets this flag to 1. Waiting for the switch-on of flag I656 can be started if this
signal has arrived. For the control executes rise and fall of the command signal in every 20 msec,
the flag is set to 0 in the PLC cycle following the command signal transfer command.

I651: 1 spindle orientation readyst

If the spindle drive can be positioned, spindle orientation can be requested from the NC by
switching on flag Y651 (U651). If the orientation is finished (spindle is set on the zero pulse of
the encoder) the NC acknowledges it by switching on input flag I651.

I652: 1 spindle in positionst

If the spindle functions as axis, i.e. the position loop is closed (I651=1), flag I652 shows, if the
lag of spindle is within the tolerance interval set at parameter 4269 INPOSS1. The orientation
is finished if condition (I651AI652) is true. It is advised to test the flag, if parameter 7169
REFSHIFTS1 is other than 0, i.e. the spindle is not stopped on the zero pulse, but is
comparatively offset. Flag I651 is set to 1 if the interpolator has stepped the offset, while flag I652
is 1 in case the lag of the measuring system has ceased.

I653: State G96 on active spindle
If request of the constant surface speed calculation is switched on on the active spindle by means
of command G96 this flag is set to 1. In state G97 (constant surface speed calculation is off) the
flag is set to 0. In state G96 the contents of register RH012 (calculated spindle revolution for the
current position) must be copied to spindle revolution register RH060 by the PLC programmer,
for the revolution of the appropriate constant surface speed to be in effect also in case of
command signal transfer.

I654: State G25 on active spindle
If the spindle revolution fluctuation check has been switched off by means of command G25 this
flag is set to 1. In this case flag I655 is always 0 (no fluctuation), independent of the spindle
revolution fluctuation. When turning the power on this flag is always 0. The fluctuation is
monitored by testing the 1 spindle’s encoder if flag Y660=0, while in state Y660=1 by testingst

the 2 spindle’s encoder.nd

2.2.1 Flags from NC to PLC (Input Flags)

53

I655: Revolution fluctuated on active spindle
If flag I654 is 0, provided the spindle is mounted with encoder, the revolution fluctuation of the
spindle is measured by the NC in respect of the values set at parameters 5001 TIME, 5002
SCERR, 5003 FLUCT% and 5004 FLUCTW if the 1 spindle is active (Y660=0). If the 2st nd

one is active (Y660=1) then 5441 TIME2, 5442 SCERR2, 5443 FLUCT%2 and 5444
FLUCTW2 parameters are used. If the revolution fluctuates flag I655 is set to 1.

SI656: 1 spindle n=nst

Provided the spindle is mounted with encoder the NC sets flag I656 to 1 if the spindle has already
registered the revolution. Flag I656 is switched according to the values set at parameters 5005
N% and 5006 NW.

I657: 1 spindle n=0st

Provided the spindle is mounted with encoder the NC sets flag I657 to 1 if the spindle revolution
is less than the value set at parameter 5007 N0.

 LWarning!

SFlags I656 n=n and I657 n=0 function independent of the state of flag Y654, i.e. that the
command signal output occurs from register RH060 or RH061.
In case of spindle stop:

I656=1 and I657=1

2.2.1 Flags from NC to PLC (Input Flags)

54

Flag Identity Meaning of Flag if Value=1 (TRUE)

I660 2 spindle command signal ramping readynd

I661 2 spindle orientation readynd

I662 2 spindle in positionnd

I663 1 spindle synchronized to the 2 onest nd

I664 2 spindle synchronized to the 1 onend st

I665

I666 S 2 spindle n=nnd

I667 2 spindle n=0nd

I660: 2 spindle command signal ramping readynd

The control sends the 2 spindle command signal to the drive by linearly ramping as set atnd

parameters (5081 S2 ACCT, 5101 S2 DECT). If after a while the command signal does not
change the NC sets this flag to 1. Waiting for the switch-on of flag I666 can be started if this
signal has arrived. For the control executes rise and fall of the command signal in every 20 msec,
the flag is set to 0 in the PLC cycle following the command signal transfer command.

I661: 2 spindle orientation readynd

If the spindle drive can be positioned, spindle orientation can be requested from the NC by
switching on flag Y661 (U661). If the orientation is finished (spindle is set on the zero pulse of
the encoder) the NC acknowledges it by switching on input flag I661.

I662: 2 spindle in positionnd

If the spindle functions as axis, i.e. the position loop is closed (I661=1), flag I662 shows, if the
lag of spindle is within the tolerance interval set at parameter 4270 INPOSS2. The orientation
is finished if condition (I661AI662) is true. It is advised to test the flag, if parameter 7170
REFSHIFTS2 is other than 0, i.e. the spindle is not stopped on the zero pulse, but is
comparatively offset. Flag I661 is set to 1 if the interpolator has stepped the offset, while flag I662
is 1 in case the lag of the measuring system has ceased.

I663: 1 spindle synchronized to the 2 onest nd

The PLC indicates to the NC by turning flag Y655 to 1 to synchronize the 1 spindle to the 2st nd

one. If the distance of the zero pulses of the two spindles is in the range defined on parameters
5402 SPSHIFT1± 4269 INPOSS1, the NC turns the flag I663 to 1. It indicates to the PLC that
synchronization is over.

I664: 2 spindle synchronized to the 1 onend st

The PLC indicates to the NC by turning flag Y665 to 1 to synchronize the 2 spindle to the 1nd st

one. If the distance of the zero pulses of the two spindles is in the range defined on parameters
5422 SPSHIFT2± 4270 INPOSS2, the NC turns the flag I664 to 1. It indicates to the PLC that
synchronization is over.

SI666: 2 spindle n=nnd

Provided the spindle is mounted with encoder the NC sets flag I666 to 1 if the spindle has already
registered the revolution. Flag I666 is switched according to the values set at parameters 5445
N%2 and 5446 NW2.

2.2.1 Flags from NC to PLC (Input Flags)

55

I667: 2 spindle n=0nd

Provided the spindle is mounted with encoder the NC sets flag I667 to 1 if the spindle revolution
is less than the value set at parameter 5447 N02.

 LWarning!

SFlags I666 n=n and I667 n=0 function independent of the state of flag Y664, i.e. that the
command signal output occurs from register RH065 or RH066.
In case of spindle stop:

I666=1 and I667=1

2.2.1 Flags from NC to PLC (Input Flags)

56

Flag Identity Meaning of Flag if Value=1 (TRUE)

I670 1 analog command signal ramping readyst

I671

I672 2 analog command signal ramping readynd

I673

I674

I675 Chopping Function Code (G81.1, G80)

I676 Axis Is Chopping

I677 Chopping Axis on Point R

I670, I672: 1 , 2 analog command signal ramping ready st nd

The control sends the 1 and 2 analog output command signal to the drive by linearly rampingst nd

as set at parameters 0124 A1 ACC, 0144 A2 ACC, 0125 A1 DCC, 0145 A2 DCC. If after a
while the command signal does not change the NC sets this flag to 1. For the control executes
command signal ramping in every 20 msec, the flag is set to 0 in the PLC cycle following the
command signal transfer command.

I675: Chopping Function Code (G81.1, G80)
When executing G81.1 command NC sets flag I675 and strobes flag I532. Chopping begins if
PLC sets flag Y675. Upon execution of command G80 NC resets flag I675 and strobes flag I532.
Chopping cancelled when PLC resets flag Y675.

I676: Axis Is Chopping
If PLC sets flag chopping Y675 PLC should wait until NC sets flag I676. This flag indicates PLC
that FIN signal can be set and execution of program can go on.

I677: Chopping Axis on Point R
NC sets the flag when chopping axis is on point R. If PLC resets flag Y675, NC moves chopping
axis from lower dead point to point R, stops it and sets flag I677. This flag indicates PLC that
the process is over and signal FIN can be set.

2.2.1 Flags from NC to PLC (Input Flags)

57

Flag Identity Meaning of Flag if Value=1 (TRUE)

I680

I681

I682

I683

I684

I685

I686

I687

2.2.1 Flags from NC to PLC (Input Flags)

58

Flag Identity Meaning of Flag if Value=1 (TRUE)

I690

I691

I692

I693

I694

I695

I696

I697

2.2.1 Flags from NC to PLC (Input Flags)

59

Flag Identity Meaning of Flag if Value=1 (TRUE)

I700 1 indexed message on the screenst

I701 2 indexed message on the screennd

I702 3 indexed message on the screenrd

I703 4 indexed message on the screenth

I704 5 indexed message on the screenth

I705 6 indexed message on the screenth

I706 7 indexed message on the screenth

I707 8 indexed message on the screenth

I700, ..., I707: 1 , ..., 8 indexed message on the screenst th

8 different user messages, indexed according to the contents of registers RH090, ..., RH097 can
be displayed on the screen containing user messages with the help of flags Y700, ..., Y707. Of
the maximum 8 messages only one, displayed in the 2 line of screen, is active. (For reading thend

active message there is no need to switch over to the screen containing the user messages.)
Due to this only one of flag of I700, ..., I707 has TRUE state. It is the task of the PLC
programmer to define the method of canceling the user messages.

2.2.1 Flags from NC to PLC (Input Flags)

60

Flag Identity Meaning of Flag if Value=1 (TRUE)

I710 1 message on the screenst

I711 2 message on the screennd

I712 3 message on the screenrd

I713 4 message on the screenth

I714 5 message on the screenth

I715 6 message on the screenth

I716 7 message on the screenth

I717 8 message on the screenth

Flag Identity Meaning of Flag if Value=1 (TRUE)

I790 65 message on the screenth

I791 66 message on the screenth

I792 67 message on the screenth

I793 68 message on the screenth

I794 69 message on the screenth

I795 70 message on the screenth

I796 71 message on the screenst

I797 72 message on the screennd

Flag Identity Meaning of Flag if Value=1 (TRUE)

I800 73 message on the screenrd

I801 74 message on the screenth

I802 75 message on the screenth

I803 76 message on the screenth

I804 77 message on the screenth

I805 78 message on the screenth

I806 79 message on the screenth

I807 80 message on the screenth

2.2.1 Flags from NC to PLC (Input Flags)

61

Flag Identity Meaning of Flag if Value=1 (TRUE)

I890 145 message on the screenth

I891 146 message on the screenth

I892 147 message on the screenth

I893 148 message on the screenth

I894 149 message on the screenth

I895 150 message on the screenth

I896 151 message on the screenst

I897 152 message on the screennd

I710, ..., I897: 1 , ..., 152 message on the screenst nd

152 different user messages can be displayed on the screen containing user messages with the
help of flags Y710, ..., Y897. Of the maximum 152 messages only one, displayed in the 2 linend

of screen, is active. (For reading the active message there is no need to switch over to the screen
containing the user messages.)
Due to this only one of flags I710, ..., I897 has TRUE state. It is the task of the PLC programmer
to define the method of canceling the user messages. To cancel an error message also the RESET
push-button, the signal of which is sent through input flag I477 can be used.

2.2.1 Flags from NC to PLC (Input Flags)

62

Flag Identity Meaning of Flag if Value=1 (TRUE)

I900 1 axis interpolator stoppedst

I901 1 axis interpolator empty (terminated)st

I902

I903 1 axis reference point readyst

I904

I905

I906

I907 1 axis drive readyst

Flag Identity Meaning of Flag if Value=1 (TRUE)

I910 2 axis interpolator stopnd

I911 2 axis interpolator empty (terminated)nd

I912

I913 2 axis reference point readynd

I914

I915

I916

I917 2 axis drive readynd

Flag Identity Meaning of Flag if Value=1 (TRUE)

I920 3 axis interpolator stoppedrd

I921 3 axis interpolator empty (terminated)rd

I922

I923 3 axis reference point readyrd

I924

I925

I926

I927 3 axis drive readyrd

2.2.1 Flags from NC to PLC (Input Flags)

63

Flag Identity Meaning of Flag if Value=1 (TRUE)

I930 4 axis interpolator stoppedth

I931 4 axis interpolator empty (terminated)th

I932

I933 4 axis reference point readyth

I934

I935

I936

I937 4 axis drive readyth

Flag Identity Meaning of Flag if Value=1 (TRUE)

I940 5 axis interpolator stoppedth

I941 5 axis interpolator empty (terminated)th

I942

I943 5 axis reference point readyth

I944

I945

I946

I947 5 axis drive readyth

Flag Identity Meaning of Flag if Value=1 (TRUE)

I950 6 axis interpolator stoppedth

I951 6 axis interpolator empty (terminated)th

I952

I953 6 axis reference point readyth

I954

I955

I956

I957 6 axis drive readyth

2.2.1 Flags from NC to PLC (Input Flags)

64

Flag Identity Meaning of Flag if Value=1 (TRUE)

I960 7 axis interpolator stoppedth

I961 7 axis interpolator empty (terminated)th

I962

I963 7 axis reference point readyth

I964

I965

I966

I967 7 axis drive readyth

Flag Identity Meaning of Flag if Value=1 (TRUE)

I970 8 axis interpolator stoppedth

I971 8 axis interpolator empty (terminated)th

I972

I973 8 axis reference point readyth

I974

I975

I976

I977 8 axis drive readyth

L The below flags are effective only in case of axes selected for start from PLC at flags
Y630, ..., Y637.

I900, I910, ..., I970: 1 , 2 , ..., 8 axis interpolator stoppedst nd th

If flag
=0 the interpolator is in START state on the appropriate axis
=1 the interpolator is in STOP state on the appropriate axis.

Due to RESET the flag is set to 1.
If the flag is 1 (STOP state) it does not mean, that the given axis has already stopped, this can
only be achieved if the appropriate flag I560, ..., I567(1 , ..., 8 axis in position) is also set to 1.st th

I901, I911, ..., I971: 1 , 2 , ..., 8 axis interpolator empty (terminated)st nd th

If the flag
=0 the interpolator is active in the appropriate axis: it moves or has already stopped, but
there is still path left
=1 the interpolator is empty on the appropriate axis.

Due to RESET the flag is set to 1.

L The below flags are effective on all axes, even the ones not selected for being controlled
by PLC at flags Y630, ..., Y637.

2.2.1 Flags from NC to PLC (Input Flags)

65

I903, I913, ..., I973: 1 , 2 , ..., 8 axis reference point readyst nd th

If the flag
=1 reference point return has already occurred on the appropriate axis.

I907, I917, ..., I977: 1 , 2 , ..., 8 axis drive ready.st nd th

If the flag
=1 digital drive is ready on the appropriate axis

L Warning!
This flag can only be used with NCT digital servo drives and XMU CAN digital
measuring system board!

2.2.1 Flags from NC to PLC (Input Flags)

66

Flag Identity Meaning of Flag if Value=1 (TRUE)

I980

I981

I982

I983

I984

I985

I986

I987 1 main drive readyst

I987: 1 main drive readyst

If the flag
=1 1 digital main drive is ready.st

L Warning!
This flag can only be used with NCT digital main drives and XMU CAN digital measuring
system board!

2.2.1 Flags from NC to PLC (Input Flags)

67

Flag Identity Meaning of Flag if Value=1 (TRUE)

I990

I991

I992

I993

I994

I995

I996

I997 2 main drive readynd

I997: 2 main drive readynd

If the flag
=1 2 digital main drive is ready.nd

L Warning!
This flag can only be used with NCT digital main drives and XMU CAN digital measuring
system board!

2.2.2 Flags from PLC to NC (Output Flags)

68

2.2.2 Flags from PLC to NC (Output Flags)

Reference to an output flag can be done with character Y and three digits similarly to the interface
output line:

Ypqr
The first digit must be equal to or greater than 4. The value range of the first digit:

p=4,5,6,7,8,9
The value range of the second digit (q):

q=0,1,2,3,4,5,6,7,8,9
The third one (r) defines the serial number of a bit within the selected byte and is therefore octal.
Its value range is

r=0,1,2,3,4,5,6,7

In case of a word operand reference to an output flag group can be made in the PLC program by
dropping the last digit:

Ypq

In the followings a full list of output flags is shown:

2.2.2 Flags from PLC to NC (Output Flags)

69

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y400 Reference point return mode lamp

Y401 Manual handle mode lamp

Y402 Incremental jog mode lamp

Y403 Jog mode lamp

Y404

Y405 Manual data input mode lamp

Y406 Automatic mode lamp

Y407 Edit mode lamp

The statuses of operation modes must be transferred to the NC through the following flags:

Y400: Reference point return mode lamp
The flag is set to 1 if mode REF has been selected by the operator and enabled by the PLC..

Y401: Manual handle mode lamp
The flag is set to 1 if mode HNDL has been selected by the operator and enabled by the PLC.

Y402: Incremental jog mode lamp
The flag is set to 1 if mode INCR has been selected by the operator and enabled by the PLC.

Y403: Jog mode lamp
The flag is set to 1 if mode JOG has been selected by the operator and enabled by the PLC.

Y404: -

Y405: Manual data input mode lamp
The flag is set to 1 if mode MDI has been selected by the operator and enabled by the PLC.

Y406: Automatic mode lamp
The flag is set to 1 if mode AUTO has been selected by the operator and enabled by the PLC.

Y407: Edit mode lamp
The flag is set to 1 if mode EDIT has been selected by the operator and enabled by the PLC.

The operation mode states must be kept in 1 till the given mode is active. The operator’s manual
of the given control describes the operation modes that can be activated simultaneously.
According to this the PLC programmer has to recognize the conflicting modes.

The states of the modes are displayed by the control on the softkeys on screens OPERATOR’S
PANEL, POSITION and CHECK after selecting action menu MODES according to flags Y400,
..., Y407.

2.2.2 Flags from PLC to NC (Output Flags)

70

If machine control board 2 is applied on control the lamps of mode buttons are switched on or off
also on the basis of flags Y400, ..., Y407.

Y403 Y402 Y401 Y400 Y407 Y406 Y405

 I403 I402 I401 I400 I407 I406 I405

Arrangement of mode buttons on machine control board 2

2.2.2 Flags from PLC to NC (Output Flags)

71

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y410 1 axis selected lampst

Y411 2 axis selected lampnd

Y412 3 axis selected lamprd

Y413 4 axis selected lampth

Y414 5 axis selected lampth

Y415 6 axis selected lampth

Y416 7 axis selected lampth

Y417 8 axis selected lampth

The following flags must be switched on to select an axis for either jog or incremental jog mode
or manual handle movement, as well as for reference point return.

Y410, ..., Y417: 1 , ..., 8 axis selected lampst th

The flag is set to one if the 1 , ..., 8 axis has been selected by the operator and enabled by thest th

PLC

The operator’s manual of the given control describes if more than one axis can be selected at the
same time. If needed, simultaneous selection of more than one axis has to be forbidden by the
PLC programmer.

The selected axis is displayed by the control on screens OPERATOR’S PANEL, POSITION and
CHECK after selecting action menu AXIS according to flags Y410, ..., Y417.
If machine control board 2 is applied and maximum 4 axes are built in the machine, there is no
need for axis selection in jog and increment modes, because the built-in jog buttons are adequate
for selecting at most 4 axes. If there are more than 4 axes in the machine, one of the 8 free-
purpose buttons must be used in order to select the 4 , 5 , etc. axis. In this case the lamp (Y480,th th

..., Y487) of the selected button on control panel and the appropriate flag Y410, ..., Y417 towards
the NC must be switched on or off parallel.
In handwheel mode if maximum 4 axes are built in the machine, axis direction buttons can also
be used for selecting the 1 , ..., 4th axis. In this case the lamp (Y450, ..., Y457) of the selectedst

axis e.g. X belonging to both directions (+ and –) is expedient to be switched on by means of axis
direction button together with the appropriate flag Y410, ..., Y417 towards the NC. If there are
more than 4 axes in the machine, jog buttons of 3 axes can be used as hereinabove, while
selection of further axes can be done as discussed for jog and increment modes.
If separate handwheels are being built on each axis (on axes X and Z in case of turning machines
or on axes X, Y and Z in case of milling machines) X, Y, or Z handwheel is effective only in case
if all axis select flags (lamps) are low (0). If one of them is on (1) only the common handwheel
that can be used for all axes is effective.

2.2.2 Flags from PLC to NC (Output Flags)

72

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y420 1 increment lamp

Y421 10 increment lamp

Y422 100 increment lamp

Y423 1000 increment lamp

Y424

Y425

Y426 Automatic tool length measure softkey lamp

Y427 JOG rapid traverse lamp

The increment flags are used in modes INCR and HNDL.

Y420: 1 increment lamp
It signals 1 increment step length in incremental jog.

Y421: 10 increment lamp
It signals 10 increment step length in incremental jog.

Y422: 100 increment lamp
It signals 100 increment step length in incremental jog.

Y423: 1000 increment lamp
It signals 1000 increment step length in incremental jog.

Only one increment flag can be active at a time, of which the PLC programmer must take care.
The selected increment size is displayed by the control on screens OPERATOR’S PANEL,
POSITION and CHECK after selecting action menu INCREMENT according to flags Y420, ...,
Y427.
If machine control board 2 is applied on control the lamps of the selected increment size are
switched on or off also on the basis of flags Y420, ..., Y427.

Y426: Automatic tool length measure softkey lamp
In case of lathe controls select T. LENG MEASUR (length offset measurement) within screenF4

OFFSETS . Press action menu button . Softkey AUTO MEAS F appears among theF5 3

actions. Flag Y426 shows the on or off state of this function. It can only be set to 1 in jog mode.
If the flag is set to 1 and screen LENGTH MEAS is active as the effect of jog buttons (even if
feed rate switch state is 0%) the selected axis moves at the rate defined at parameter 8022 G37FD
until the button belonging to the selected direction of the tool sensor is pressed (flags Y580, ...,
Y583).

Y420 Y421 Y422 Y423

 I420 I421 I422 I423

Arrangement of increment selector

buttons on machine control board 2

2.2.2 Flags from PLC to NC (Output Flags)

73

Y427: JOG rapid traverse lamp
The flag is set to 1 if the operator has activated JOG rapid traverse push-button and 0 if it has
been inactivated.
If machine control board 2 is applied on control, flag Y427 is at the same time the lamp of rapid

traverse button .

2.2.2 Flags from PLC to NC (Output Flags)

74

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y430 JOG X axis + direction selected

Y431 JOG Y axis + direction selected

Y432 JOG Z axis + direction selected

Y433 JOG + direction selected

Y434 JOG X axis ! direction selected

Y435 JOG Y axis ! direction selected

Y436 JOG Z axis ! direction selected

Y437 JOG ! direction selected

Y433, Y437: JOG +/! direction selected
In both cases the axis in compliance with the state of axis switch (defined at flag Y410, ..., Y417)
moves in positive or negative direction until the appropriate flag is set to 1.

Y430, Y431, Y432, Y434, Y435, Y436: JOG X, Y, Z axis +/! direction selected
The flag is set to 1 when the appropriate axis is in motion.

In case of JOG push-buttons four axes can be selected at the same time.

On machine control board 2 all jog buttons have a lamp switched through flags Y450, ...Y457.
When a jog button is pressed (I430, ..., I437) the appropriate flag Y430, ..., Y437 in accordance
with the button caption must obligatorily be switched on towards the NC as well as it is also
expedient to switch the lamp belonging to the appropriate button, signaling the push (Y450,
...Y457 on).

2.2.2 Flags from PLC to NC (Output Flags)

75

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y440 Test lamp

Y441 Machine lock lamp

Y442 Dry run lamp

Y443 Block restart lamp

Y444 Block return lamp

Y445 Conditional stop lamp

Y446 Conditional block 1 lamp

Y447 Block by block mode lamp

The statuses of different states must be transferred to the NC through the following flags:

Y440: Test lamp
If the flag is set to 1 no movement command is sent to the measuring system. In this case function
commands must not be received by the PLC from NC. Use the lamp in toggle mode for each Test
push-button action.

Y441: Machine lock lamp
If the flag is set to 1 no movement command is sent to the measuring system. In this case function
commands must not be received by the PLC from NC. Use the lamp in toggle mode for each
Machine lock push-button action.

Y442: Dry run lamp
If the flag is set to 1 all feed motion is executed at the rate specified at parameter group 4741
FEEDMAX. Use the lamp in toggle mode for each Dry run push-button action.

Y443: Block restart lamp
If the flag is set to 1 by pressing START the block is reloaded and re-executed from beginning.
Use the lamp in toggle mode for each Block restart push-button action.

Y444: Block return lamp
If the flag is set to 1 by pressing START the machining is continued from the interruption point
of the block. Use the lamp in toggle mode for each Block return push-button action.

Behind flags Y443 and Y444 there are conflicting functions, so the PLC programmer should make
sure that only one of the two flags is set to 1.

Y445: Conditional stop lamp
If the flag is set to 1 function M01 is executed. Use the lamp in toggle mode for each Conditional
stop push-button action.

Y446: Conditional block 1 lamp
If the flag is set to 1 all blocks starting with /1 are skipped. Use the lamp in toggle mode for each
Conditional block push-button action.

2.2.2 Flags from PLC to NC (Output Flags)

76

Y447: Single block mode lamp
If the flag is set to 1 the control stops after every block execution and registers STOP state.Use
the lamp in toggle mode for each Single block push-button action.

The states are displayed by the control on screens OPERATOR’S PANEL, POSITION and
CHECK after selecting action menu STATE according to flags Y440, ..., Y447.

If machine control board 2 is applied on control the lamps of condition buttons are switched on
or off also on the basis of flags Y420, ..., Y427.

Y447 Y446 Y445

 I447 I446 I445
Y440 Y441 Y442

 I440 I441 I442
Y443 Y444 Y472

 I443 I444 I472

A r r a n g e m e n t o f s ta t e

switches on machine control

board 2

2.2.2 Flags from PLC to NC (Output Flags)

77

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y450 JOG 1 push-button lamp

Y451 JOG 2 push-button lamp

Y452 JOG 3 push-button lamp

Y453 JOG 4 push-button lamp

Y454 JOG 5 push-button lamp

Y455 JOG 6 push-button lamp

Y456 JOG 7 push-button lamp

Y457 JOG 8 push-button lamp

Y450, ..., Y457: JOG 1, ..., JOG 8 push-button lamp
If the machine control board 2 is used (Y532=1) the lamps of
buttons JOG 1, ..., JOG 8 can be switched on through flags
Y450, ..., Y457.

Y450 Y451 Y452

1 2 3

 I430 I431 I432

Y453 Y427 Y454

4 5

 I433 I427 I434

Y455 Y456 Y457

6 7 8

 I435 I436 I437

Arrangement of jog buttons on

machine control board 2

2.2.2 Flags from PLC to NC (Output Flags)

78

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y460 1 axis lock selected st

Y461 2 axis lock selected nd

Y462 3 axis lock selected rd

Y463 4 axis lock selected th

Y464 5 axis lock selected th

Y465 6 axis lock selected th

Y466 7 axis lock selected th

Y467 8 axis lock selected th

Y460, ..., Y467: 1 , ..., 8 axis lock selectedst th

If the flag is set to 1 no movement command is sent to the measuring system of the appropriate
axis. The axis arrangement corresponds to the physical axis arrangement set at parameter group
4281 AXIS .

2.2.2 Flags from PLC to NC (Output Flags)

79

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y470 Start state lamp

Y471 Stop state lamp

Y472 Function lock lamp

Y473 Manual handle feed

Y474 M3 lamp of machine control board 2

Y475 M4 lamp of machine control board 2

Y476 M5 lamp of machine control board 2

Y477 RESET from PLC

Y470: Start state lamp
Y471: Stop state lamp
The enabled combinations, which must be ensured by the operator:

Y471 Y470

0 0 neither

0 1 START state

1 0 STOP state

1 1 inhibited state

If machine control board 2 is applied on control the lamps of START
and STOP buttons are switched on or off also on the basis of flags
Y470, Y471.

Y472: Function lock lamp
If the flag is set to 1 no function must be received by the PLC from the NC as well as sent to the
machine.

If machine control board 2 is applied on control the lamp of function lock button is

switched on or off also on the basis of flag Y472.

Y473: Manual handle feed
If the flag is set to 1 in automatic or manual data input mode feed is received from the mutual
handwheel (available for all axes). Slides move faster or slower on the programmed path in
function of the increment set on flags Y420, ..., Y422. It moves forward (positive direction) or
backward (negative direction) on the path in function of the direction of turning.

Y470 Y471

 I470 I471

Arrangement of start and

stop buttons on machine

control board 2

2.2.2 Flags from PLC to NC (Output Flags)

80

Y474: M3 lamp of machine control board 2
In state M3 the flag must be set to 1 that lights up M3 lamp. It may be used only in case of
machine control board 2 (Y532=1).

Y475: M4 lamp of machine control board 2
In state M4 the flag must be set to 1 that lights up M4 lamp. It may be used only in case of
machine control board 2 (Y532=1).

Y476: M5 lamp of machine control board 2
In state M5 the flag must be set to 1 that lights up M5 lamp. It may be used only in case of
machine control board 2 (Y532=1).

On machine control board 2 the rotation states (M3, M4) or stop state (M5) of spindle can be
signaled with the help of the above lamps.

Y477: RESET from PLC
In case the the data input keyboard is operated by the PLC (Y537=1), the PLC program can
activate reset by setting flag Y477 to1. The effect of reset has to be awaited, since it is the result
of a longer process. E.g.: if flag I537 is 1 (message on screen) flag Y477 must be kept set to 1
until the message disappears.

Y474 Y476 Y475

 I474 I476 I475

Arrangement of spindle

rotation buttons on machine

control board 2

2.2.2 Flags from PLC to NC (Output Flags)

81

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y480 1 user’s push-button's lamp of machine control board 2st

Y481 2 user’s push-button's lamp of machine control board 2nd

Y482 3 user’s push-button's lamp of machine control board 2rd

Y483 4 user’s push-button's lamp of machine control board 2th

Y484 5 user’s push-button's lamp of machine control board 2th

Y485 6 user’s push-button's lamp of machine control board 2th

Y486 7 user’s push-button's lamp of machine control board 2th

Y487 8 user’s push-button's lamp of machine control board 2th

Y480, ..., Y487: 1 , ..., 8 user’s push-button's lamp ofst th

machine control board 2
These flags are the lamps of free-purpose buttons mounted on
machine control board 2, the function of which is defined by
the PLC programmer.

Y487 Y486 Y485 Y484

 I487 I486 I485 I484

Y483 Y482 Y481 Y480

 I483 I482 I481 I480

Arrangement of free-purpose buttons

on machine control board 2

2.2.2 Flags from PLC to NC (Output Flags)

82

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y490

Y491

Y492

Y493

Y494

Y495

Y496

Y497

2.2.2 Flags from PLC to NC (Output Flags)

83

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y500 PLC defined softkey 1 lamp

Y501 PLC defined softkey 2 lamp

Y502 PLC defined softkey 3 lamp

Y503 PLC defined softkey 4 lamp

Y504 PLC defined softkey 5 lamp

Y505 PLC defined softkey 6 lamp

Y506 PLC defined softkey 7 lamp

Y507 PLC defined softkey 8 lamp

If Y524=1 (PLC switches from SW control panel) the signal of the 8 free-purpose softkey buttons
offered by the NC is transferred by the NC through flags I500, ..., I507. (If Y524=0 these buttons
are not offered by the NC.) The button captions can be determined by the PLC programmer in
module :197.
The buttons are available if one of screns OPERATOR’S PANEL, POSITION or CHECK is
selected.
Afterewards action menu F MACHINE must be selected after pressing action menu button6

. In this case the captions defined by the PLC programmer in module :197 appear on the

softkeys.

These statuses are the lamps of push-buttons transferred through flags I500, ..., I507.

Y500, ..., Y507: PLC defined softkey 1, ..., 8 lamp

In order to switch on the status the appropriate flag must be set to1.

2.2.2 Flags from PLC to NC (Output Flags)

84

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y510 Conditional block 2 skip

Y511 Conditional block 3 skip

Y512 Conditional block 4 skip

Y513 Conditional block 5 skip

Y514 Conditional block 6 skip

Y515 Conditional block 7 skip

Y516 Conditional block 8 skip

Y517 Conditional block 9 skip

Y510, ..., Y517: Conditional block 2, ..., 9 skip
If the flag is set to 1 it skips every block starting with /n (n=2, ..., 9).

2.2.2 Flags from PLC to NC (Output Flags)

85

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y520 Mode selection with softkeys

Y521 Axis selection with softkeys

Y522 Increment selection with softkeys

Y523 State selection with softkeys

Y524 PLC defined buttons with softkeys

Y525 R% (rapid traverse override) with softkeys

Y526 S% (spindle override) with softkeys

Y527 F% (feed override) with softkeys

With the help of the below output flags the PLC programmer decides, which machine action
groups are activated by means of softkeys, and which are only used for displaying.

Y520: Mode selection with softkeys
If the flag is set to 1 the operation modes are activated by means of softkeys. PLC receives state
of the softkeys through flags I400, ..., I407. The valid statuses of operation modes are sent to the
NC through flags Y400, ..., Y407.

Y521: Axis selection with softkeys
If the flag is set to 1 the axes are activated by means of softkeys. PLC receives state of the axes
through flags I410, ..., I417. The valid statuses of axes are sent to the NC through flags Y410, ...,
Y417.

Y522: Increment selection with softkeys
If the flag is set to 1 the increments are activated by means of softkeys. PLC receives the states
through flags I420, ..., I427. The valid statuses of increments are sent to the NC through flags
Y420, ..., Y427.

Y523: State selection with softkeys
If the flag is set to 1 the states are activated by means of softkeys. PLC receives the states through
flags I440, ..., I447. The valid statuses of conditions are sent to the NC through flags Y440, ...,
Y447.

Y524: PLC defined buttons with softkeys
If the flag is set to 1 the PLC defined buttons are activated by means of softkeys. The caption of
softkeys can be determined by the PLC programmer in module :197.
The length of a caption may be 6 character. The caption texts are separated by commas "," :

:197PLC1,PLC2,PLC3,PLC4,PLC5,PLC6,PLC7,PLC8$
The last string together with module :197 is closed by character $.
PLC receives state of the PLC defined buttons through flags I500, ..., I507. The valid statuses of
PLC defined buttons are sent to the NC through flags Y500, ..., Y507.

Y525: R% (rapid traverse override) with softkeys
If the flag is set to 1 the rapid traverse override states are activated by means of softkeys. PLC
receives values of R% through register RH039. The valid R% value is sent to the NC through
register RH089.

2.2.2 Flags from PLC to NC (Output Flags)

86

Y526: S% (spindle override) with softkeys
If the flag is set to 1 the spindle override is activated by means of softkeys. PLC receives value
of the S% through register RH029. The valid S% value is sent to the NC through register RH079.

Y527: F% (feed override) with softkeys
If the flag is set to 1 the feed override is activated by means of softkeys. PLC receives value of
the F% through register RH028. The valid F% value is sent to the NC through register RH078.

2.2.2 Flags from PLC to NC (Output Flags)

87

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y530 Jog buttons from NC keyboard

Y531 Selection of machine control board 1

Y532 Selection of machine control board 2

Y533

Y534

Y535

Y536 Valid push-button code in register RH099

Y537 Data input from PLC

Y530: Jog buttons from NC keyboard
If the flag is set to 1 in continuous and incremental JOG modes the numeric keyboard is to be
used. Interpretation of the keys is as follows:

<4>: movement in negative direction (-),
<5>: rapid traverse movement
<6>: movement in positive direction (+).

The appropriate axis must be set with the help of softkeys in AXES action menu, while in mode
INCR the increment size in the INCREMENT action menu.
The selected axis direction is sent by the NC to the PLC through flags I433, ..., I437 In order to
start the motion flags Y433, ..., Y437 must be set by the PLC. The selected rapid traverse is
transferred through flag I427, which is to be sent by the PLC to the NC through flag Y427.

Y531: Selection of machine control board 1
On machine control board 1 the following buttons and rotary switches can be found:

spindle rotation and spindle stop buttons <M3>, <M4>, <M5>,
spindle override buttons <->, <100%>, <+>,
<feed override> rotary switch,
jog axis direction buttons <-X>, <+X>, <-Y>, <+Y>, <-Z>, <+Z>, <->, <+>,
<rapid traverse> button

As a result of the above list flags Y520, ..., Y530 must be set in case of using machine control
board 1 in the following way:

Y520=1: mode selection with softkeys
Y521=1: axis selection with softkeys
Y522=1: increment selection with softkeys
Y523=1: state selection with softkeys
Y524=0, or 1: PLC defined buttons with softkeys
Y525=1: rapid traverse override with softkeys
Y526=0: spindle override from machine control board 1
Y527=0: feed override from machine control board 1
Y530=0: jog buttons from machine control board 1

- The spindle override value is now modified from machine control board 1, but in this case
the PLC receives the current value also in register RH029, which is to be copied into
register RH079.

2.2.2 Flags from PLC to NC (Output Flags)

88

- This also refers to feed override (registers RH028 - RH078).
- With jog axis direction buttons (1), ..., (8) in effect flags I430, ..., I437 are control ed on.

These flags must be copied to the appropriate flags Y430, ..., Y437.

Y532: Selection of machine control board 2
If machine control board 2 is applied the below flags must be obligatorily filled out in the
following way:

Y520=0: mode selection not from SW control panel
Y521=0 or 1: axis selection optionally from free-purpose buttons of machine control

board 2 (Y521=0) or from SW control panel (Y521=1)
Y522=0: increment selection not from SW control panel
Y523=0: state selection not from SW control panel
Y524=0 or 1: PLC switches optionally from SW control panel
Y525=0 ory 1: rapid traverse override selection optionally from keyboard or SW control

panel
Y526=0: spindle override selection from keyboard push-buttons
Y527=0: feedrate override selection from keyboard switch
Y530=0: jog buttons and rapid traverse button from keyboard
Y432=1: selecting machine control board 2

- Now the spindle override value is modified by the push-buttons on machine control board
2, but even in this case the PLC receives the current value in register RH029, which must
be copied into register RH079.

- Likewise in case of feed rate override (registers RH028 - RH078).
- As the effect of jog buttons (1), ..., (8) flags I430, ..., I437 are switched on. These flags

must be copied to the appropriate flags Y430, ..., Y437.

Y536: Valid push-button code in register RH099
If flag Y537 is 1, the NC does not acquires push-button codes of data input keyboard from the
control panel but from PLC by reading register RH099. If flag Y536 is set to 1 the PLC has
written one valid push-button code into register RH099. Push-button codes can be found in
chapter 6.5 Listing of Push-button Codes on page 237.

Y537: Data input from PLC
If the flag is 0 the NC acquires the push-button codes from the NC or data input keyboard. If the
flag is set to 1 push- button on data input keyboard is uneffective, the push-button codes are read
by the NC from register RH099 when flag Y536 is set to 1. As the effect of the flag being set to
1 the screen takes the absolute position (RH027=0102h), while the softkeys take the screen
selection (RH026=0000h) state.

2.2.2 Flags from PLC to NC (Output Flags)

89

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y540 Machine on request

Y541 No input synchronization in module :000

Y542 Feed hold

Y543 General security gate enable

Y544 Interrupt macro call enable

Y545 Free purpose user’s timer enable

Y546 Module :002 call enable

Y547 FIN: functions executed by PLC

Y540: Machine on request
MACHINE ON output is a 24V output found on interface board. In case MACHINE ON output
is on
- other outputs of interface board receive power supply,
- the measuring system closes position control loop (otherwise it only measures),
- the NC enables any movement start,
- or PLC action.
In case MACHINE ON output is off the NC registers EMG (emergency stop) status and disables
all above actions.
PLC may initiate the switch-on of MACHINE ON output by setting machine on request flag
Y540 to 1. MACHINE ON output is the logic multiplication of the following signals:

MACHINE ON=(machine on request) and (NC ready) and (no crash), i.e.
I540=(Y540) and (I541) and (I542),

that is machine on request will only be effective if the NC is ready and there is no crash, e.g.
servo error. (NC ready signal is switched by NC watchdog timer. If the watchdog timer misses
MACHINE ON output is automatically switched off. The control can be restarted only upon
power-off.)
If the power-on is successful flag I540 is 1.

Y541: No input synchronization in module :000
If flag Y541 is set to 1 when the PLC starts up (flag I510 is set to 1), synchronizing of interface
input lines and input flags in module :000 is suspended, i.e. the PLC acknowledges their states
updated in every 20 msec.

Y542: Feed hold
If this flag is set to 1 the feed is stopped on all axes unconditionally, independent of the state of
START flag, and the status of G63 (override and stop inhibit) . In case the START flag is set to
1 the feed can only be started if this flag is set to 0. The movement starts with acceleration and
stops with deceleration. If flag Y542 is switched on in state G63 (override and stop disabled) the
spindle must be stopped in PLC program.

Y543: Enable of opening general security gate
As the effect of command U543 the control enables the opening of general security gate and of
special security gates on SECURITY PANEL screen in SETTINGS function group. In order to
open each security gate softkey Open must be pressed on he above screen.

2.2.2 Flags from PLC to NC (Output Flags)

90

Y544: Interrupt macro call enable
If the flag is set to 1 the interrupt macro is called as discussed in the programming manual.

Y545: Free purpose user’s timer enable
If the flag is set to 1 the NC starts the free purpose user’s timer, which measures time till the NC
sets it to 0.

Y546: Module :002 call enabled
If the flag is set to 1 module :002 is called in every t msec (see: chapter 1.2 on page 8).

Y547: FIN: functions executed (FINished) by PLC
If the PLC has executed all function commands received from NC through flags I520, ..., I531
FIN flag is set to 1. Due to this the control sends commands of the next block to be executed to
the interpolator or PLC instantly. In other words at the start of the first call of module :001
following the setting of flag to 1 flags I520, ..., I531 contain the commands of the next block to
be executed.

L Warning!
If flag Y547 is not switched off when receiving a function and on after function execution, then
in single block mode, provided the given function is by itself in the block there is no stop at the
end of block, because it is also synchronized by READY signal.

2.2.2 Flags from PLC to NC (Output Flags)

91

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y550 1 axis on reference switchst

Y551 2 axis on reference switchnd

Y552 3 axis on reference switchrd

Y553 4 axis on reference switchth

Y554 5 axis on reference switchth

Y555 6 axis on reference switchth

Y556 7 axis on reference switchth

Y557 8 axis on reference switchth

Y550, ..., Y557: 1 , ..., 8 axis on reference switchst th

Switching on the flag (U55n) tells the NC that the n axis is on reference point switch. The PLCth

programmer must copy the state of reference position switches mounted on the machine to these
flags. The axis numbers indicate the physical axis numbers defined at parameter grop 4281
AXIS.
The NC uses these flags in mode Reference point return if MACHINE type setting is assigned
among parameter groups 7261 REFTYPE1, ..., 7401 REFTYPE8.

2.2.2 Flags from PLC to NC (Output Flags)

92

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y560 1 axis on + limit switchst

Y561 2 axis on + limit switchnd

Y562 3 axis on + limit switchrd

Y563 4 axis on + limit switchth

Y564 5 axis on + limit switchth

Y565 6 axis on + limit switchth

Y566 7 axis on + limit switchth

Y567 8 axis on + limit switchth

Y560, ..., Y567: 1 , ..., 8 axis on + limit switchst th

Switching on the flag (U56n) tells the NC that the n axis is on + limit switch. In this caseth

control displays error message LIMITn+ and forbids all movement in positive direction on the
n axis. Command D56n permits movement in positive direction on the n axis again.th th

The axis numbers indicate the physical axis numbers defined at parameter group 4281 AXIS. The
PLC programmer must copy the state of limit switches mounted on the machine to these flags.

2.2.2 Flags from PLC to NC (Output Flags)

93

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y570 1 axis on – limit switch st

Y571 2 axis on – limit switch nd

Y572 3 axis on – limit switch rd

Y573 4 axis on – limit switch th

Y574 5 axis on – limit switch th

Y575 6 axis on – limit switch th

Y576 7 axis on – limit switchth

Y577 8 axis on – limit switchth

Y570, ..., Y577: 1 , ..., 8 axis on – limit switchst th

Switching on the flag (U57n) tells the NC that the n axis is on – limit. In this case controlth

displays error message LIMITn– and forbids all movement in negative direction on the n axis.th

Command D57n permits movement in negative direction on the n axis again.th

The axis numbers indicate the physical axis numbers defined at parameter group 4281 AXIS. The
PLC programmer must copy the state of limit switches mounted on the machine to these flags.

2.2.2 Flags from PLC to NC (Output Flags)

94

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y580 Tool offset sensor pressed in X+ direction

Y581 Tool offset sensor pressed in X– direction

Y582 Tool offset sensor pressed in Z+ direction

Y583 Tool offset sensor pressed in Z– direction

Y584

Y585

Y586

Y587

In case of lathe controls select T. LENG MEASUR (length offset measurement) within screenF4

OFFSETS . Press action menu button . Softkey AUTO MEAS F appears among theF5 3

actions (flag I426). Flag Y426 shows the on or off state of this function. It can only be set to 1
in jog mode. If the key is pressed (Y426=1) as the effect of jog buttons (even if feed rate override
switch state is 0%) the selected axis moves at the rate defined at parameter 8022 G37FD until the
button belonging to the selected direction of the tool sensor is pressed (flags Y580, ..., Y583).
Y580: Tool offset sensor direction X+
pressed
Y581: Tool offset sensor direction X–
pressed
Y582: Tool offset sensor direction Z+
pressed
Y583: Tool offset sensor direction Z–
pressed
Signals of tool offset sensor are
received by 24V interface inputs
determined by the machine builder. The
signals of these inputs must be copied
to the appropriate flags Y580, ..., Y583.
The inputs must be requested and
copied over and over by means of
module :002 for the interest of accurate
measuring. The module enabling is expedient to be linked with the LED of automatic tool length
measure Y426.
If the tool offset sensor has only one output for all four directions the common output must be
copied to the appropriate flag Y580, ..., Y583 by the use of flags Y430, Y434, Y432, Y436 (JOG
X+, JOGX–, JOGZ+, JOGZ–).

2.2.2 Flags from PLC to NC (Output Flags)

95

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y590 Axis 1 synchron slave on

Y591 Axis 2 synchron slave on

Y592 Axis 3 synchron slave on

Y593 Axis 4 synchron slave on

Y594 Axis 5 synchron slave on

Y595 Axis 6 synchron slave on

Y596 Axis 7 synchron slave on

Y597 Axis 8 synchron slave on

Y590, ..., Y597: Axis 1, ..., 8 synchron slave on
Two axes can be synchronized. In this case one of the axises will be the master and the other will
be the slave. We can define the master axis of the slave axis with the 1391 SYNCHRON
parameter group. The number of the master axis should always be specified at the parameter of
the slave axis.
In the case of a milling machine with two spindles, the moving of the table (X axis) is the same
for both spindles. The axes of the master spindle should be Y and Z. Then the Y and Z axes are
the master axes. The axes of the other, slave spindle should be V and W. Then the V and W axes
are the slave axes. If you would like to make two identical workpieces simultaneously, you do not
have to make different programs for X, Y, Z and X, V, W, but in the corresponding program with
M function the Y-V and the Z-W axes can be connected and synchron cutting can be carried out.
For example:
...
M78 (Disconnection of the synchron axises)
T2
G30 YI0 ZI0 P2 (Y, Z moves to the change position)
M6 (T2 tool to the master spindle)
G30 VI0 WI0 P2 (V, W moves to the change position)
T52
M6 (T52 tool to the slave spindle)
G55 G0 X100 Y200 (positioning on the master side)
U100 W200 (positioning to the same position on the slave side)
G43 Z10 H2 (H2 compensation and positioning of Z on the master side)
G43 W10 H52 (H52 compensation and positioning of W on the slave side)
M77 (Y-V, Z-W turning on synchron function)
...
X_ Y_ (The description of the program with X, Y, Z coordinates.

V-Y and W-Z move together)
Z_
...

If in the example above
X: is the 1. axis,
Y: is the 2. axis,
Z: is the 3. axis,
V: is the 4. axis,
W: is the 5. axis, then the SYNCHRON parameters are the following:
1394 SYNCHRON4=2 the master of V axis is 2., which is Y and
1395 SYNCHRON4=3 the master of W axis is 3., Z axis

2.2.2 Flags from PLC to NC (Output Flags)

96

The turning on of the flag (U59n) means to the NC, that the slave axis can start the synchronized
functioning with its master axis. In the example above this would mean that the M77 function
turns on the flag of the Y593 (V axis) and the flag of the Y594 (W axis), while M78 turns of these
flags.
The synchron function works with manual movement as well. The synchron functions till the
corresponding flag is on 1.
LWarning! The change of Y59n flags can only be made, when the block buffer is emptied!

If changing happens by M functions the 022n MSUPRn parameters must be spcified
to show the NC that the buffer is to be emptied, or if a subprogram does the changing,
G53 should be used in the block before and after the change.

2.2.2 Flags from PLC to NC (Output Flags)

97

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y600 Number of program selected for automatic mode in RH050

Y601 Number of program selected for manual data input mode in RH050

Y602 Program run in DNC

Y603 Program run in NCT DNC

Y604 Message strobe

Y605 Open input channel

Y606 Transmittable data in memory

Y607 PLC received data from memory

The same actions can be executed on flags Y600, ..., Y603 as when selecting action menu Run
on screen DIRECTORY.

Y600: Number of program selected for automatic mode in RH050
If the flag is set to 1 the program, the number of which is specified in register RH050 is selected
for run in automatic mode. The flag must be kept set to 1 until the number written in RH050 can
be re-read from register RH031.

Y601: Number of program selected for manual data input mode in RH050
If the flag is set to 1 the program, the number of which is specified in register RH050 is selected
for run in manual data input mode. The flag must be kept set to 1 until the number written in
RH050 can be re-read from register RH032.

Y602: Program run in DNC
If the flag is set to 1 if program run in DNC without protocol in automatic mode is selected. The
flag must be kept set to 1 until the program execution in DNC status flag I602 is set to 1.

Y603: Program run in NCT DNC
If the flag is set to 1 if program run in DNC on the basis of NCT protocol in automatic mode is
selected. The flag must be kept set to 1 until the program execution in NCT DNC status flag I603
is set to 1.

Y604: Message strobe
PLC strobes flag Y604 with command U604 and waits until flag I604 turns to 1. Afterwards flag
Y604 must be switched off by means of command D604. This pair of flags is for synchronizing
manual handle machining executed on PC. (Both manual data input mode and manual handle
mode are on: Y405AY401).

Y605: Open input channel
If the PLC program is to initiate data input via an input channel loads registers RH054, ...,
RH056, then sets flag Y605 to 1.

Y606: Transmittable data in memory
If the flag is set to 1 the NC sends the contents of the selected memory area (F010, ..., F499)
through the selected periphery. Register RH051 contains the start address of valid data, while
register RH052 includes the number of bytes to be sent (record length). The number of periphery,

2.2.2 Flags from PLC to NC (Output Flags)

98

through which the data is to be sent is specified in register RH053. If the NC has sent the data it
sets flag I606 to 1. Then PLC should reset flag Y606 and data transfer is terminated.

Y607: PLC received data from memory
If the PLC has worked the data sent by the NC it sets the flag to 1. This means that the selected
memory area can be overwritten again. The NC fills the memory area (F010, ..., F499) from the
start address given in register RH054 with the byte the number of which is specified in register
RH055 through the periphery defined in register RH056. When ready it sets flag I607 to 1. The
PLC answers with the help of flag Y607.

2.2.2 Flags from PLC to NC (Output Flags)

99

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y610 1 axis motion disable st

Y611 2 axis motion disable nd

Y612 3 axis motion disable rd

Y613 4 axis motion disable th

Y614 5 axis motion disable th

Y615 6 axis motion disable th

Y616 7 axis motion disable th

Y617 8 axis motion disable th

Y610, ..., Y617: 1 , ..., 8 axis motion disablest th

Before the interpolator sends motion command to one of the axes, it asks for motion request on
the appropriate axis through flags I610, ..., I617. It waits until the PLC permits the motion
command through the appropriate flags Y610, ..., Y617 by means of statement

D61n.
If the motion request has been rejected the statement motion disable (axis clamping, drive enable
off, command U61n) can only be executed after the appropriate one has already reached its end
position, which can be observed on flags I560, ..., I567. These flags can be used for example for
clamping of axes, if a motor drives more axes to set the movable axes, or for synchronizing, if
rapid traverse movement implies axis gear setting. The axis numbers indicate the physical axis
numbers defined at parameter group 4281 AXIS.

2.2.2 Flags from PLC to NC (Output Flags)

100

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y620 1 axis loop openst

Y621 2 axis loop opennd

Y622 3 axis loop openrd

Y623 4 axis loop openth

Y624 5 axis loop openth

Y625 6 axis loop openth

Y626 7 axis loop openth

Y627 8 axis loop openth

Y620, ..., Y627: 1 , ..., 8 axis loop openst th

With statement D62n in effect the position control loop is closed on the n axis of the control,th

command signal goes out to the drives. The NC checks the state of position control loop
continuously, and if needed, displays error message SERVOn, FEEDBACKn.
With statement U62n in effect the position control loop is opened on the n axis of the control,th

command signal transfer does not occur, but the current position of the axis is measured and
registered by the control. Servo and feedback error check is not done, but it keeps on checking
the state of encoder, and if needed, displays error ENCODERn.
Before switching position control loop closed off the stopped state of the given axis must be
checked, i.e. whether flag I56n is true.

Attention! If position control loop is opened then closed during program run after closing it
the axis must always go to reference point otherwise position will be erroneous.

2.2.2 Flags from PLC to NC (Output Flags)

101

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y630 1 axis motion by PLCst

Y631 2 axis motion by PLCnd

Y632 3 axis motion by PLCrd

Y633 4 axis motion by PLCth

Y634 5 axis motion by PLCth

Y635 6 axis motion by PLCth

Y636 7 axis motion by PLCth

Y637 8 axis motion by PLCth

Y630, ..., Y637: 1 , ..., 8 axis motion by PLC.st th

The interpolator may receive motion commands from both NC and PLC.
If motion commands are to be initiated by the NC on one of the axes the appropriate physical axis
number must be entered beside the logic axis selections at parameter group 4281 AXIS. For
example if 4281 X = 1, then the commands written at address X are issued to the 1 physical axisst

by the interpolator. The appropriate flags Y630, .., Y637 of in such way selected axes must be set
to 0.
If motion commands are to be initiated by the PLC on one of the axis the appropriate output flag
Y630, .., Y637 must be set to 1. For no logic axis selection belongs to this kind of axis (no axis
with this number was selected at parameter group 4281 AXIS) there is no room for this axis in
the position display, and what is more these axes have no names. The parametering of axes
controlled by the PLC correspond to those controlled by the NC.
The interpolator may receive simultaneous motion command from both sides, the NC and the
PLC. It executes the two motion commands parallel and independently. E.g. milling is done with
NC axes while a PLC axis rotates the magazine.
Feed and rapid traverse override as well as command FEED HOLD are all effective on PLC axes
the same as on NC axes.
For axes selected for the NC (altogether) the interpolator status can be read at flags I550, ..., I557.
There is interpolator status for each PLC axis, for these work independent of each other and
cannot be connected for path generation. These statuses can be read at flags I900, ..., I977.
Positions of PLC axes can be read at registers RH100, ..., RH139. PLC motion commands can
be issued through strobe flags Y900, ..., Y977 and registers RH100, ..., RH139.

2.2.2 Flags from PLC to NC (Output Flags)

102

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y640 1 axis encoder check offst

Y641 2 axis encoder check offnd

Y642 3 axis encoder check offrd

Y643 4 axis encoder check offth

Y644 5 axis encoder check offth

Y645 6 axis encoder check offth

Y646 7 axis encoder check offth

Y647 8 axis encoder check offth

Y640, ..., Y647: 1 ,..., 8 axis encoder check offst th

On the axes, on which broken encoder wire check is enabled by parameter 440n ENCDn (=0)
encoder check can be switched off by setting the appropriate flag to 1.

2.2.2 Flags from PLC to NC (Output Flags)

103

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y650 Active spindle rotates

Y651 1 spindle orientation requestst

Y652 1 spindle command signal enablest

Y653 1 spindle command signal with + polarity st

Y654 1 spindle binary command signal output (spindle JOG)st

Y655 Synchronize 1 spindle to the 2st nd

Y656 1 spindle synchronization in counter directionst

Y657 1 spindle orientation in the shorter directionst

Y650: Active spindle rotates
The interpolator sets flag I553 (spindle rotation request) to 1 before starting one of commands G1,
G2, G3, G33 provided the spindle does not take part in the interpolation (the spindle loop is not
closed, I651=0 and I661=0).
The interpolation is started when flag Y650 is set to1 (statement U650).
In case of miscellaneous blocks (containing both interpolation and functions) this flag can be used
for synchronizing interpolator and PLC activities, for in the course of block execution the
interpolator and the PLC receive their part of the block at the same time. (For activities see flag
I553.)
The PLC programmer must be aware that the flag is to be sent to the NC without working the
spindle even when in case of these blocks the spindle need not be on due to technological
circumstances (e.g. there is a touch probe in the spindle).

Y651: 1 spindle orientation requestst

If the spindle drive can be positioned, i.e. if the position control loop can be closed through the
spindle drive, closing and orientation of spindle control loop can be required from the NC by
switching flag Y651 on by means of statement

U651.
The PLC programmer determines the speed of zero pulse search through 1 spindle jog commandst

signal register RH061. If the orientation is finished (spindle is set on the zero pulse of encoder)
the NC acknowledges the executed command by switching input flag I651 on.

Y652: 1 spindle command signal enablest

By setting this flag to 1 the command signal ramping is started.

Y653: 1 spindle command signal with + polarity st

The NC always takes the value entered into register RH060 as a positive number (+). The polarity
of spindle command signal can be defined by switching flag Y653 to the appropriate state.:

With statement U653 in effect the spindle command signal has positive polarity,
With statement D653 in effect the spindle command signal has negative polarity.

Y654: 1 spindle binary command signal output (spindle JOG)st

If the flag is set to 0 command signal transfer is done from register RH060 by taking polarity flag
Y653 and range limits set at parameters into account.
If the flag is set to 1 command signal transfer is done in binary form from register RH061. In case
of +10V the value to be entered into the register is 7FFFh, while in case of -10V it is 8000h.

2.2.2 Flags from PLC to NC (Output Flags)

104

Y655: Synchronize 1 spindle to the 2st nd

If the 1 spindle is to be synchronized to the 2 one a command signal must be output to the 1st nd st

spindle via register RH060 or RH061 equal to to the revolution of the 2 one and in the same ornd

in the counter direction.

SAfter I656 n=n flag has been set to 1 set flag Y655 to 1 and wait for signal I651 (spindle loop
closed) to be turned to 1.
 – As a first step the zero pulse of the 1 spindle is closed to that of the 2 one in the distancest nd

defined by parameter 5402 SPSHIFT1. The gain of the control loop is specified by
parameter 5401 SYNCHR1. Then

 – the NC closes the position control loop (I651=1) and from now on the pulses of the 2 spindlend

encoder become the input of the position control loop of the 1 spindle and for it thest

SERVO parameters indexed by S1 are valid. If parameter 4509 FEEDFORWS1 is set to
128 the zero pulse of the 2 spindle is followed up with minimal error specified bynd

parameter 5402 SPSHIFT1.

Y656: 1 spindle synchronization in counter directionst

If the value of this flag is 0 the NC rotates the 1 spindle in the same direction as that of the 2st nd

spindle otherwise in counter direction.

Y657: 1 spindle orientation in the shorter directionst

PLC flag Parameter Spindle movement during orientation

Y657=0 7209

ZPULSS1=0

The spindle searches the zero pulse always in the shorter direction,

independently of the value written in register RH061 (sign of the binary

number)

7209

ZPULSS1=1

The spindle always moves to the zero pulse in the direction specified by

the value of register RH061

Y657=1 The spindle searches the zero pulse always in the shorter direction,

independently of the value written in register RH061

As a rule of thumb execution of command M19 must be specified if the spindle loop is open
previously, value of Y657 is 0 if the spindle loop is closed Y657=1.
Explanation: In fine boring cycle G76 spindle must be oriented in the direction of spindle

rotation, otherwise rotation in the opposite direction scrapes the surface of the
bore or the tool tip can be damaged. In rigid tapping cycles G84.2, G84.3 if a
series of taps are to be carried out repeteated orientation is made at closed spindle
loop and orientation in the shorter direction can save time.

Attention: Parameter 7209 ZPULSS1 must be set to 1 if the pulses of the spindle encoder are
emulated by the spindle drive. Beyond this it is advised to set it to 1 because of the
above mentioned machining reasons.

2.2.2 Flags from PLC to NC (Output Flags)

105

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y660 2 spindle is activend

Y661 2 spindle orientation requestnd

Y662 2 spindle command signal enablend

Y663 2 spindle command signal with + polarity nd

Y664 2 spindle binary command signal output (spindle JOG)nd

Y665 Synchronize 2 spindle to the 1nd st

Y666 2 spindle synchronization in counter directionnd

Y667 2 spindle orientation in the shorter directionnd

Y660: 2 spindle is activend

The spindle to which commands M3, M4, M5, M11, ..., M18, M19, S are ececuted by the PLC
is considered to be the active one. PLC program specifies the active spindle through flag Y660.
If flag Y660 is low the first if it is high the second spindle is active. The NC always calculates the
following values according to the active spindle:

displays the spindle revolution,
monitors the spindle speed fluctuation,
calculates feed per revolution according to the encoder of the active spindle,
displays the spindle gear range from RH063 or RH068 register and
the rotation state from RH062 or RH067 register.

Both spindles can be rotated at the same time, e.g.: During synchronization. The NC can handle
both spindles parallel that is the

I650, I660; I651, I661; I652, I662; I656, I666, I657, I667 input flags
Y651, Y661; Y652, Y662; Y653, Y663; Y654, Y664 output flags
RH010, RH015; RH011, RH016 input registers and
RH060, RH065; RH061, RH066; RH062, RH067; RH063, RH068 output registers.

Y661:2 spindle orientation requestnd

If the spindle drive can be positioned, i.e. if the position control loop can be closed through the
spindle drive, closing and orientation of spindle control loop can be required from the NC by
switching flag Y661 on by means of statement

U661.
The PLC programmer determines the speed of zero pulse search through 2 spindle jog commandnd

signal register RH066. If the orientation is finished (spindle is set on the zero pulse of encoder)
the NC acknowledges the executed command by switching input flag I661 on.

Y662: 2 spindle command signal enablend

By setting this flag to 1 the command signal ramping is started.

Y663: 2 spindle command signal with + polarity nd

The NC always takes the value entered into register RH065 as a positive number (+). The polarity
of spindle command signal can be defined by switching flag Y663 to the appropriate state.:

With statement U663 in effect the spindle command signal has positive polarity,
With statement D663 in effect the spindle command signal has negative polarity.

2.2.2 Flags from PLC to NC (Output Flags)

106

Y664: 2 spindle binary command signal output (spindle JOG)nd

If the flag is set to 0 command signal transfer is done from register RH065 by taking polarity flag
Y663 and range limits set at parameters into account.
If the flag is set to 1 command signal transfer is done in binary form from register RH066. In case
of +10V the value to be entered into the register is 7FFFh, while in case of -10V it is 8000h.

Y665: Synchronize 2 spindle to the 1nd st

If the 2 spindle is to be synchronized to the 1 one a command signal must be output to the 2nd st nd

spindle via register RH065 or RH066 equal to to the revolution of the 1 one and in the same orst

in the counter direction.

SAfter I666 n=n flag has been set to 1 set flag Y665 to 1 and wait for signal I661 (spindle loop
closed) to be turned to 1.
 – As a first step the zero pulse of the 2 spindle is closed to that of the 1 one in the distancend st

defined by parameter 5422 SPSHIFT2. The gain of the control loop is specified by
parameter 5421 SYNCHR2. Then

 – the NC closes the position control loop (I661=1) and from now on the pulses of the 1 spindlest

encoder become the input of the position control loop of the 2 spindle and for it thend

SERVO parameters indexed by S2 are valid. If parameter 4510 FEEDFORWS2 is set to
128 the zero pulse of the 1 spindle is followed up with minimal error specified byst

parameter 5422 SPSHIFT2.

Y666: 2 spindle synchronization in counter directionnd

If the value of this flag is 0 the NC rotates the 2 spindle in the same direction as that of the 1nd st

spindle otherwise in counter direction.

Y667: 2 spindle orientation in the shorter directionnd

PLC flag Parameter Spindle movement during orientation

Y667=0 7210

ZPULSS2=0

The spindle searches the zero pulse always in the shorter direction,

independently of the value written in register RH066 (sign of the binary

number)

7210

ZPULSS2=1

The spindle always moves to the zero pulse in the direction specified by

the value of register RH066

Y667=1 The spindle searches the zero pulse always in the shorter direction,

independently of the value written in register RH066

As a rule of thumb execution of command M19 must be specified if the spindle loop is open
previously, value of Y667 is 0 if the spindle loop is closed Y667=1.
Explanation: In fine boring cycle G76 spindle must be oriented in the direction of spindle

rotation, otherwise rotation in the opposite direction scrapes the surface of the
bore or the tool tip can be damaged. In rigid tapping cycles G84.2, G84.3 if a
series of taps are to be carried out repeteated orientation is made at closed spindle
loop and orientation in the shorter direction can save time.

Attention: Parameter 7210 ZPULSS2 must be set to 1 if the pulses of the spindle encoder are
emulated by the spindle drive. Beyond this it is advised to set it to 1 because of the
above mentioned machining reasons.

2.2.2 Flags from PLC to NC (Output Flags)

107

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y670 1 analog command signal with + polarityst

Y671 1 analog command signal output binaryst

Y672 2 analog command signal with + polaritynd

Y673 2 analog command signal output binarynd

Y674 Piston turning

Y675 Chopping On

Y676 1 analog command signal output enablest

Y677 2 analog command signal output enablend

Y670, Y672: 1 , 2 analog command signal with + polarityst nd

The command polarity of the 1 and 2 analog output signals can be defined by switching flagsst nd

Y670, Y672 to the appropriate state, provided command signal transfer by scaling from registers
RH080, RH085:

With statement U670, U672 in effect the command signal has positive polarity,
With statement D60, D672 in effect the command signal has negative polarity.

Y671, Y673: 1 , 2 analog command signal output binaryst nd

Command signal transfer of the 1 and 2 analog output is done binarily according to the valuest nd

written in output registers RH081, RH086.

If Y671=0 or Y673=0 the NC scales the value written into register RH080 or RH085 according
to the appropriate parameters, it takes the output override value into account, ramps command
signal output according to parameter ACC or DCC and thus outputs the command signal.
If Y671=1 or Y673=1 the NC transfers the value written into register RH081 or RH086 as
command signal directly, without the above calculation.

Y674: Piston turning
If the flag is turned on (1) the control enters piston turning mode configured by registers RH190,
..., RH195. Before turning the flag off (0) it is recommended to reset ovality registers (RH192,
RH193) to 0 and wait until oscillation of axis doing ovality stops. Then flag Y674 can be turned
off. This function can be used with special mechanism developed for piston turning sold by NCT.

Y675: Chopping On
If PLC sets the flag NC starts chopping function the way defined in parameter subgroups 0281
CHOPAXF and 0301 CHOPPOS. Chopping can be started by programming command G81.1 in
part program or by turning on a button mounted on machine control panel.
If PLC resets flag Y675, NC moves chopping axis from lower dead point to point R and stops it.

Y676, Y677: 1 , 2 analog command signal output enablest nd

The appropriate voltage is transferred to the output only in case the appropriate flag is set to 1.

2.2.2 Flags from PLC to NC (Output Flags)

108

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y680

Y681

Y682

Y683

Y684

Y685

Y686

Y687

2.2.2 Flags from PLC to NC (Output Flags)

109

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y690

Y691

Y692

Y693

Y694

Y695

Y696

Y697

2.2.2 Flags from PLC to NC (Output Flags)

110

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y700 1 indexed message requestst

Y701 2 indexed message requestnd

Y702 3 indexed message requestrd

Y703 4 indexed message requestth

Y704 5 indexed message requestth

Y705 6 indexed message requestth

Y706 7 indexed message requestth

Y707 8 indexed message requestth

Y700, ..., Y707: 1 , ..., 8 indexed message requestst th

8 different user messages, indexed according to the contents of register RH090, ..., RH097 can
be displayed on the screen containing user messages with the help of flags Y700, ..., Y707. Of
the maximum 8 messages only one, displayed in the 2 line of screen, is active. (For reading thend

active message there is no need to switch over to the screen containing the user messages.)
The active message can be read at flags I700, ..., I707, of which the state of only one can be
TRUE. The PLC programmer must take care of canceling the messages. E.g. if one message is
for tool replacement it is useful to cancel the active message by means of START button. A
message flag can be canceled (DY70n) before it becomes active in case the reason of the message
has ceased. Naturally in this case it also is deleted from the screen listing the messages.
The message string must be entered into module :198. The strings are separated by commas ",".
The end of module together with the last message is indicated by character $:

:198MESSAGE1,MESSAGE2,...,MESSAGE8$

2.2.2 Flags from PLC to NC (Output Flags)

111

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y710 1 message requestst

Y711 2 message requestnd

Y712 3 message requestrd

Y713 4 message requestth

Y714 5 message requestth

Y715 6 message requestth

Y716 7 message requestth

Y717 8 message requestth

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y790 65 message requestth

Y791 66 message requestth

Y792 67 message requestth

Y793 68 message requestth

Y794 69 message requestth

Y795 70 message requestth

Y796 71 message requestst

Y797 72 message requestnd

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y800 73 message requestrd

Y801 74 message requestth

Y802 75 message requestth

Y803 76 message requestth

Y804 77 message requestth

Y805 78 message requestth

Y806 79 message requestth

Y807 80 message requestth

2.2.2 Flags from PLC to NC (Output Flags)

112

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y890 145 message requestth

Y891 146 message requestth

Y892 147 message requestth

Y893 148 message requestth

Y894 149 message requestth

Y895 150 message requestth

Y896 151 message requestst

Y897 152 message requestnd

Y710, ..., Y897: 1 , ..., 152 message requestst nd

152 different user message can be displayed on the screen containing user messages with the help
of flags Y710, ..., Y897. Of the maximum 152 messages only one, displayed in the 2 line ofnd

screen, is active. (For reading the active message there is no need to switch over to the screen
containing the user messages.)
Due to this only one of flags I710, ..., I897 has TRUE state. It is the task of the PLC programmer
to define the method of canceling the user messages. To cancel an error message also the RESET
button, the state of which is sent through input flag I477 can be used. A message flag can be
canceled (DY7nn) before it becomes active in case the reason of the message has ceased.
Naturally in this case it also is deleted from the screen listing the messages.
The message string must be entered into module :199. The strings are separated by commas ",".
The end of module together with the last message is indicated by character $:

:198MESSAGE1,MESSAGE2,...,MESSAGE152$

2.2.2 Flags from PLC to NC (Output Flags)

113

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y900 1 axis interpolator STARTst

Y901 1 axis interpolator strobe signalst

Y902 1 axis movement with feedst

Y903 1 axis incremental movementst

Y904 1 axis go to reference pointst

Y905 1 axis interpolator RESETst

Y906

Y907

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y910 2 axis interpolator STARTnd

Y911 2 axis interpolator strobe signalnd

Y912 2 axis movement with feednd

Y913 2 axis incremental movementnd

Y914 2 axis go to reference point nd

Y915 2 axis interpolator RESETnd

Y916

Y917

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y920 3 axis interpolator STARTrd

Y921 3 axis interpolator strobe signalrd

Y922 3 axis movement with feedrd

Y923 3 axis incremental movementrd

Y924 3 axis go to reference point rd

Y925 3 axis interpolator RESETrd

Y926

Y927

2.2.2 Flags from PLC to NC (Output Flags)

114

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y930 4 axis interpolator STARTth

Y931 4 axis interpolator strobe signalth

Y932 4 axis movement with feedth

Y933 4 axis incremental movementth

Y934 4 axis go to reference point th

Y935 4 axis interpolator RESETth

Y936

Y937

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y940 5 axis interpolator STARTth

Y941 5 axis interpolator strobe signalth

Y942 5 axis movement with feedth

Y943 5 axis incremental movementth

Y944 5 axis go to reference point th

Y945 5 axis interpolator RESETth

Y946

Y947

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y950 6 axis interpolator STARTth

Y951 6 axis interpolator strobe signalth

Y952 6 axis movement with feedth

Y953 6 axis incremental movementth

Y954 6 axis go to reference point th

Y955 6 axis interpolator RESETth

Y956

Y957

2.2.2 Flags from PLC to NC (Output Flags)

115

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y960 7 axis interpolator STARTth

Y961 7 axis interpolator strobe signalth

Y962 7 axis movement with feedth

Y963 7 axis incremental movementth

Y964 7 axis go to reference point th

Y965 7 axis interpolator RESETth

Y966

Y967

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y970 8 axis interpolator STARTth

Y971 8 axis interpolator strobe signalth

Y972 8 axis movement with feedth

Y973 8 axis incremental movementth

Y974 8 axis go to reference point th

Y975 8 axis interpolator RESETth

Y976

Y977

L The below flags are effective only in case of PLC controlled axes selected at flags Y630,
..., Y637.

Y900, Y910, ..., Y970: 1 , 2 , ..., 8 axis interpolator STARTst nd th

If the flag is set to 1 movement starts on the appropriate axis, provided the interpolator has valid
movement command.
If the flag is set to 0 the movement stops (STOP). The interpolator stop flag (I900, I910, ..., I970)
is set to 1 by the interpolator only after it has stopped with deceleration defined at parameter 470n
ACCn. All movements cease on the axis when the appropriate 1 , ..., 8 axis in position flag I560,st th

..., I567 is set to 1.

Y901, Y911, ..., Y971: 1 , 2 , ..., 8 axis interpolator strobe signalst nd th

The following flags and registers fully define movement commands for the interpolator:
Y902, Y912, ..., Y972: 1 , 2 , ..., 8 axis movement with feedst nd th

Y903, Y913, ..., Y973: 1 , 2 , ..., 8 axis incremental movementst nd th

RH150, RH151, ...: 1 , ... axis end position valuest

RH152, ...: 1 , ... axis feed rate valuest

After the necessary values have been entered into the above flags and registers on the axis to be
moved the interpolator must be told to receive the movement parameters by setting the
appropriate flag Y901, Y911, ..., Y971 to 1. The interpolator acknowledges the receipt of
movement parameters by setting the appropriate flag I901, I911, ..., I971 to 0.

2.2.2 Flags from PLC to NC (Output Flags)

116

The movement can only be started in case the appropriate 1 , 2 , ..., 8 axis interpolator STARTst nd th

flag Y900, Y910, ..., Y970 is set to 1.

Y902, Y912, ..., Y972: 1 , 2 , ..., 8 axis movement with feed st nd th

If the flag
=0 the interpolator moves on the appropriate axis at rapid traverse rate specified at parameter

468n RAPIDn.
=1 the interpolator moves on the appropriate axis at the value entered into the appropriate

axis speed command register RH152, ...: 1 , The interpolator restricts the feed ratest

value entered by the value defined at parameter 474n FEEDMAXn.

Y903, Y913, ..., Y973: 1 , 2 , ..., 8 axis incremental movementst nd th

If the flag
=0 the interpolator interprets the data entered into axis end position command register

RH150, RH151, ...: 1 , ... as absolute movement. st

=1 the interpolator interprets the data entered into axis end position command register
RH150, RH151, ...: 1 , ... as incremental movement.st

Y904, Y914, ..., Y974: 1 , 2 , ..., 8 axis go to reference point st nd th

If reference point return is to be executed on an axis, flag Y904, Y914, ..., Y974 belonging to the
appropriate axis must be set to 1. The executed reference point return can be read at the
appropriate flag I903, I913, ..., I973.
The reference point return is started with setting the appropriate START flag Y900, Y910, ...,
Y970 to 1. The reference point return can be stopped and restarted by switching the START flag
off and on.

Y905, Y915, ..., Y975: 1 , 2 , ..., 8 axis interpolator RESETst nd th

This flag must be set to 1 if an already started movement is to be stopped and the movement
command to be canceled on one of the PLC controlled axes.

2.2.2 Flags from PLC to NC (Output Flags)

117

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y980

Y981

Y982

Y983

Y984

Y985

Y986

Y987

2.2.2 Flags from PLC to NC (Output Flags)

118

Flag Identity Meaning of Flag if Value=1 (TRUE)

Y990

Y991

Y992

Y993

Y994

Y995

Y996

Y997

2.2.3 Registers from NC to PLC (Input Registers)

119

2.2.3 Registers from NC to PLC (Input Registers)

Reference to input registers can be done with string RH and three digits:
RHpqr

The value of the first digit:
p=0,1

The value range of the second digit (q) for input registers:
q=0,1,2,3,4

The third one is decimal, its range:
r=0,1,2,3,4,5,6,7,8,9

Input registers are 16-bit variables. The variables are always transferred in binary form, thus the
value in register must be regarded as a binary number.
In the followings a detailed list of input registers is shown:

RH000 1 M function code (belonging to flag I520)st

RH001 2 M function code (belonging to flag I521)nd

RH002 3 M function code (belonging to flag I522)rd

RH003 4 M function code (belonging to flag I523)th

RH004 5 M function code (belonging to flag I524)th

In a program block up to 5 M functions, which are to be transferred to the PLC can be used.
According to the order written in the block the NC writes the first loaded code into register
RH000 and sets flag I520 to 1, it writes the second M function into register RH001 and sets flag
I521 to 1 and so on. The code is transferred in binary form.
The PLC programmer determines the order of the execution of the different M functions within
the given block.

RH005 S function code (belonging to flag I525)

If S function is written in a program block the NC sets flag I525 to 1 and data S appears in input
register RH005. The data is transferred in binary form.

RH006 T function code (belonging to flag I526)

If T function is written in a program block the NC sets flag I526 to 1 and the T code appears in
input register RH006. The code is transferred in binary form.

2.2.3 Registers from NC to PLC (Input Registers)

120

RH007 “A” function code (belonging to flag I527)

If address A is selected for function (parameter state: 0183 A.MISCEL=1), and A function is
written in a program block the NC sets flag I527 to 1 and the A code appears in input register
RH007. The code is transferred in binary form.

RH008 “B” function code (belonging to flag I530)

If address B is selected for function (parameter state: 0186 B.MISCEL=1), and B function is
written in a program block the NC sets flag I530 to 1 and the B code appears in input register
RH008. The code is transferred in binary form.

RH009 “C” function code (belonging to flag I531)

If address C is selected for function (parameter state: 0189 C.MISCEL=1), and C function is
written in a program block the NC sets flag I531 to 1 and the C code appears in input register
RH009. The code is transferred in binary form.

RH010 1 spindle current revolution st

If the 1 spindle is mounted with encoder and value of parameter 5023 ENCODERS1 containsst

the resolution of the encoder the current revolution of spindle is measured by the control in
cycles, and informs on its value at register RH010. The revolution value is transferred in rpm in
binary form.
If the value of parameter 5023 ENCODERS1 is 0 the control interprets it as no encoder is
mounted on the spindle and writes the calculated revolution involving override and range limits.
The value of this register occurs in the current S display.

RH011 1 spindle modified programmed revolutionst

The PLC writes the programmed S code in programmed revolution register RH060. The NC
calculates the command signal for the transferred spindle drive by modifying the contents of this
register with the spindle override value, examines, whether the in such way calculated value is
greater or less than the value clamped by parameter belonging to the current range. If yes, it
executes the clampings and writes the in such way calculated value into register RH011. It writes
the continuously altering value in the switched-on state of constant cutting rate calculation (G96)
into register RH011. If the spindle is mounted with encoder the spindle can be supervised by the
continuous comparing of RH011 and current revolution register RH010 in PLC.

2.2.3 Registers from NC to PLC (Input Registers)

121

RH012 G96 revolution on the active spindle

It is the value of the active spindle revolution in the switched-on state of constant surface speed
(G96) involving position and the programmed maximum revolution (G92 S) calculated by the
control. This value needs to be copied by the PLC program into the output register RH060 or
RH065 for the spindle revolution calculated for programmed constant surface speed to be
effective.

RH013 Programmed maximum revolution on the active spindle

It is the value of maximum spindle revolution defined by command G92 S. The NC takes the
limit of RH013 into account by the value written in register RH012 in state G96, and only in state
G96.

RH014

RH015 2 spindle current revolution nd

If the 2 spindle is mounted with encoder and value of parameter 5024 ENCODERS2 containsnd

the resolution of the encoder the current revolution of spindle is measured by the control in
cycles, and informs on its value at register RH015. The revolution value is transferred in rpm in
binary form.
If the value of parameter 5024 ENCODERS2 is 0 the control interprets it as no encoder is
mounted on the spindle and writes the calculated revolution involving override and range limits.
The value of this register occurs in the current S display.

RH016 2 spindle modified programmed revolutionnd

The PLC writes the programmed S code in programmed revolution register RH065. The NC
calculates the command signal for the transferred spindle drive by modifying the contents of this
register with the spindle override value, examines, whether the in such way calculated value is
greater or less than the value clamped by parameter belonging to the current range. If yes, it
executes the clampings and writes the in such way calculated value into register RH016. It writes
the continuously altering value in the switched-on state of constant cutting rate calculation (G96)
into register RH016. If the spindle is mounted with encoder the spindle can be supervised by the
continuous comparing of RH016 and current revolution register RH015 in PLC.

2.2.3 Registers from NC to PLC (Input Registers)

122

RH017

RH018

RH019

RH020 Active message code

If in the message field, i.e. in the 2 line of screen a message is displayed, no matter whether itnd

comes from the NC or the PLC the message code can be read at register RH020. Error coding is
contained by chapter 6.4 Listing of Global Messages on page 234. If flag I537 is set to 1 this code
is valid, if it is 0 the code is invalid.

RH021 Year

The register contains the current year in 4 tetrades, in BCD form. E.g.: If the current year is 2013
the value of the register is: .2013

RH022 Month, Day

The register contains the current Month on the upper two tetrades while the current Day on the
lower two ones, in BCD form. E.g.: If it is 27, October the value of the register is: .1027.

RH023 Hour, Minute

The register contains the current Hour on the upper two tetrades while the current Minute on the
lower two ones, in BCD form. E.g.: If it is 32 past 4 p.m. the value of the register is: .1632.

2.2.3 Registers from NC to PLC (Input Registers)

123

RH024 Second

The register contains the current Second on the lower two tetrades, in BCD form. E.g.: .0018.

RH025

RH026 Meanings of softkeys

In register RH026 the meanings of the softkeys belonging to the current screen (register RH027)
can be found. If the upper byte of the register is 0, the softkeys contain the screen menu, if the
value of the upper byte is 1 the action menu is seen on softkeys:

RH026=00xxh: screen menu

RH026=01xxh: action menu

Independent of the upper byte (screen menu or action menu) state the lower byte of register
always shows the code of the previously selected action menu belonging to the screen. For
detailed description see chapter 6.6 Codes of Screens and Softkeys on page 240.

RH027 Screen code

Register RH027 contains the code of the displayed screen. Its lower byte is the number of screen
group containing the current screen (e.g. POSITION), while its upper byte is the number of screen
within the screen group (e.g. ABSOLUTE). For detailed description see chapter 6.6 Codes of
Screen Menu and Action Menu Captions on page 240.

2.2.3 Registers from NC to PLC (Input Registers)

124

RH028 F% (feedrate override) input register

If Y527=1 (feed override from NC keyboard), Y531=1 (machine
control board 1), or Y532=1 (machine control board 2) the state
of feed override switch is sent by the NC to the PLC through
register RH028. The contents of the register is binary. Below the
percent equivalent of each value can be seen (the control works
with the % value in the line of code). In the above cases the PLC
programmer must take care of copying the value of input register
RH028 to output register RH078.

If Y527=1 (switch F% operate from SW control panel) the feed
rate can be modified by means of selecting one of screens
OPERATOR’S PANE L, POSITION or CHECK.
Afterwards select action menu % F after pressing action menu4

key . In this case captions G–, G+, S–, S+, F–, F+ appear

on softkeys. By pressing key F– the feed rate override value (i.e.
value of register RH028) decreases, while with the help of key F+
value of register RH028 increases.

If Y532=1 a rotary switch is mounted on
machine control board 2 for feedrate
override state of which can be read from
register RH028.

L Warning!
Only one of flags Y527 and Y532 can be 1, i.e. feed rate override may be selected by the use of
either SW control panel or machine control board switch!

RH028 %

0 0

1 1

2 2

3 5

4 10

5 20

6 30

7 40

8 50

9 60

10 70

11 80

12 90

13 100

14 110

15 120

2.2.3 Registers from NC to PLC (Input Registers)

125

RH029 S% (spindle speed override) input register

If Y526=1 (spindle override from NC keyboard), Y531=1 (machine control board 1), or Y532=1
(machine control board 2) the state of spindle override switch is sent by the NC to the PLC
through register RH029. The contents of the register is binary. Below the percent equivalent of
each value can be seen (the control works with the % value in the line of code).

In the above cases the PLC programmer must take care of
copying the value of input register RH029 to output register
RH079.

If Y526=1 (switch S% operate from SW control panel) the
spindle override value can be modified by means of selecting one
of screens OPERATOR’S PANE L, POSITION or CHECK.
Afterwards select action menu % F after pressing action menu4

key . In this case captions G–, G+, S–, S+, F–, F+ appear

on softkeys. By pressing key S– the spindle override value (i.e.
value of register RH029) decreases, while with the help of key S+
value of register RH028 increases.

If Y532=1 three push-buttons are mounted on machine control
board 2 in order to set spindle %, with which the override value,
i.e. that of register RH029 can be decreased or increased, as well
as by the use of which 100% can be set.

L Warning!
Only one of flags Y526 and Y532 can be 1, i.e. spindle override may be selected by the use of
either SW control panel or machine control board switch!

RH030 Number of program under execution

The number of program under current execution. This may be the number of main program,
subprogram or macro.

RH031 Number of program selected for automatic execution

This is always the number of the main program selected for automatic execution.

RH029 %

0 50

1 60

2 70

3 80

4 90

5 100

6 110

7 120

8 130

9 140

10 150

2.2.3 Registers from NC to PLC (Input Registers)

126

RH032 Number of program selected for execution in manual data input mode

This is always the number of the main program selected for execution in manual data input mode.

RH033

RH034

RH035 1 analog input on 1 INT boardst st

RH036 2 analog input on 1 INT boardnd st

RH037 3 analog input on 1 INT boardrd st

RH038 4 analog input on 1 INT boardth st

1 INT (interface) board can optionally be equipped with AD (analog to digital) converter unitst

capable of receiving 4 different analog signals. Values of analog signals can be read through the
above registers. Resolution of AD convert is 12 bits. It is calibrated according to the below table:

Input value in V data read from register RH

+10V .0000

0V .0800

-9.995V .0FFF

2.2.3 Registers from NC to PLC (Input Registers)

127

RH039 R% (rapid traverse override) input register

If Y525=1 (rapid traverse override from SW control panel) the control sends the rapid traverse
override switch state to PLC in register RH039. If Y525=1 (switch R% operate from SW control
panel) the rapid traverse override can be modified by means of selecting one of screens
OPERATOR’S PANE L, POSITION or CHECK.

Afterwards select action menu % F after pressing action menu key . In this case captions4

G–, G+, S–, S+, F–, F+ appear on softkeys. By pressing key G– the rapid traverse override value
(i.e. value of register RH039) decreases, while with the help of key G+ value of register RH039
increases.

The register contents are in binary form. The percent correspondent of each value (acknowledged
by the control for the given value) can be seen in the below two tables. If RAPOVER No.
1204=0 it is the first table, while if RAPOVER No. 1204>0 it is the second one

In the above cases the PLC
programmer must take care of
copying the value of input
register RH039 to output
register RH089.

1204 RAPOVER=0

RH039 %

0 0

1 1

2 2

3 5

4 10

5 20

6 30

7 40

8 50

9 60

10 70

11 80

12 90

13 100

1204 RAPOVER>0

RH039 %

0 F0=RAPOVER

1 25

2 50

3 100

2.2.3 Registers from NC to PLC (Input Registers)

128

RH040 G51.2 polygonal turning data P

RH041 G51.2 polygonal turning data Q

Polygonal turning can be programmed by specifying block G51.2 P_ Q _. The ratio of P/Q defines
the ratio of revolution of the main spindle (workpiece) and the slave spindle (tool). Programmed
absolute value of P is available in register RH040 while value Q in register in RH041. The
revolution of the tool spindle is calculated according the formula below:

The PLC program should turn the tool spindle to the revolution calculated before, then it should
request synchronization via flags Y655 or Y665.

Command G50.2 turns polygonal turning off and flag I640goes to low. The PLC program should
cancel the synchronization of the two spindles, then turn the tool spindle off.

RH042 Actual feed lower word

RH043 Actual feed higher word

Feed in mm/min or in inch/min can be calculated from the data in registers RH042, RH043
according the table below

4764 INCRSYSTA=1 4765 INCRSYSTB=1 4766 INCRSYSTC

47 F[mm/min]=data/10 F[mm/min]=data/10 F[mm/min]=data/103 4 5

4763 INCHDET=1 F[inch/min]=data/10 F[inch/min]=data/10 F[inch/min]=data/104 5 6

RH044

RH045

RH046

2.2.3 Registers from NC to PLC (Input Registers)

129

RH047

RH048

RH049 Code of valid push-button

If a key is pressed on data input keyboard the NC sets flag I536 to 1 for 1 PLC cycle and places
the key code into register RH049. Key codes can be found in chapter 6.5 Listing of Push-button
codes on page 237. If flag I536 is 1 the code herein is valid, however if it is 0 the code is invalid.

RH100 1 axis current position lower wordst

RH101 1 axis current position upper wordst

At the two above registers the position of the 1 axis registered in machine coordinate system canst

be read in output increment.

RH102 1 axis lag lower wordst

RH103 1st axis lag upper word

At the above two registers the lag value of the servo loop of the 1 axis can be read in outputst

increment.

RH104 1 axis drive currentst

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 1 axis (I/I) per mill (‰) with sign,st

in two's complement.

2.2.3 Registers from NC to PLC (Input Registers)

130

RH105 2 axis current position lower wordnd

RH106 2 axis current position upper wordnd

At the two above registers the position of the 2 axis registered in machine coordinate system cannd

be read in output increment.

RH107 2 axis lag lower wordnd

RH108 2 axis lag upper wordnd

At the above two registers the lag value of the servo loop of the 2 axis can be read in outputnd

increment.

RH109 2 axis drive currentnd

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 2 axis (I/I) per mill (‰) with sign,nd

in two's complement.

RH110 3 axis current position lower wordrd

RH111 3 axis current position upper wordrd

At the two above registers the position of the 3 axis registered in machine coordinate system canrd

be read in output increment.

RH112 3 axis lag lower wordrd

RH113 3 axis lag upper wordrd

At the above two registers the lag value of the servo loop of the 3 axis can be read in outputrd

increment.

2.2.3 Registers from NC to PLC (Input Registers)

131

RH114 3 axis drive currentrd

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 3 axis (I/I) per mill (‰) with sign,rd

in two's complement.

RH115 4 axis current position lower wordth

RH116 4 axis current position upper wordth

At the two above registers the position of the 4 axis registered in machine coordinate system canth

be read in output increment.

RH117 4 axis lag lower wordth

RH118 4 axis lag upper wordth

At the above two registers the lag value of the servo loop of the 4 axis can be read in outputth

increment.

RH119 4 axis drive currentth

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 4 axis (I/I) per mill (‰) with sign,th

in two's complement.

RH120 5 axis current position lower wordth

RH121 5 axis current position upper wordth

At the two above registers the position of the 5 axis registered in machine coordinate system canth

be read in output increment.

2.2.3 Registers from NC to PLC (Input Registers)

132

RH122 5 axis lag lower wordth

RH123 5 axis lag upper wordth

At the above two registers the lag value of the servo loop of the 5 axis can be read in outputth

increment.

RH124 5 axis drive currentth

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 5 axis (I/I) per mill (‰) with sign,th

in two's complement.

RH125 6 axis current position lower wordth

RH126 6 axis current position upper wordth

At the two above registers the position of the 6 axis registered in machine coordinate system canth

be read in output increment.

RH127 6 axis lag lower wordth

RH128 6 axis lag upper wordth

At the above two registers the lag value of the servo loop of the 6 axis can be read in outputth

increment.

RH129 6 axis drive currentth

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 6 axis (I/I) per mill (‰) with sign,th

in two's complement.

2.2.3 Registers from NC to PLC (Input Registers)

133

RH130 7 axis current position lower wordth

RH131 7 axis current position upper wordth

At the two above registers the position of the 7 axis registered in machine coordinate system canth

be read in output increment.

RH132 7 axis lag lower wordth

RH133 7 axis lag upper wordth

At the above two registers the lag value of the servo loop of the 7 axis can be read in outputth

increment.

RH134 7 axis drive currentth

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 7 axis (I/I) per mill (‰) with sign,th

in two's complement.

RH135 8 axis current position lower wordth

RH136 8 axis current position upper wordth

At the two above registers the position of the 8 axis registered in machine coordinate system canth

be read in output increment.

RH137 8 axis lag lower wordth

RH138 8 axis lag upper wordth

At the above two registers the lag value of the servo loop of the 8 axis can be read in outputth

increment.

RH139 8 axis drive currentth

2.2.3 Registers from NC to PLC (Input Registers)

134

When applying NCT digital servo drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 8 axis (I/I) per mill (‰) with sign,th

in two's complement.

RH140

RH141

RH142

RH143

RH144 1 spindle drive currentst

When applying NCT digital main drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 1 spindle (I/I) per mill (‰) with sign,st

in two's complement.

RH145

RH146

RH147

RH148

2.2.3 Registers from NC to PLC (Input Registers)

135

RH149 2 spindle drive currentnd

When applying NCT digital main drive and XMU CAN digital measuring system board it con-

ntains the quotient of the actual and nominal current of the 2 spindle (I/I) per mill (‰) with sign,nd

in two's complement.

2.2.4 Registers from PLC to NC (Output Registers)

136

2.2.4 Registers from PLC to NC (Output Registers)

Reference to output registers can be done with character RH and three digits:
RHpqr

The value of the first digit:
p=0,1

The value range of the second digit (q) for output registers:
q=5,6,7,8,9

The third one is decimal, its range:
r=0,1,2,3,4,5,6,7,8,9

Input registers are 16-bit variables. The variables always have to be transferred to the NC in
binary form.
In the followings a detailed list of output registers is shown:

RH050 Number of program to be executed

If the PLC selects a program in memory, its number is specified in this register. Afterwards flag
Y600 or Y601 is set to 1 in function of the program execution being in automatic or manual data
input mode.

RH051 Start address of data to be transmitted

RH052 Number of bytes to be transmitted

RH053 Code of transmitter periphery

If the PLC needs to transmit array through a periphery (e.g. through serial channel RS-232), it
writes the data to be transmitted at inner variables F010, ..., F499. The array start address is
specified in register RH051, the number of bytes to be transmitted, i.e. the record length is given
in register RH052.
If e.g.area F400, ..., F463 is selected for data transmission the registers are filled up as follows:

,400
SRH051
,64
SRH052

The code of the periphery, through which the data is to be transmitted must be given in register
RH053. If

RH053=1: data is transmitted through 1 serial channelst

RH053=2: data is transmitted through 2 serial channel.nd

2.2.4 Registers from PLC to NC (Output Registers)

137

RH054 Start address of received data

RH055 Number of received bytes

RH056 Code of receiver periphery

If the PLC needs to receive array from external device through a periphery (e.g. through serial
channel RS-232), the incoming data are required at inner variables F010, ..., F499. The array start
address is specified in register RH054, the number of bytes to be received, i.e. the record length
is given in register RH055.
If e.g.area F300, ..., F363 is selected for data receive the registers are filled up as follows:

,300
SRH054
,64
SRH055

The code of the periphery, through which the data is to be received must be given in register
RH056. If

RH053=1: data is received through 1 serial channelst

RH053=2: data is received through 2 serial channel.nd

RH057 “A” function current value

RH058 “B” function current value

RH059 “C” function current value

If address A, B, or C is selected for function (parameter state: 0183 A.MISCEL=1, 0186
B.MISCEL=1, or 0189 C.MISCEL=1), the current value A, B, C can be displayed at these
registers on the appropriate screen.
The value copied from register RH007, RH008, or RH009 is written into register RH057, RH058,
or RH059 after the appropriate command is executed. The number must be entered into the
register in binary form.

RH060 1 spindle programmed S registerst

Command signal transfer to the 1 spindle is done through register RH060 after address S hasst

been programmed.
First the command signal transfer has to be enabled by statement U652. The number entered into
register RH060 (its value range: 0-65535) is regarded as an unsigned number by the NC. The
polarity must be defined by setting flag Y653 (U653: positive, D653: negative). Flag Y654 must
be set to 0 in order to transfer the command signal from register RH060.

2.2.4 Registers from PLC to NC (Output Registers)

138

Command signal output on the basis of code S (Y654=0)
If flag Y654 is set to 0 the NC transfers the value written into register RH060 into the D/A
converter as command signal. The transfer is not done directly, but
- the number written into register is interpreted as spindle revolution (code S) and the

command signal amount is calibrated according to the valid range code (register RH063)
and parameter group SPINDLE,

- the spindle override value is taken into account,
- the command signal cannot be under or over the minimum or maximum value of range

revolution specified at parameter group SPINDLE,
- the command signal is not transferred promptly, but reaches its size specified at parameter

group SPINDLE through linear ramping,
- in the state of constant surface speed calculation (G96) the command signal is altered

automatically in the function of the selected coordinate.
The value of revolution input register RH005 (data programmed at address S) must be copied into
register RH060.

The initialization of register RH060 is the task of the PLC programmer.
Before inverting flag Y654 the PLC programmer must take care of the spindle being stopped.

RH061 1 spindle binary command registerst

Binary command signal output (spindle JOG)
If flag Y654 is set to 1 the value written into register RH061 is output to the D/A converter in
direct binary form and transferred to the spindle drive by the NC as command signal. It can be
used in case of gear range change for the fluctuation of spindle, as well as in spindle jog state for
jogging the spindle.
After setting flag Y651 to 1 this register is used for setting the rate of zero pulse search in case
of spindle orientation.
Interpretation of the numbers written into the register and their effect on the analog output:
- the value in case of +10 V is F000h,
- the value in case of +5 V is F7FFh,
- the value in case of +2.5 V is FBFFh,
- the value in case of 0 V is 0000h,
- the value in case of !2.5 V is 0400h,
- the value in case of !5 V is 0800h,
- the value in case of !10 V is1000h

RH062 1 spindle rotation code (M3, M4, M5, M19)st

The revolution state of 1 spindle must be told the NC through register RH062. The change ofst

revolution state can be initiated
- by command M3, M4, M5, or M19 written in the part program,
- from PLC, for example orientation before tool replacement (M19),
- or with the help of push-buttons M3, M4, M5 by the operator.

2.2.4 Registers from PLC to NC (Output Registers)

139

In all cases the appropriate rotation code 3, 4, 5, or 19 must be entered in binary form into register
RH062. The initialization of the register is the task of the PLC programmer. The current rotation
state is displayed as the value of this register.

RH063 1 spindle range code (M11, ..., M18)st

The state of 1 spindle range must be told the NC through register RH063. Change of the statest

can be initiated
- by command M11, ..., M18 written in the part program,
- or from the PLC..
If there is no overlapping between the revolution ranges of spindle, i.e. if the maximum revolution
the i range is n, and the minimum revolution of the (i+1) range is n+1, then the gear rangeth th

change can be automatically generated on the basis of the programmed code S and there is no
need to program M11, ..., M18.
In all cases the appropriate range code 11, ..., 18 must be entered in binary form in register
RH063. The initialization of the register is the task of the PLC programmer. The current state is
displayed by the NC through the register, as well as it takes the parameters used for calibrating
spindle command signal transfer into account on the basis of the spindle range register.

RH064 Active tool code (T)

The number of the active tool must be entered in binary form in this register. The initialization
of the register is the task of the PLC programmer. The current tool number is displayed by the NC
through this register.

RH065 2 spindle programmed S registernd

Command signal transfer to the 2 spindle is done through register RH065 after address S hasnd

been programmed.
First the command signal transfer has to be enabled by statement U662. The number entered into
register RH065 (its value range: 0-65535) is regarded as an unsigned number by the NC. The
polarity must be defined by setting flag Y663 (U663: positive, D663: negative). Flag Y664 must
be set to 0 in order to transfer the command signal from register RH065.

Command signal output on the basis of code S (Y664=0)
If flag Y664 is set to 0 the NC transfers the value written into register RH065 into the D/A
converter as command signal. The transfer is not done directly, but
- the number written into register is interpreted as spindle revolution (code S) and the

command signal amount is calibrated according to the valid range code (register RH068)
and parameter group SPINDLE,

- the spindle override value is taken into account,
- the command signal cannot be under or over the minimum or maximum value of range

revolution specified at parameter group SPINDLE,
- the command signal is not transferred promptly, but reaches its size specified at parameter

group SPINDLE through linear ramping,

2.2.4 Registers from PLC to NC (Output Registers)

140

- in the state of constant surface speed calculation (G96) the command signal is altered
automatically in the function of the selected coordinate.

The value of revolution input register RH005 (data programmed at address S) must be copied into
register RH065.

The initialization of register RH065 is the task of the PLC programmer.
Before inverting flag Y664 the PLC programmer must take care of the spindle being stopped.

RH066 2 spindle binary command registernd

Binary command signal output (spindle JOG)
If flag Y664 is set to 1 the value written into register RH066 is output to the D/A converter in
direct binary form and transferred to the spindle drive by the NC as command signal. It can be
used in case of gear range change for the fluctuation of spindle, as well as in spindle jog state for
jogging the spindle.
After setting flag Y661 to 1 this register is used for setting the rate of zero pulse search in case
of spindle orientation.
Interpretation of the numbers written into the register and their effect on the analog output:
- the value in case of +10 V is F000h,
- the value in case of +5 V is F7FFh,
- the value in case of +2.5 V is FBFFh,
- the value in case of 0 V is 0000h,
- the value in case of !2.5 V is 0400h,
- the value in case of !5 V is 0800h,
- the value in case of !10 V is1000h

RH067 2 spindle rotation code (M3, M4, M5, M19)nd

The revolution state of 2 spindle must be told the NC through register RH067. The change ofnd

revolution state can be initiated
- by command M3, M4, M5, or M19 written in the part program,
- from PLC, for example orientation before tool replacement (M19),
- or with the help of push-buttons M3, M4, M5 by the operator.
In all cases the appropriate rotation code 3, 4, 5, or 19 must be entered in binary form into register
RH067. The initialization of the register is the task of the PLC programmer. The current rotation
state is displayed as the value of this register.

2.2.4 Registers from PLC to NC (Output Registers)

141

RH068 2 spindle range code (M11, ..., M18)nd

The state of 2 spindle range must be told the NC through register RH068. Change of the statend

can be initiated
- by command M11, ..., M18 written in the part program,
- or from the PLC..
If there is no overlapping between the revolution ranges of spindle, i.e. if the maximum revolution
the i range is n, and the minimum revolution of the (i+1) range is n+1, then the gear rangeth th

change can be automatically generated on the basis of the programmed code S and there is no
need to program M11, ..., M18.
In all cases the appropriate range code 11, ..., 18 must be entered in binary form in register
RH068. The initialization of the register is the task of the PLC programmer. The current state is
displayed by the NC through the register, as well as it takes the parameters used for calibrating
spindle command signal transfer into account on the basis of the spindle range register.

RH069

2.2.4 Registers from PLC to NC (Output Registers)

142

RH070 1 M group displayst

RH071 2 M group displaynd

RH072 3 M group displayrd

RH073 4 M group displayth

RH074 5 M group displayth

RH075 6 M group displayth

RH076 7 M group displayth

RH077 8 M group displayth

It is possible to display 8 different M groups on the FUNCTION screen of the control. The 8
different M functions are displayed in one line according to the numbering of the registers. If the
contents of register RH070, ..., RH077 is 0 in the appropriate place of its group spaces are shown
on the screen. If a number other than 0 is entered into the register the contents of the appropriate
register is displayed beside character M of the appropriate column. The value range of the number
displayed is 0-99. The number must be entered into the register in binary form.

2.2.4 Registers from PLC to NC (Output Registers)

143

RH078 F% (feed override) output register

The current feed rate override value must be entered into register RH078 in the following way:

Feed override value is validated by the NC on the basis of
register RH078. Register value 0 (0%) refers to not only the
feed rate but also to the rapid traverse override. The override
value written in register RH078 is also effective for PLC axes.

If Y527=1 (feed override from SW control panel) or Y532=1
(from machine control board 2) the override can be read from
register RH028, otherwise the PLC programmer must set it up
e.g. decode it from switch and enter it into register RH078 in
the enclosed format.

RH078 %

0 0

1 1

2 2

3 5

4 1 0

5 2 0

6 3 0

7 4 0

8 5 0

9 6 0

10 70

11 80

12 90

13 100

14 110

15 120

2.2.4 Registers from PLC to NC (Output Registers)

144

RH079 S% spindle speed override output register

The current spindle speed override value must be entered into register RH079 in the following
way:

Spindle override value is validated by the NC on the basis of
register RH079.

If Y526=1 (spindle override from SW control panel) or Y532=1
(from machine control board 2) the override can be read from
register RH029, otherwise the PLC programmer must set it up
e.g. decode it from switch and enter it into register RH079 in the
enclosed format.

RH080 1 analog output scaled command signalst

It is possible to create two analog output signal in the control. If the n physical axis is ready toth

work but not selected for axis handle, i.e. the value of parameter AXISTn No.444n is 0, then the
appropriate analog output can be applied for signal transfer. The physical axis on which the 1st

and 2 analog output signal is transferred is specified at register COMMAND1 No. 0101 andnd

COMMAND2 No. 0102 of parameter field by entering a number between 1 and 8 in the
appropriate register. Scaling of the output (the value in case of 10V, minimum and maximum
value transferred) can be done at parameter group 0121 ANALOG1 and 0141 ANALOG2
similarly to spindle output.
The 1 analog output scaled command signal transfer is done through register RH080. Thest

number entered into register RH080 (its value range: 0-65535) is handled as an unsigned number
by the NC. The command signal polarity must be specified by setting flag Y670 (U670: positive,
D670: negative). If flag Y671 is set to 0 the command signal is transferred from this register.

Command signal transfer regarding scaling (Y671=0)
If flag Y671 is set to 0 the value entered into register RH080 is not transferred directly as
command signal, but
- scales the value of register on the basis of the parameter,
- it takes the override value in register RH082 into account,
- the command signal cannot be under or over the minimum or maximum value specified

at the given parameter,

RH079 %

0 50

1 60

2 70

3 80

4 90

5 100

6 110

7 120

8 130

9 140

10 150

2.2.4 Registers from PLC to NC (Output Registers)

145

- the command signal is not transferred promptly, but reaches its sixe specified at
parameter through linear rising and falling edge.

RH081 1 analog output binary command signalst

Binary command signal output (Y671=1)
If flag Y671 is set to 1 the value entered into register RH081 is transferred directly, in binary form
into the D/A converter as command signal by the NC.
- the value in case of 10 V is FFFFh,
- the value in case of 0 V is 0000h,
- and at flagY670 the sign can be specified.

RH082 1 analog output % (override) valuest

The override value of the 1 analog output can be entered into register RH082. The override valuest

must be given in %. If for example the contents of register RH082 is 100, in the 1 analog outputst

the command signal of register RH080 is transferred.

RH083

RH084

RH085 2 analog output scaled command signalnd

It is possible to create two analog output in the control. If the n physical axis is ready to workth

but not selected for axis handle, i.e. the value of parameter 444n AXISTn is 0, then the
appropriate analog output can be applied for signal transfer. The physical axis on which the 1st

and 2 analog output is transferred is specified at register 0101 COMMAND1 and 0102nd

COMMAND2 of parameter field by entering a number between 1 and 8 in the appropriate
register. Scaling of the output (the value in case of 10V, minimum and maximum value
transferred) can be done at parameter group 0121 ANALOG1 and 0141ANALOG2 similarly to
spindle output.
The 2 analog output scaled command signal transfer is done through register RH085. Thend

number entered into register RH085 (its value range: 0-65535) is handled as an unsigned number
by the NC. The command signal polarity must be specified by setting flag Y672 (U672: positive,

2.2.4 Registers from PLC to NC (Output Registers)

146

D672: negative). If flag Y673 is set to 0 the command signal is transferred from this register.
Command signal transfer regarding scaling (Y673=0)

If flag Y673 is set to 0 the value entered into register RH085 is not transferred directly as
command signal, but
- scales the number entered into register on the basis of the parameter,
- it takes the override value in register RH087 into account,
- the command signal cannot be under or over the minimum or maximum value specified

at the given parameter,
- the command signal is not transferred promptly, but reaches its size specified at

parameter through linear rising and falling edge.

RH086 2 analog output binary command signalnd

Binary command signal output (Y673=1)
If flag Y673 is set to 1 the value entered into register RH086 is transferred directly, in binary form
into the D/A converter as command signal by the NC.
- the value in case of 10 V is FFFFh,
- the value in case of 0 V is 0000h,
- and at flagY670 the sign can be specified.

RH087 2 analog output % (override) valuend

The override value of the 2 analog output signal can be entered into register RH087. Thend

override value must be given in %. If for example the contents of register RH087 is 100, in the
2 analog output the command signal referring to register RH085 is transferred.nd

RH088 Chopping Override Register

In register RH088 can be defined the override value of chopping that modifies the chopping rate
defined in parameter 0282 CHOPRATE per cents (%). Unit of value is %. Range of data: 0% ...
200% in 1% steps.

2.2.4 Registers from PLC to NC (Output Registers)

147

RH089 R% (rapid traverse override) output register

Rapid traverse override value is validated by the NC on the basis of register RH089. The register
contents are binary. The percent correspondent of each value (acknowledged by the control for
the given value) can be found in the below two tables. If 1204 RAPOVER=0 it is the first table,
while if RAPOVER No. 1204>0 it is the second one

F0 is the value defined at
parameter1204 RAPOVER . As
seen in the enclosed table it has
no 0% value, which is taken
from feed override value.
If Y525=1 (rapid traverse
override from SW control panel)
the override can be read from
register RH039, otherwise the
PLC programmer must set it up
e.g. decode it from switch and

enter it into register RH089 in the enclosed format. If e.g.
machine control board 2 is applied 4 free-purpose buttons can be
mounted in the below form:

 The override value can be selected

by pressing the appropriate button.
The rapid traverse override value can also be decoded from feed
override switch state.

1204 RAPOVER=0

RH089 %

0 0

1 1

2 2

3 5

4 10

5 20

6 30

7 40

8 50

9 60

10 70

11 80

12 90

13 100

1204 RAPOVER>0

RH089 %

0 F0=RAPOVER

1 25

2 50

3 100

2.2.4 Registers from PLC to NC (Output Registers)

148

RH090 Y700 message variable

RH091 Y701 message variable

RH092 Y702 message variable

RH093 Y703 message variable

RH094 Y704 message variable

RH095 Y705 message variable

RH096 Y706 message variable

RH097 Y707 message variable

RH090, ..., RH097: Y700, ..., Y707 message variable
If a message is to be displayed on screen indexed the appropriate value must be entered into the
register of the appropriate message display. The value written into register must previously be
converted into BCD format, if BCD number is to be displayed on screen. Otherwise the value
found in register is displayed in hexadecimal form. It can be used for example for displaying the
number of tool to be loaded in case of manual tool replacement.

RH098

RH099 Key code from PLC

If the PLC needs to operate the NC through data input keyboard it sets flagY537 to 1. Afterwards
it writes the appropriate key code into register RH099, than sets flag Y536 to 1 for 1 PLC cycle.
Key codes can be found in chapter 6.5 Listing of Push-button Codes on page 237.

2.2.4 Registers from PLC to NC (Output Registers)

149

RH150 1 axis position command lower wordst

RH151 1 axis position command upper wordst

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in incremental, or absolute value in function of the state of flag Y903. The dimensional unit of
the position data is output increment.

RH152 1 axis feedrate command lower wordst

RH153 1 axis feedrate command upper wordst

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y902 is set
to 1. Interpretation of 1 unit of the rate parameter (RH152=1, RH153=0):

L Registers RH150, RH151, RH152, RH153 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

RH154

RH155 2 axis position command lower wordnd

RH156 2 axis position command upper wordnd

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y913. The interpretation of the
position data is output increment.

2.2.4 Registers from PLC to NC (Output Registers)

150

RH157 2 axis feedrate command lower wordnd

RH158 2 axis feedrate command upper wordnd

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y912 is set
to 1. Interpretation of 1 unit of the rate parameter (RH157=1, RH158=0):

L Registers RH155, RH156, RH157, RH158 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

RH159

RH160 3 axis position command lower wordrd

RH161 3 axis position command upper wordrd

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y923. The interpretation of the
position data is output increment.

RH162 3 axis feedrate command lower wordrd

RH163 3 axis feedrate command upper wordrd

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y922 is set
to 1. Interpretation of 1 unit of the rate parameter (RH162=1, RH163=0):

L Registers RH160, RH161, RH162, RH163 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

2.2.4 Registers from PLC to NC (Output Registers)

151

RH164

RH165 4 axis position command lower wordth

RH166 4 axis position command upper wordth

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y933. The interpretation of the
position data is output increment.

RH167 4 axis feedrate command lower wordth

RH168 4 axis feedrate command upper wordth

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y932 is set
to 1. Interpretation of 1 unit of the rate parameter (RH167=1, RH168=0):

L Registers RH165, RH166, RH167, RH168 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

RH169

RH170 5 axis position command lower wordth

RH171 5 axis position command upper wordth

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y943. The interpretation of the
position data is output increment.

2.2.4 Registers from PLC to NC (Output Registers)

152

RH172 5 axis feedrate command lower wordth

RH173 5 axis feedrate command upper wordth

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y942 is set
to 1. Interpretation of 1 unit of the rate parameter (RH172=1, RH173=0):

L Registers RH170, RH171, RH172, RH173 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

RH174

RH175 6 axis position command lower wordth

RH176 6 axis position command upper wordth

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y953. The interpretation of the
position data is output increment.

RH177 6 axis feedrate command lower wordth

RH178 6 axis feedrate command upper wordth

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y952 is set
to 1. Interpretation of 1 unit of the rate parameter (RH177=1, RH178=0):

L Registers RH175, RH176, RH177, RH178 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

2.2.4 Registers from PLC to NC (Output Registers)

153

RH179

RH180 7 axis position command lower wordth

RH181 7 axis position command upper wordth

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y963. The interpretation of the
position data is output increment.

RH182 7 axis feedrate command lower wordth

RH183 7 axis feedrate command upper wordth

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y962 is set
to 1. Interpretation of 1 unit of the rate parameter (RH182=1, RH183=0):

L Registers RH180, RH181, RH182, RH183 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

RH184

RH185 8 axis position command lower wordth

RH186 8 axis position command upper wordth

In case of PLC controlled axes the interpolator moves into the position entered here interpreted
in increment, or absolute value in function of the state of flag Y973. The interpretation of the
position data is output increment.

2.2.4 Registers from PLC to NC (Output Registers)

154

RH187 8 axis feedrate command lower wordth

RH188 8 axis feedrate command upper wordth

In case of PLC controlled axes the axis moves at the rate entered here provided flag Y972 is set
to 1. Interpretation of 1 unit of the rate parameter (RH187=1, RH188=0):

L Registers RH185, RH186, RH187, RH188 are effective only on the PLC controlled axes
selected at flags Y630, ..., Y637.

RH189

RH190 Number of axis doing ovality

Write into this register the physical number of axis doing ovality during piston turning (Y674=1).
It can be used only with digital CANXMU board, the number must be odd and the next physical
axis must be left empty in point of view of data output. If e. g. axis 3 is doing ovality the follow-
ing parameter values must be set: 4863 DIGITAL3=1, 4864 DIGITAL4=0 és RH190=3.

RH191 Position of longer diameter

The number specified by this register is equal to the distance between the zero pulse of spindle
encoder and position of the longer diameter of ellipse in unit of encoder counts. This value is
varied between mechanisms therefore it is recommended to get it from a CONST parameter.

RH192 Ovality lower word

RH193 Ovality higher word

When in piston turning mode (Y674=1) PLC must copy the position of axis doing ovality into
these registers in modul :002.
If e. g. ovality is programmed on address "A" that is axis "A" is doing ovality and axis "A" is the
physical axis ¹ 4 the following parameters must be set: 4287 A=4, 4444 AXIST4=1, 4464

2.2.4 Registers from PLC to NC (Output Registers)

155

NOLOOP4=1, 4864 DIGITAL4=0.
Parameter NOLOOP is 1 because the NC does not close the position control loop on the axis
doing ovality it is done by the drive. PLC must copy the position in modul :002 because the
control during the execution of blocks

G1 X__ Z__ A__
continously changes the value of ovality (A).
In our case commands

LRH115
SRH192
LRH116
SRH193

are doing this task.

RH194 Barrellity lower word

RH195 Barrellity higher word

In piston turning mode (Y674=1) these registers are used if axis X must be clamped when the
oscillation of axis doing ovality reacts on the position of axis X. Then barrel shape must be pro-
grammed by means of axis doing ovality.
It is the best if barrel shape is programmed on address "U" therefore set parameters: 4284 U=3
(RH190=3), 4444 AXIST3=1, 4464 NOLOOP4=0, 4864 DIGITAL3=1.
Before setting piston turning mode (Y674) axis U works like a normal NC axis.
Before setting piston turning mode by command U674 position control loop must be opened by
the instruction U622. From now on position of axis U must be copied into registers above in
modul :002. In this case:

LRH110
SRH194
LRH111
SRH195

NC can be programmed by command block G1 U__ Z__ A__.
After resetting piston turning mode (D674), PLC program must wait until oscillation of axis
doing ovality stops then close position control loop by command D622 in our case.

RH196

RH197

2.2.4 Registers from PLC to NC (Output Registers)

156

RH198

RH199

2.3 Local Variables of PLC Program

157

2.3 Local Variables of PLC Program

1000 bytes of the PLC program form the freely available RAM area. Reference can be made to
the bytes of this area by means of character F and 3 decimal digits:

Fpqr
pqr=000,001,...999

If a bit within the byte is to be referred to a fourth digit must be entered into the end of the number
(s), and the value of s is octal:

Fpqrs
s=0,1,...,7

The selected area is basically divided into two parts. Variables from F000 to F499 are
automatically vacanted when the power is turned on. The contents of variables from F500 to F999
are preserved upon power-off.
Most variables are freely available, however there are ones with special availability. The
following table shows the usage of these variables .

2.3 Local Variables of PLC Program

158

Division of Local Variables

Variable Identity Usage Type

F000
Auxiliary register OP

 Volatile
variables

F001

F002
Reserved for later use

F003

F004
Status register

F005

F006
Reserved for later use

F007

F008 Message register of
operationsF009

F010

Freely available working
area

....

F499

F500

Tool pot table

Non-volatile
Variables

....

F(500+MAGAZIN*2+1)

F[500+(MAGAZIN+1)*2]

Freely available table of
PLC program

....

F[500+(MAGAZIN+2+PLC_TAB)*2]

F[500+(MAGAZIN+4+PLC_TAB)*2]

Freely available working
area

....

F999

2.3 Local Variables of PLC Program

159

2.3.1 Auxiliary Register OP and Status Register

F000, F001: Auxiliary register OP
In case of multiplication of the contents of OP (statement *L[variable]), if the result does not have
enough room into register OP, the high-words of the product can be found at this register: the
low-byte at F000, the high-byte at F001.
In case of division of the contents of OP (statement /L[variable]) the low-byte of the remainder
can be found in variable F000, while the high-byte in variable F001.

F004, F005: Status register
In the course of PLC program execution the following flags are set in function of the given
statement:

Flag Identity Meaning of Flag if Value=1 (TRUE)

F0040 Carry

F0041

F0042

F0043

F0044

F0045

F0046 Result of statement: zero

F0047 Sign

Flag Identity Meaning of Flag if Value=1 (TRUE)

F0050

F0051

F0052

F0053 Overflow

F0054

F0055

F0056

F0057

2.3 Local Variables of PLC Program

160

F0040: Carry
The flag is set (=1) in the following cases:
- carry has been done in case of statement +,
- and borrow in case of statement -

F0046: Result of statement: zero
This flag is set to 1 if the result of statements +, -, ADDnnn, SUBnnn, CMPnnn is zero.

F0047: Sign
This flag is set to 1 if bit No. 15 of OP is 1 in case of statements +, -, ADDnnn and SUBnnn.

F0053: Overflow
This flag is set to 1 if the result of statement MULnnn is overflown.

F008, F009: Message register of statements

Flag Identity Meaning of Flag if Value=1 (TRUE)

F0080 Syntax error

F0081 Data not found

F0082 Not BCD number

F0083 Overflow in case of statement *

F0084

F0085

F0086

F0087 Sign of BCD number

F0080: Syntax error
This flag is set if error occurs during program execution in case of statements, where no
fundamental syntax examination can be done in the course of compilation.
These statements:

LFInnn, SFInnn, /, HFnnn, PFnnn, MRnnn, MWnnn, ADDnnn, SUBnnn, MULnnn,
DIVnnn, CMPnnn.

Details of the flag can be found in the description of the given statement.

F0081: Data not found
This flag is set to 1 if the data searched for cannot be found in case of search statements HFnnn,
PFnnn.

F0082: Not BCD number
The flag is set if
- in the course of statement BIN the contents of OP is not BCD,
- in indirect address statements no address BCD is found.

2.3 Local Variables of PLC Program

161

F0083: Overflow in case of statement *
This flag is set to 1 if the result of * (multiplication) does not have enough room into register OP
and the high-words can be found at addresses F000, F001.

F0087: Sign of BCD number
If a BCD number is to be converted to binary form by means of statement BIN the sign of BCD
number must be entered into flag F0087:
- F0087=0: positive BCD number,
- F0087=1: negative BCD number.

2.3 Local Variables of PLC Program

162

 F(500+2i+1) | F(500+2i)

1111 11
5432 1098 7654 3210

i row [xxxx|xxxx|xxxx|xxxx]th

 **.)))))))))))))))2))))Q the number of the tool in pot
 .2)))))))))))))))))))))Q the width code of the tool

2.3.2 Tool Pot Table

F500, ..., F[501+2*MAGAZINE]: Tool pot table
In case not local coded tool handle or random access magazine handle is to be used, a tool pot
table is needed, in which the pot of the magazine and number of the tool found in it can be
selected.

Note
Local coded tool handle means, that reference to the tool is made at address T by the pot number
of the magazine, in which the desired tool can be found.
If tool reference is not local coded, a table is needed, which shows, which tool number can be
found in which pot of the magazine.
Random access magazine handle means, that the position of tools in magazine is not fixed. The
returning tool (taken from spindle) is not taken back into the position it was taken out, but into
the nearest vacant position in magazine, in the simplest case in place of the selected (new) tool.

The tool pot table can be found among the SETTING screens on the TOOL POT TABLE screen,
and can be filled out from the NC keyboard. For the NC sends always the code at address T to the
PLC and the magazine handling should be done entirely in the PLC, the tool pot table is fully
accessible for the PLC for writing and reading. Above all special handling commands ease the
work of the PLC programmer.

The length of tool pot table can be set in parameter MAGAZINE No. 0061. In parameter
MAGAZINE the number of tool pots in the magazine is to be entered. Row 0 of table shows the
code of tool in spindle, i.e. the spindle is pot No. 0. The table has word-structure, therefore the
length of table is 2*MAGAZINE+2 byte.

Reference to the row of the table can be made from the PLC program at address F and with the
appropriate number. When editing, the serial numbering of the table is from 0 to the MAGAZINE
value i.e. it corresponds to the word numbers. E.g. reference to the 3 row of the table can berd

made in the PLC program by F506. The row numbers identify the pot numbers of the magazine.
.

Row No. 0, i.e. pot No. 0 indicates the spindle.
In all cases two data must be specified by every pot when editing:
- the number of the tool in pot,
- the width code of the tool.
The data structure is as follows:

The tool number is given in the memory in binary form.

2.3 Local Variables of PLC Program

163

Usage of width code
In case of local access magazine handle, i.e. the tool taken out is taken back into from where it
was taken, the tool width, i.e. how many pots are being occupied is of no interest.
In case of random access magazine handle position may also have to be ensured for tools, that are
more-than-one tool-pot-wide. Therefore tool positions, in which extra wide tools can be placed,
should have to be selected. This is why a width code must be given to each tool in the tool pot
table.
This is needed, for in case of random access magazine handle the returning tool can be taken to
the place of the selected one, should the two tools have the same width code. If however the width
of the two tools differ, the returning tool cannot be taken back in place of the selected one. In this
case the - to the replacement - nearest vacant position, of which the width equals to that of the
returning tool must be searched for.
The following width codes are enabled the table manager (under address L):

1 (normal width),
3, 5 or 7.

The tool that has a width of 3 occupies both to the left and to the right 1-1, that of the width of
5 occupies 2-2, while that of the width of 7 reserves 3-3 positions in the magazine. This way
special pots can be selected in the magazine, into which the extra wide tools are placed.

The value for tool width entered into the table may be 1, 3, 5, or 7, the display and meaning of
which is as follows:

coding in memory The value in the table and the

position reservation of tool in the

magazine 15. bit 14. bit

0 0 1

0 1 3

1 0 5

1 1 7

In case of extra wide tools to the pot number, into which the tool is taken also the tool number
and the tool width code must be entered. As for the 1, 2 or 3 pot numbers before and after it, to
the tool number 0, while to the width the appropriate width code is to be entered. If a tool is taken
from the magazine to the spindle in row 0 the tool number and the width code also has to be
entered, and the tool number is to be deleted in the row, from which the tool was taken. However
the width code must be preserved in the table, for to show the returning tool, that the pots are
reserved for extra wide tools.

2.3 Local Variables of PLC Program

164

2.3.3 Freely available Table of PLC Program

The length of freely available table can be entered into the parameter field at parameter
PLC_TAB No. 0062, which can be found among the SETTING screens on the PLC TABLE
screen. The table can be edited from the NC control and the data of the table can be accessed from
the PLC program at address F and by entering the appropriate number. The freely available PLC
table has also a word-structure, as is the tool pot table, this should be remembered when making
references at address F. The length of the table is 2*PLC_TAB byte.
The freely available table is directly after the tool pot table in the memory:

start address: F[502+2*MAGAZINE]
end address: F[501+2*MAGAZINE+2*PLC_TAB]

If the value of parameter MAGAZINE is 0 the start and end addresses are as follows:
start address: F500
end address: F[499+PLC_TAB*2]

The serial numbering of the table in SETTING mode is from 1 to the PLC_TAB value and the
value range of the data of the table:

0-65535
The usage of the table is freely available. Here for example data concerning the pot from where
the tool in spindle was taken out or the number and width code of tool in each tool replacing
stands can be stored.

2.4 Local Registers of PLC Program

165

2.4 Local Registers of PLC Program

2.4.1 Up/Down Counters
There are 32 pieces of 16-bit up/down counters available for the PLC programmer. The contents
of the counter can be loaded and interrogated from the program. The value of counter can be
incremented or decremented by means of PLC statements. As for the contents of the counter the
condition testing statement can be given.
Reference to the counter can be made with its address (Q) and a two-digit decimal number:

Qnn
nn=00...31

2.4.2 20-msec Timers
There are 50 pieces of 20-msec timers available for the PLC programmer. The contents of the
timer can be loaded and interrogated from the program. The contents of the timer is automatically
decreased by one in every 20 msec. If the timer is terminated, i.e. its contents equals to 0, it does
not turn over, but remains at 0 in the forthcoming timing units.
Reference to the 20-msec timer can be made with its address (T) and a two-digit decimal number:

Tnn
nn=00...49

2.4.3 Second Timers
There are 100 pieces of 16-bit 1-sec timers available for the PLC programmer. The contents of
the timer can be loaded and interrogated from the program. The contents of the timer is
automatically decreased by one in every 1 sec. If the timer is terminated, i.e. its contents equals
to 0, it does not turn over, but remains at 0 in the forthcoming timing units.
Reference to the 1-sec timer can be made with its address (H) and a two-digit decimal number:

Hnn
nn=00...99

2.4.4 Minute Timers
There are 10 16-bit minute timers available for the PLC programmer. The contents of the timer
can be loaded and interrogated from the program. The contents of the timer is automatically
decreased by one in every minute. If the timer is terminated, i.e. its contents equals to 0, it does
not turn over, but remains at 0 in the forthcoming timing units.
Reference to the minute timer can be made with its address (M) and a one-digit decimal number:

Mn
n=0...9

2.4.5 PLC Constants
There are 40 pieces of 16-bit constants available for the PLC programmer. The constants can be
found at parameter groups 0001 CONST and 0011 CONST2. The difference between the two
groups is that the first 10 constants i.e. those of group 0001 CONST are operator’s parameters,
while those of group 0011 CONST2 are not.
The constants can be edited from the NC keyboard. Reference to the constant can be made in the
program with its address (PR) and a three-digit number (the first digit is always 0):

RP0pq
pq=1...40

3 Standard Modules of PLC Program

166

3 Standard Modules of PLC Program

3.1 Module :000

Module :000 is executed on level No. 0, i.e. in the rest time of T msec after the PLC module level
No. 1 (module :001) has been executed (see: chapter 1.2 on page 8). Module :000 is not
obligatorily executed in one time slice, its execution can extend over more time slices. In case
level No. 0 has been terminated the rest time of PLC is returned to the NC. The module start is
defined by label

:000
and its end by statement

J0
in the source language text of PLC program.
In module :000 the state of interface input lines and input flags is updated only in the first PLC
time slice following the termination of the module (statement J0). Thus in the same PLC time
slice the result of condition test Innn may differ depending on the test done in module :001 or
:000.
Module :000 (level No. 0) can be used for tasks, the execution of which takes longer time.

3.2 Module :001

Module :001, i.e. the PLC level No. 1 is executed from the beginning in every PLC time slice,
that is in every 20 msec. The execution of this module is mandatory in every PLC time slice . In
case it is not done error message PLC TIMEOUT1 is displayed by the control. The beginning of
module :001 is indicated by label

:001
and its end by statement

 J1
in the source language text of PLC program.
In module :001 the state of interface input lines and input flags is updated in every PLC time
slice.
It follows that module :001 (level 1.) is advisable to use for supervisory activities. Such actions
may be the test of alarms, limits, signals of reference position switches and machine NC control
buttons, as well as receiving the commands sent by the NC in the course of block execution.

3.3 Module :002
Module :002 makes it possible to react input signals in extreme situations as fast as possible..
Module :002 is called by the NC in every 5 (2) msec provided module call is enabled. Module
:002 must be executed in 5 (2) msec, otherwise error message PLC TIMEOUT2 is displayed by
the NC. The beginning of level No. 2 is indicated by label

:002
while its end by statement

J2
in the source language text of the PLC program. Call of module :002 is enabled or disabled by
flag Y546.
Naturally in this module direct loading (Ppqr) and storing statements (UOpqr, DOpqr) are to be
used.

3 Standard Modules of PLC Program

167

3.4 Module :197

If output flag Y524 is 1 (PLC defined buttons with softkeys) signals of the 8 freely available
softkeys offered by the NC are transferred through flags I500, ..., I507 by the NC (if Y524=0 these
softkeys are not offered by the NC.). The caption of softkeys can be defined by the PLC
programmer in module

:197.
The strings are separated by commas

,
and the last string together with module :197 is terminated by character

$.
The maximum length of captions is 9 characters. E.g.:

:197PLC1,PLC2,PLC3,PLC4,PLC5,PLC6,PLC7,PLC8$

The statuses of softkeys can be switched through flags Y500, ..., Y507.

3.5 Module :198

With the help of flags Y700, ..., Y707 8 different user messages indexed according to the contents
of register RH090, ..., RH097 can be displayed on the screen containing user messages. Of the
maximum 8 messages only the one displayed in the 2 line of screen is active. (There is no neednd

to switch over to the screen containing user messages in order to read the active message.)
The active message can be read at flags I700, ..., I707 of which the state of only one can be
TRUE. The PLC programmer must take care of canceling the message. E.g. if one message is for
tool replacement it is useful to cancel the active message by means of START button. A message
display can be deleted (DY7nn) before it becomes active in case the reason of the message has
ceased. Naturally in this case it also is deleted from the screen listing the messages.
The message strings must be entered into module

:198.
The strings are separated by commas

,
The maximum length of message strings is 20 characters. The end of module together with the
last message is indicated by character

$.
E.g.:

:198MESSAGE1,MESSAGE2,...,MESSAGE8$

3 Standard Modules of PLC Program

168

3.6 Module :199

152 different user message can be displayed on the screen containing user messages with the help
of flags Y710, ..., Y897. Of the maximum 152 messages only one, displayed in the 2 line ofnd

screen, is active. (For reading the active message there is no need to switch over to the screen
containing the user messages.)
Due to this only one of flags I710, ..., I897 has TRUE state. It is the task of the PLC programmer
to define the method of canceling the user messages. To cancel an error message also the RESET
button, the signal of which is sent through input flag I477 can be used. A message flag can be
canceled (DY7nn or DY8nn) before it becomes active in case the reason of the message has
ceased. Naturally in this case it also is deleted from the screen listing the messages.
The message string must be entered into module

:199.
The strings are separated by commas

,
The maximum length of message strings is 20 characters. The end of module together with the
last message is indicated by character

$
E.g.:

:199MESSAGE1,MESSAGE2,...,MESSAGE152$

3.7 Module :200
The information part of PLC program can be written in module :200. The information part, i.e.
the text written in module :200 as well as the date and time of the compilation of the program,
which is automatically generated by the compiler is displayed by selecting the SERVICE - PLC
screen on the control.
The information text must be written in module

:200.
The end of module is indicated by character

$.

4 Instruction Set of PLC Program Language

169

4 Instruction Set of PLC Program Language

4.1 Switch Statements

 Upqr: switching interface output line or output flag Ypqr on
Switching interface output line on

Statement
Upqr (p=0,1,2,3)

switches the appropriate interface output Ypqr on, i.e. 24V occurs in the output line. The
statement switches directly only the in-RAM-stored flag of interface output line on. The actual
switch-on of the interface output appears only at the end of PLC time slice, when the output lines
are updated from RAM flags by the NC. Therefore there is a lag between the statement execution
and the switch-on of output line, the maximum time length of which is T msec (see: chapter 1.2
on page 8).

Switching output flag on
Statement

Upqr (p=4,5,6,7,8,9)
sets the appropriate output flag Ypqr to 1, i.e. to TRUE state.

 Dpqr: switching interface output line or output flag Ypqr off
Switching interface output line off

Statement
Dpqr (p=0,1,2,3)

switches the appropriate interface output line Ypqr off. The statement switches directly only the
in-RAM-stored flag of interface output line off. The actual switch-off of the interface output line
appears only at the end of PLC time slice, when the output lines are updated from its RAM flags
by the NC. Therefore there is a lag between the statement execution and the switch-off of output
line, the maximum time length of which is T msec (see: chapter 1.2 on page 8).

Switching output flag off
Statement

Dpqr (p=4,5,6,7,8,9)
sets output flag Ypqr to 0, i.e. to FALSE state.

 UFnnni: switching i bit of local variable on.th

Statement
UFnnni (i=0,1,...,7)

sets the i bit of local variable Fnnn to 1, i.e. to TRUE state.th

 DFnnni: switching i bit of local variable off.th

Statement
DFnnni (i=0,1,...,7)

sets the i bit of local variable Fnnn to 0, i.e. to FALSE state.th

4 Instruction Set of PLC Program Language

170

 UOpqr: switching interface output line Ypqr on directly.
Statement

UOpqr (p=0,1,2,3)
switches the appropriate interface output line Ypqr on directly. The statement switches directly
the interface output, i.e. not the in-RAM-stored flag of interface output line flag on. Contrary to
statement Upqr the execution of statement UOpqr is five times slower, therefore it is advisable
to use statement UOpqr in case prompt intervention is necessary in the output line. The statement
can be applied only for interface output lines excluding output flags.

 DOpqr: switching interface output line Ypqr off directly.
Statement

DOpqr (p=0,1,2,3)
switches the appropriate interface output line Ypqr off directly. The statement switches directly
the interface output, i.e. not the in-RAM-stored flag of interface output line off. Contrary to
statement Dpqr the execution of Statement DOpqr is five times slower, therefore it is advisable
to use statement DOpqr in case prompt intervention is necessary in the output line. The statement
can be applied only for interface output lines excluding output flags.

4.2 Condition Testing Statements

There may be two kinds of conditional program branches:

 <condition> [true branch of condition] E [false branch of condition] Z
In case the <condition> is true the program execution is continued with statements of true branch
between <condition> and marker E, than the program execution is continued with the statements
after marker Z.
Otherwise, if <condition> is not true the program execution is continued with statements of false
branch between marker E and marker Z, than the program execution is continued with the
statements after marker Z.

 <condition> [true branch of condition] Z
In case the <condition> is true the statements of true branch are executed, than the program
execution is continued with the statements after marker Z.
Otherwise, if <condition> is not true the program execution is continued with the statements after
marker Z, thus the statements between <condition> and marker Z are not executed.
 E: else marker of the FALSE branch of condition, the use of which is not obligatory. If it is

lacking the program searches for the FALSE path after the end marker of conditional
program branch.

 Z: end marker of conditional program branch, the use of which is obligatory. In the program the
number of markers Z should be as much as the number of opening conditions. If there are
less markers Z in the program than the number of opening conditions the compiler sends
message "ERROR 17" and the cursor is flashed at the beginning of the erroneous
condition. If there are more markers Z in the program than the number of opening
conditions, then the compiler sends message "ERROR 2".

4 Instruction Set of PLC Program Language

171

4.3 Creating Conditions with Flags

 Ipqr: state test of interface input line or input flag Ipqr
State test of interface input line

The first statement of conditional program branch
Ipqr [Ipqr=true branch] E [Ipqr=false branch] Z, or
Ipqr [Ipqr=true branch] Z

p=0,1,2,3
performs state test of interface input line. If 24V occurs in the input line the condition is TRUE,
if the input line is interrupted the condition is FALSE. The statement tests the in-RAM-stored
synchronized flag interface input line.

State test of input flag
The first statement of conditional program branch

Ipqr [Ipqr=1 branch] E [Ipqr=0 branch] Z, or
Ipqr [Ipqr=1 branch] Z

p=4,5,6,7,8,9
performs state test of input flag Ipqr. The statement tests the synchronized state of input flags.

Note
The result of the state test of input lines or input flags also depends on whether the state test is
done in module :000 or :001. In module :000 the in-RAM-stored flag of input lines is updated at
the beginning of the first PLC time slice following the execution of statement J0, while in module
:001 at the beginning of every PLC time slice.
Example:

I002 U012 E D012 Z
If there is 24V in input line I002 output line Y012 is switched on, if not, output line Y012 is
switched off.

 Ypqr: state test of interface output line or output flag Ypqr
State test of interface output line

The first statement of conditional program branch
Ypqr [Ypqr=true branch] E [Ypqr=false branch] Z, or
Ypqr [Ypqr=true branch] Z

p=0,1,2,3
performs state test on the in-RAM-stored flag of interface output line Ypqr. Therefore the state
test can signal switched-on or switched-off state even when the output line is physically not
switched on or off yet. If the output line is on the condition is TRUE, if the output line is
interrupted the condition is FALSE.

State test of output flag
The first statement of conditional program branch

Ypqr [Ypqr=true branch] E [Ypqr=false branch] Z, or
Ypqr [Ypqr=true branch] Z

p=4,5,6,7,8,9
performs state test on output flag Ypqr.

4 Instruction Set of PLC Program Language

172

 Vpqr: Change test of interface input line or input flag Ipqr
Change test of interface input line

The first statement of conditional program branch
Vpqr [Ipqr changed branch] E [Ipqr not changed branch] Z, or
Vpqr [Ipqr changed branch] Z

p=0,1,2,3
performs change test of interface input line Ipqr. The current state of the in-RAM-stored flag of
the interface input line is compared to the 20-msec earlier state, provided the change test has
occurred in module :001. If the change test appears in module :000 the current synchronized state
is compared to the previous state. The condition is TRUE if change had occurred.

Change test of input flag
The first statement of conditional program branch

Vpqr [Ipqr changed branch] E [Ipqr not changed branch] Z, or
Vpqr [Ipqr changed branch] Z

p=4,5,6,7,8,9
performs state test on the edge of input flag Ipqr. The function of the statement corresponds to
that of interface input line.

 Ppqr: direct state test of interface input line
The first statement of conditional program branch

Ppqr [Ipqr=true branch] E [Ipqr=false branch] Z, or
Ppqr [Ipqr=true branch] Z

p=0,1,2,3
performs direct state test of interface input line Ipqr. If 24V occurs in the input line the condition
is TRUE, if the input line is interrupted the condition is FALSE. The statement tests directly the
input line of interface board, not the flag stored in RAM. Naturally the statement cannot be
applied for testing input flags.

 Fnnni: State test of the i bit of local variable Fnnnth

The first statement of conditional program branch
Fnnni [Fnnni=true branch] E [Fnnni=false branch] Z, or
Fnnni [Fnnni=true branch] Z

i=0,1,...,7
performs state test on the i bit of local variable Fnnn. If it is 1 the condition is TRUE.th

 N<condition>: complemented state test of flag
The state and change tests can be performed also on the complemented state of flags provided
operator N is used:

NIpqr [Ipqr=false branch] E [Ipqr=true branch] Z, or
NIpqr [Ipqr=false branch] Z
NYpqr [Ypqr=false branch] E [Ypqr=true branch] Z, or
NYpqr [Ypqr=false branch] Z
NVpqr [Ipqr not changed branch] E [Ipqr changed branch] Z, or
NVpqr [Ipqr not changed branch] Z
NPpqr [Ipqr=false branch] E [Ipqr=true branch] Z, or
NPpqr [Ipqr=false branch] Z
NFnnni [Fnnni=false branch] E [Fnnni=true branch] Z, or
NFnnni [Fnnni=false branch] Z

Naturally direct state test can also be applied for these interface input lines.

4 Instruction Set of PLC Program Language

173

4.4 Combination of Conditions with Logic Gates on Flags

 (<1 condition> A <2 condition>): logical AND of two conditionsst nd

The first statement of conditional program branch
(<1 condition> A <2 condition>) [true branch] E [false branch] Zst nd

(<1 condition> A <2 condition>) [true branch] Zst nd

performs state test of the two conditions combined with AND gate. The condition between
parentheses (,) is true if both elements are TRUE. For example:

(I002 A Y014) UF0103 Z
If 24V occurs in input line I002 and output line Y014 is on, then bit 3 of variable F010 is
switched to 1.

 (<1 condition> O <2 condition>): logical OR of two conditionsst nd

The first statement of conditional program branch
(<1 condition> O <2 condition>) [true branch] E [false branch] Zst nd

(<1 condition> O <2 condition>) [true branch] Zst nd

performs state test of the two conditions combined with OR gate. The condition between
parentheses (,) is true if at least one of the conditions is TRUE. For example:

(I002 O Y014) UF0103 Z
If 24V occurs in input line I002 or output line Y014 is on, then bit 3 of variable F010 is switched
to 1.

 (<1 condition> X <2 condition>): logical eXclusive or of two conditionsst nd

The first statement of conditional program branch
(<1 condition> X <2 condition>) [true branch] E [false branch] Zst nd

(<1 condition> X <2 condition>) [true branch] Zst nd

performs state test of the two conditions combined with EXCLUSIVE OR gate. The condition
between parentheses (,) is true if one of the conditions is TRUE, while the other one is FALSE.
For example:

(I002 X Y014) UF0103 Z
If 24V occurs in input line I002 and output line Y014 is off, then bit 3 of variable F010 is
switched to 1.

 (..): parentheses, combining more conditions into one condition.
More conditions can be combined by means of open and close parentheses. The maximum
number of combined conditions is not defined and the logic gates combining the conditions can
also be miscellaneous. When calculating a condition its result is calculated going from left to
right. Condition

(I001 A Y012 A F1002 O I002)

is TRUE if I001, Y012 and F1002 are also true, or I002 is TRUE.
The maximum nesting depth is 8 parentheses. In this case the evaluation is started from the
deepest parenthesis going from left to right. In Statement

((I001 O I002) A (Y015 A F1006))

first the result of condition (I001 O I002) than of condition (Y015 A F1006) is calculated,
afterwards the two results are combined.
The open and close parentheses should always be in pairs.

4 Instruction Set of PLC Program Language

174

4.5 Loading constant into register OP

 ,nnnnn: loading decimal constant into register OP
Decimal constant ,nnnnn written in the PLC program is converted by the compiler into binary
form and loaded into register OP. The value range of the constant to be loaded:

,nnnnn = 0 - 65535,
that is only positive constant can be entered into OP. If the decimal constant is preceded by
statement

<, >, =, <=, >=, +, !, *, /, N, A, O, X
marker "," of the decimal constant must not be entered before the constant, otherwise the compiler
detects error.

 .nnnn: loading hexadecimal constant into register OP
Hexadecimal constant .nnnnn written in the PLC program is converted by the compiler into
binary form and loaded into register OP.. "." (point) indicates the hexadecimal constant. The value
range of the constant to be loaded:

.nnnn = .0000 - .FFFF
The hexadecimal constant written into OP is always regarded by PLC statements as an unsigned
number, thus .FFFF > .0 . Marker "." of the hexadecimal constant must always be entered before
the constant.

4.6 Loading value of variable into register OP

Statement L loads the value of the addressed word or flag variable into register OP. After
statement L reference to the variable can only be made by the identity number following the
address of the variable. That is why this statement is called the direct loading of register OP.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the bit variable, the value of which is loaded into bit No. 0 of register OP. Bits No. 1...15 of
register OP are cleared.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the word variable, the value of which is loaded into OP.
Indirect loading can be used in case of local variables Fnnn. In statement LFInnn value of Fnnn
is aaa, which is referred to local variable Faaa and value of Faaa is loaded into register OP. That
is why this statement is called indirect loading.
When loading the OP directly, i.e. in case of statement L reference can be made to the following
variables:

 LIpqr: bit-loading of the state of interface input line or input flag into OP
Loading state of interface input line into OP

Statement
LIpqr
p=0,1,2,3

loads the in-RAM-stored synchronized flag of the qr input line of the 1 , ..., 4 interface boardth st th

specified by index p into bit No. 0 of the OP.
Loading input flag into OP

Statement
LIpqr
p=4,5,6,7

loads the in-RAM-stored synchronized flag of the pqr input line into OP.th

4 Instruction Set of PLC Program Language

175

Note
The same as in case of state test Ipqr.

 LIpq: loading two neighboring bytes of interface input lines or input flags into OP
Loading a word from interface input lines into OP

Statement
LIpq
p=0,1,2,3

loads the in-RAM-stored synchronized bytes of the q and (q+1) input bytes of the 1 , ..., 4th th st th

interface board specified by index p into OP.
Loading of the state of input flag into OP

Statement
LIpq
p=4,5,6,7

loads the in-RAM-stored synchronized bytes of the q and (q+1) input bytes into OP.th th

Note
The same as in case of state test Ipqr.

 LYpqr: bit-loading of the state of interface output line or output flag into OP
Loading of the state of interface output line into OP

Statement
LYpqr
p=0,1,2,3

loads the in-RAM-stored flag of the qr output line of the 1 , ..., 4 interface board specified byth st th

index p into bit No. 0 of the OP.
Loading of the state of output flag into OP

Statement
LYpqr
p=4,5,6,7

loads the in-RAM-stored flag of the pqr output line into OP.th

 LYpq: loading two neighboring bytes of interface output lines or output flags into OP

Loading a word from interface output lines into OP
Statement

LYpq
p=0,1,2,3

loads the in-RAM-stored bytes of the q and (q+1) output bytes of the 1 , ..., 4 interface boardth th st th

specified by index p into OP.
Loading a word from output flags into OP

Statement
LYpq
p=4,5,6,7

loads the in-RAM-stored bytes of the q and (q+1) output bytes into OP.th th

4 Instruction Set of PLC Program Language

176

 LVpqr: bit-loading of the change flag of interface input line or input flag into OP
Loading change state of interface input line into OP

Statement
LVpqr
p=0,1,2,3

tests the change of the in-RAM-stored synchronized flag of the qr input line of the 1 , ..., 4th st th

interface board according to the previous state. The current state of the interface input line is
compared to the 20-msec-earlier state, provided the statement has occurred in module :001. If the
statement occurs in module :000 the current synchronized state is compared to the previous
synchronized state. The contents of OP is set to 1 if change has been detected.

Loading change state of input flag into OP
LVpqr
p=4,5,6,7,8,9

The same as in case of the interface input line.

 LVpq: loading two neighboring bytes of change flags of interface input line or input flags
into OP
Loading a word from change flags of interface input lines into OP

Statement
LVpq
p=0,1,2,3

tests the in-RAM-stored synchronized flag of the q and (q+1) input bytes of the 1 , ..., 4th th st th

interface board according to the previous state. The current state of the interface input line is
compared to the 20-msec-earlier state, provided the statement has occurred in module :001. If the
statement occurs in module :000 the current synchronized state is compared to the previous
synchronized state. The bits, where change has been detected, are set to 1.

Loading a word from input flags into OP
LVpq
p=4,5,6,7,8,9

The same as in case of the interface input line.

 LPpqr: direct bit loading of interface input line into OP
Statement

LPpqr
p=0,1,2,3

loads the qr output line of the 1 , ..., 4 interface board specified by index p by testing directlyth st th

the input line of the interface board. Naturally the statement cannot be applied in case of input
flags.

 LPpq: loading two neighboring bytes of interface input lines into OP directly
Statement

LPpq
p=0,1,2,3

loads the q and (q+1) output line of the 1 , ..., 4 interface board specified by index p by testingth th st th

directly on the input line of the interface board, therefore it does not use in-RAM-stored
synchronized flags of input lines. Naturally the statement cannot be applied in case of input flags.

4 Instruction Set of PLC Program Language

177

 LFpqri: loading the i bit of local variable into OPth

Statement
LFpqri

loads the i bit of local variable Fpqr to bit No. 0 of register OP.th

 LFpqr: loading two neighboring bytes of local area into OP
Statement

LFpqr4
loads bytes Fpqr and Fpq(r+1) from local area into register OP

 LRHinn: loading the contents of input or output register into OP
Statement

LRHinn
i=0, 1
nn=0, ..., 99

loads the contents of the addressed input or output register into register OP.

 LQnn: loading the contents of up/down counter into OP
Statement

LQnn
nn=00, ..., 31

loads the contents of the addressed up/down counter into register OP.

 LTnn: loading the contents of 20-msec timer into OP
Statement

LTnn
nn=00, ..., 49

loads the contents of the addressed 20-msec timer into register OP.

 LHnn: loading the contents of second timer into OP
Statement

LHnn
n=00, ..., 99

loads the contents of the addressed second timer into register OP.

 LMn: loading the contents of minute timer into OP
Statement

LMn
n=0, ..., 9

loads the contents of the addressed minute timer into register OP.

 LRP0nn: loading PLC constant into OP
Statement

LRP0nn
nn=1, ..., 40

loads the contents of the addressed PLC constant into register OP.

 LFInnn, loading indirect addressed word of local area into OP
This statement is for loading indirect addressed word of local area of the PLC program into OP.
After the statement name (LFI) the address of the local variable, where the address of the data to
be loaded can be found, needs to be entered with 3 decimal digits.

4 Instruction Set of PLC Program Language

178

nnn: address of a local variable, where the address of the local variable to be loaded into OP
can be found.

Flags to be set:
F0080: syntax error. The value of variable Fnnn is not in the range of 000...999.
F0082: the value of variable Fnnn is not decimal.

Example for the use of statement LFInnn:

LFI128 ;loading the number and width code of the called tool
 (F0080 ;if syntax error
 OF0082) ;or not decimal number

U733 ;LOADING ERROR, message strobe set
 E ;if OK
 SF102 ;saving code of called tool

...
 Z ;end of syntax error condition

 NL[variable], NLFInnn, loading complemented contents of the variable into OP
Statements NL[variable] (see types of variables above) and NLFInnn load the complemented
value of the tested variable into register OP.

4.7 Storing Value from Register OP into Variable

Statement S stores the contents of register OP into the specified word or flag variable. Following
statement name S reference to a variable can only be made by the identity number next to the
address of the variable. That is why the statement is called direct storing.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to a flag and bit No. 0 of register OP is stored into the specified flag.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to a word variable and the contents of register OP is stored into the specified word.
Indirect loading can be used in case of local variables Fnnn. In statement SFInnn value aaa of
Fnnn is referred to local variable Faaa and is executed in statement SFaaa. That is why this
statement is called indirect storing.
In case of statement S the possible statement combinations are as follows:

 SYpqr: storing bit No. 0 of the OP into interface output line or output flag
Storing bit No. 0 of the OP into interface output line

Statement
SYpqr
p=0,1,2,3

stores bit No. 0 of register OP into the in-RAM-stored flag of the qr output line of the 1 , ..., 4th st th

interface board specified by index p.
Storing bit No. 0 of the OP into output flag

Statement
SYpqr
p=4,5,6,7,8,9

stores bit No. 0 of register OP into the in-RAM-stored flag of the pqr output flag.th

4 Instruction Set of PLC Program Language

179

 SYpq: storing the contents of OP into two neighbouring bytes of interface output lines or
output flags
Storing OP into a word of interface output lines

Statement
SYpq
p=0,1,2,3

stores the contents of register OP into in-RAM-stored bytes of the q and (q+1) output byte ofth th

the 1 , ..., 4 interface board specified by index p.st th

Storing OP into a word of output flags
Statement

SYpq
p=4,5,6,7,8,9

stores the contents of register OP into the pq and p(q+1) output flag.byte.th th

 SOpqr: storing bit No. 0 of OP directly into interface output line
Statement

SOpqr
p=0,1,2,3

stores the contents of bit No. 0 of register OP directly (by skipping the in-RAM-stored flags of
the output lines) to the qr output line of the 1 , ..., 4 interface board specified by index p.th st th

Contrary to statement SYpqr the execution of statement SOpqr is five times slower, therefore it
is advisable to use statement SOpqr in case prompt intervention is necessary in the output line
Naturally the statement cannot be applied in case of output flags.

 SOpq: storing the contents of OP directly into two neighboring bytes of interface output
lines

Statement
SOpq
p=0,1,2,3

stores the contents of register OP directly (by skipping the in-RAM-stored flags of the output
lines) to the q and (q+1) output lines of the 1 , ..., 4 interface board specified by index p.th th st th

Contrary to statement SYpq the execution of statement SOpq is five times slower, therefore it is
advisable to use statement SOpq in case prompt intervention is necessary in the output line
Naturally the statement cannot be applied in case of output flags.

 SFpqri: storing bit No. 0 of OP into the i bit of local variableth

Statement
SFpqri

stores bit No. 0 of register OP into the i bit of the Fpqr byte of local area. th

 SFpqr: storing the contents of OP into two neighboring bytes of local area
Statement

SFpqr
stores the contents of register OP into the Fpqr and Fpq(r+1) byte of local area.

4 Instruction Set of PLC Program Language

180

 SRHinn: storing the contents of OP into output register
Statement

SRHinn
i=0, 1
nn=50, ..., 99

stores the contents of register OP into the addressed output register. Naturally the statement
cannot be used in case of nn<50 (input register).

 SQnn: storing the contents of OP into up/down counter
Statement

SQnn
nn=00, ..., 31

stores the contents of register OP into the addressed up/down counter.

 STnn: storing the contents of OP into 20-msec timer
Statement

STnn
nn=00, ..., 49

stores the contents of register OP into the addressed 20-msec timer

 SHnn: storing the contents of OP into second timer
Statement

SHnn
n=00, ..., 99

stores the contents of register OP into the addressed second timer.

 SMnn: storing the contents of OP into minute timer
Statement

SMn
n=0, ..., 9

stores the contents of register OP into the addressed minute timer.

 SFInnn, storing the contents of OP into indirectly addressed word of local area
This statement stores the contents of OP indirectly to one of the local variables. After the
statement name (SFI) the address of the local variable, where the address of the data to be loaded
can be found, needs to be entered with 3 decimal digits.
nnn: address of a local variable, where the address of the local variable, the contents of which

is to be loaded into OP can be found.
Flags to be set:
F0080: syntax error. The value of variable Fnnn is not in the range of 000...999.
F0082: the value of variable Fnnn is not decimal.

Example for the use of Statement SFInnn:

LF102 ;number of the called tool
A.C000 ;preserving width code, cutting tool number
SFI128 :clearing the called tool from tool pot table

 (F0080 ;if syntax error
 OF0082) ;or not decimal number

U732 ;STORING ERROR, message strobe set
 E ;if OK

...
 Z ;end of syntax error condition

4 Instruction Set of PLC Program Language

181

 NS[variable], NSFInnn, storing complemented contents of OP into variable
Statements NS[variable] (see types of variables above) and NSFInnn store the complemented
value of register OP into the specified variable.

4.8 Arithmetic Statements with Register OP

 +: adding constant or value of variable into register OP (sum into OP)
Constant or value of variable can be added to the contents of register OP:

Adding decimal constant into OP (OP=OP+decimal number)
Statement

+ nnnnn (nnnnn=0...65535)
adds decimal constant nnnnn to the contents of OP. The result can be found into register OP.

Adding hexadecimal constant into OP (OP=OP+hexadecimal number)
Statement

+ .nnnn (.nnnn=0000h...FFFFh)
adds hexadecimal constant .nnnn to the contents of OP. The result can be found into register OP.

Adding value of variable into OP (OP=OP+variable)
Statement

+ L[variable], or
+ LFInnn

adds the value of variable to the contents of OP in binary form. The result can be found into
register OP. For syntax reasons the identity of variable must be substituted for the expression
“loading value of variable into register OP” in the statement. This is formally the application of
prefix L. Reference can be made to all the variables, the value of which can be loaded into OP:
+LIpq, +LYpq, +LVpq, +LPpq, +LFpqr, +LRHipq, +LQnn, +LTnn, +LHnn, +LMn, +LRP0nn,
+LFInnn.

Adding complemented value of variable into OP (OP=OP+Nvariable)
Statement

+ NL[variable]
+ NLFInnn

complements the value of variable (without changing the contents of the variable) and adds the
result to the contents of OP in binary form. The result of addition can be found into register OP.
For syntax reasons the identity of variable must be substituted for the expression “loading value
of variable into register OP” in the statement. This is formally the application of prefix L.
Reference can be made to all the variables, the value of which can be stored into OP:
+NLIpq, +NLYpq, +NLVpq, +NLPpq, +NLFpqr, +NLRHipq, +NLQnn, +NLTnn, +NLHnn,
+NLMn, +NLRP0nn, +NLFInnn.

The following status flags can be tested after addition:
F0040=1, if carry has occurred
F0046=1, if OP=0 (result of statement is zero)
F0047=1, if OP<0 (result of statement is less than zero, i.e. bit No. 15 of OP is 1)

 +: adding value of register OP into variable (Sum in variable)
Adding value of register OP into variable (variable=variable+OP)

Statement
+ S[variable], or
+ SFInnn

adds the contents of OP into the value of variable in binary form. The result can be found in the

4 Instruction Set of PLC Program Language

182

variable (contents of OP remains unchanged). For syntax reasons the identity of variable must be
substituted for the expression “storing value of variable into register OP” in the statement. This
is formally the application of prefix S. Reference can be made to all the variables, to which
reference with Statement S can be made:
+SYpq, +SOpq, +SFpqr, +SRHipq, +SQnn, +STnn, +SHnn. +SMn, +SFInnn.

Adding value of register OP into the bit-negated value of variable (variable=Nvariable
+OP)

Statement
+ NS[variable]
+ NSFInnn

complements the value of variable and adds the contents of OP into the result of addition in
binary form. The result can be found in the variable. For syntax reasons the identity of variable
must be substituted for the expression “storing value of variable into register OP” in the
statement. This is formally the application of prefix S. Reference can be made to all the variables,
to which reference with Statement S can be made:
+NSYpq, +NSOpq, +NSFpqr, +NSRHipq, +NSQnn, +NSTnn, +NSHnn, +NSMn, +NSFInnn.

The following status flags can betested after addition:
F0040=1,if carry has occurred
F0046=1, if OP=0 (result of statement is zero)
F0047=1, if OP<0 (result of statement is less than zero, i.e. bit No. 15 of OP is 1)

 –: subtracting constant or value of variable from register OP (difference into OP)
Constant or value of variable can be subtracted from the contents of register OP:

Subtracting decimal constant from OP (OP=OP-decimal constant)
Statement

- nnnnn (nnnnn=0...65535)
adds the two’s complement of decimal constant nnnnn to the contents of OP. The result can be
found into register OP.

Subtracting hexadecimal constant from OP (OP=OP-hexadecimal constant)
Statement

- .nnnn (.nnnn=0000h...FFFFh)
adds the two’s complement of hexadecimal constant .nnnn to the contents of OP. The result can
be found into register OP.

Subtracting value of variable into OP (OP=OP-variable)
Statement

- L[variable], or
- LFInnn

adds the two’s complement of the value of variable to the contents of OP. The result can be found
into register OP. For syntax reasons the identity of variable must be substituted for the expression
“loading value of variable into register OP” in the statement. This is formally the application of
prefix L. Reference can be made to all the variables, the value of which can be stored into OP:
-LIpq, -LYpq, -LVpq, -LPpq, -LFpqr, -LRHipq, -LQnn, -LTnn, -LHnn, -LMn, -LRP0nn, -LFInnn.

4 Instruction Set of PLC Program Language

183

Subtracting complemented value of variable from OP (OP=OP-Nvariable)
Statement

- NL[variable]
- NLFInnn

complements the value of variable (without changing the contents of the variable) and subtracts
the result from the contents of OP in binary form. The result of subtraction can be found into
register OP. For syntax reasons the identity of variable must be substituted for the expression
“loading value of variable into register OP” in the statement. This is formally the application of
prefix L. Reference can be made to all the variables, the value of which can be stored into OP:
-NLIpq, -NLYpq, -NLVpq, -NLPpq, -NLFpqr, -NLRHipq, -NLQnn, -NLTnn, -NLHnn, -NLMn,
-NLRP0nn, -NLFInnn.

The following status flags can be tested after subtraction:
F0040=1 ,if carry has occurred
F0046=1, if OP=0 (result of statement is zero)
F0047=1, if OP<0 (result of statement is less than zero, i.e. bit No. 15 of OP is 1)

 –: subtracting value of register OP from variable (Sum in variable)
Subtracting value of register OP from variable (variable=variable-OP)

Statement
- S[variable], or
- SFInnn

subtracts the contents of OP from the value of variable in binary form. The result can be found
in the variable (contents of OP remains unchanged). For syntax reasons the identity of variable
must be substituted for the expression “storing value of variable into register OP” in the
statement. This is formally the application of prefix S. Reference can be made to all the variables,
to which reference with statement S can be made:
-SYpq, -SOpq, -SFpqr, -SRHipq, -SQnn, -STnn, -SHnn. -SMn, -SFInnn.

Subtracting value of register OP from the complemented value of variable (variable =
Nvariable -OP)

Statement
- NS[variable]
- NSFInnn

complements the value of variable and subtracts the contents of OP from the result in binary form.
The result of subtraction can be found in the variable. For syntax reasons the identity of variable
must be substituted for the expression “storing value of variable into register OP” in the
statement. This is formally the application of prefix S. Reference can be made to all the variables,
to which reference with statement S can be made:
-NSYpq, -NSOpq, -NSFpqr, -NSRHipq, -NSQnn, -NSTnn, -NSHnn, -NSMn, -NSFInnn.

The following status flags can be tested after subtraction:
F0040=1, if carry has occurred
F0046=1, if OP=0 (result of operation is zero)
F0047=1, if OP<0 (result of operation is less than zero, i.e. bit No. 15 of OP is 1)

 *: multiplying constant or value of variable by register OP
The contents of register OP can be multiplied by constant or value of variable. The multiplication
regards both the multiplicator and multiplicand as positive unsigned numbers. For it may take 32
bits to multiply two 16-bit numbers the lower word of the product is placed into register OP. In

4 Instruction Set of PLC Program Language

184

case overflow occurs, i.e. the product needs to store more than 16 bits the bits with higher local
value can be found in bytes F000 and F001. The bits with 31...24 local value are in byte F001
byte, while those with 23...16 local value are in byte F000.

Multiplying decimal constant by OP (OP=OP*decimal constant)
Statement

* nnnnn (nnnnn=0...65535)
multiplies decimal constant nnnnn by the contents of OP. The result can be found into register
OP, in case of overflow at variables F000, F001.

Multiplying hexadecimal constant by OP (OP=OP*hexadecimal constant)
Statement

* .nnnn (.nnnn=0000h...FFFFh)
multiplies hexadecimal constant .nnnn by the contents of OP. The result can be found into register
OP, in case of overflow at variables F000, F001.

Multiplying value of variable by OP (OP=OP*variable)
Statement

* L[variable], or
* LFInnn

multiplies the value of variable by the contents of OP. The result of multiplication can be found
into register OP, in case of overflow at variables F000, F001. For syntax reasons the identity of
variable must be substituted for the expression “loading value of variable into register OP” in the
statement. This is formally the application of prefix L. Reference can be made to all the variables,
the value of which can be stored into OP:
*LIpq, *LYpq, *LVpq, *LPpq, *LFpqr, *LRHipq, *LQnn, *LTnn, *LHnn, *LMn, *LRP0nn,
*LFInnn.

Multiplying complemented value of variable by OP (OP=OP*Nvariable)
Statement

* NL[variable]
* NLFInnn

complements the value of variable (without changing the contents of the variable) and multiplies
the result by the contents of OP in binary form. The result of multiplication can be found into
register OP, in case of overflow at variables F000, F001. For syntax reasons the identity of
variable must be substituted for the expression “loading value of variable into register OP” in the
statement. This is formally the application of prefix L. Reference can be made to all the variables,
the value of which can be stored into OP:
*NLIpq, *NLYpq, *NLVpq, *NLPpq, *NLFpqr, *NLRHipq, *NLQnn, *NLTnn, *NLHnn,
*NLMn, *NLRP0nn, *NLFInnn.

The following status flag can be tested after multiplication:
F0083=1, if OP is overflown. Its meaning: the result of multiplication does not have enough room
into OP, the bits with higher local values can be found at addresses F000, F001.

 /: division
The contents of registers F001, F000 and OP can be divided by constant or value of variable.
F001 byte contains bits 31...24, while F000 byte bits 23...16 of the dividend. The division regards
both the divisor and dividend as positive unsigned numbers. The result of the statement can be
stored into two 16-bit registers. The OP contains the quotient and variables F000 and F001
contain the remainder. The bits 15...8 of the remainder are in byte F001, while bits 7...0 are in

4 Instruction Set of PLC Program Language

185

byte F000.
L Note: before using instruction / always to be considered whether the contents of variables

F000 and F001 are the part of the dividend and if not they must be zeroed.

Dividing OP by decimal constant (OP=OP/decimal constant)
Statement

/ nnnnn (nnnnn=0...65535)
divides the contents of registers F000, F0001 and OP by decimal constant nnnnn. The quotient
can be found into register OP, while the remainder at variables F000, F001.

Dividing OP by hexadecimal constant (OP=OP/hexadecimal constant)
Statement

/ .nnnn (.nnnn=0000h...FFFFh)
divides the contents of registers F000, F0001 and OP by hexadecimal constant .nnnn. The
quotient can be found into register OP, while the remainder at variables F000, F001.

Dividing OP by value of variable (OP=OP/variable)
Statement

/ L[variable], or
/ LFInnn

divides the contents of registers F000, F0001 and OP by the value of variable. The quotient can
be found into register OP, while the remainder at variables F000, F001. For syntax reasons the
identity of variable must be substituted for the expression “loading value of variable into register
OP” in the statement. This is formally the application of prefix L. Reference can be made to all
the variables, the value of which can be stored into OP:
/LIpq, /LYpq, /LVpq, /LPpq, /LFpqr, /LRHipq, /LQnn, /LTnn, /LHnn, /LMn, /LRP0nn, /LFInnn.

Dividing OP by complemented value of variable (OP=OP/Nvariable)
Statement

/ NL[variable]
/ NLFInnn

complements the value of variable (without changing the contents of the variable) and divides the
contents of registers F000, F0001 and OP by the result in binary form. The quotient can be found
into register OP, while the remainder at variables F000, F001. For syntax reasons the identity of
variable must be substituted for the expression “loading value of variable into register OP” in the
statement. This is formally the application of prefix L. Reference can be made to all the variables,
the value of which can be stored into OP:
/NLIpq, /NLYpq, /NLVpq, /NLPpq, /NLFpqr, /NLRHipq, /NLQnn, /NLTnn, /NLHnn, /NLMn,
/NLRP0nn, /NLFInnn.

The following status flag can be tested after multiplication:
F0080=1, if the divisor is zero, i.e. division is to be done by 0.

 <<nn: shifting contents of OP into the left
Statement

<<nn (0< nn <15)
shifts the contents of OP into the left with the specified number of bits while filling vacanted bit
positions with zero. The statement equals to division by 2nn

4 Instruction Set of PLC Program Language

186

 >>nn: shifting contents of OP into the right
Statement

>>nn (0< nn <15)
shifts the contents of OP into the right with the specified number of bits while filling vacanted
bit positions with zero. The statement equals to multiplication by 2nn

 BIN: converting the contents of register OP from BCD into binary form
The maximal value of register OP in BCD can be 9999, If negative BCD value is to be converted
flag F0087 must be set to 1 before issuing Statement BIN. Thus

F0047 = 1 (OP<0)
has a meaning for the convert.

The following status flag can be tested after BIN statement:
F0082=1, if the number to be converted into binary form is not BCD
F0046=1, if OP=0 (result of statement is zero)
F0047=1, if OP<0 (result of statement is less than zero, i.e. bit No. 15 of OP is 1)

 BCD: converting the contents of register OP from binary form into BCD
It converts the binary contents of register OP into BCD. The result of conversion, i.e. the value
range of the contents of OP: -9999 < OP < 9999. The sign of the BCD number can be read at
status flag F0047. After conversion the state of status flags must be evaluated.

The following status flag can be tested after BCD statement:
F0046=1, if OP=0 (result of statement is zero)
F0047=1, if the BCD number into OP is negative
F0053=1, overflow, i.e. the binary contents of OP: OP<-9999, or OP>9999.

 [...]: parenthesing of the arithmetic operations executed into register OP
The arithmetic statements executed into register OP can be connected optionally, as for e.g.:

LF020 + LF022 * LF024
SF026

The execution order of statements goes from left to right. In the above example first bytes F020,
F021 are stored into OP, adds to bytes F022, F023, than multiplies the result into OP by the
contents of bytes F024, F025. This calculated OP contents is stored into variables F026, F027.
If the above execution order is unsatisfactory, parentheses need to be used.
The maximum nesting depth of parenthesed arithmetic expressions is 8. Calculation of the value
of OP is started from the deepest parenthesed expression:

[[LF020 + LF022] * LF024]
SYF026

In the above example first the addition is calculated, than the sum is multiplied by the contents
of bytes F024, F025. The value of the result is stored into bytes F026, F027.

Note: in the arithmetic statement chain there may also be logic statements.

4 Instruction Set of PLC Program Language

187

4.9 Logic Statements with Register OP

 A: logical AND, result of statement into register OP
Constant or value of variable and the contents of register OP can be gated with AND:

Decimal constant and OP gated with AND (OP=OP A decimal constant)
Statement

A nnnnn (nnnnn=0...65535)
gates decimal constant nnnnn and the contents of OP with AND. The statement is executed for
each bit: bit No. 0 of OP with bit N.0 of constant, and so on. The result can be found into register
OP.

Hexadecimal constant and OP gated with AND (OP=OP A hexadecimal constant)
Statement

A .nnnn (.nnnn=0000h...FFFFh)
gates hexadecimal constant .nnnn and the contents of OP with AND. The statement is executed
for each bit: bit No. 0 of OP with bit N.0 of constant, and so on. The result can be found into
register OP.

Value of variable and OP gated with AND (OP=OP A variable)
Statement

A L[variable], or
A LFInnn

gates the value of variable and the contents of OP with AND.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the flag and only bit No. 0 of register OP participates in the statement.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the word-variable In this case the statement is executed for each bit: bit No. 0 of OP with bit
No. 0 of the value of variable, and so on. The result can be found into register OP. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference can be
made to all the variables, the value of which can be stored into OP:
ALIpq, ALYpq, ALVpq, ALPpq, ALFpqr, ALRHipq, ALQnn, ALTnn, ALHnn, ALMn,
ALRP0nn, ALFInnn.

Complemented value of variable and OP gated with AND (OP=OP A Nvariable)
Statement

A NL[variable]
A NLFInnn

complements the value of variable (without changing the contents of the variable) and gates the
result with AND to the contents of OP in the above mentioned way. The result of statement A can
be found into register OP. For syntax reasons the identity of variable must be substituted for the
expression “loading value of variable into register OP” in the statement. This is formally the
application of prefix L. Reference can be made to all the variables, the value of which can be
stored into OP:
ANLIpq, ANLYpq, ANLVpq, ANLPpq, ANLFpqr, ANLRHipq, ANLQnn, ANLTnn, ANLHnn,
ANLMn, ANLRP0nn, ANLFInnn.

4 Instruction Set of PLC Program Language

188

 A: logical AND, result of statement in variable
OP and value of variable gated with AND (variable=variable A OP)

Statement
A S[variable], or
A SFInnn

gates the contents of OP and the value of variable with AND.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the flag and only bit No. 0 of register OP participates in the statement.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the word-variable In this case the statement is executed for each bit: bit No. 0 of OP with bit
No. 0 of the value of variable, and so on. The result can be found in the variable. For syntax
reasons the identity of variable must be substituted for the expression “storing value of variable
into register OP” in the statement. This is formally the application of prefix S. Reference can be
made to all variables with statement S:
ASYpq, ASOpq, ASFpqr, ASRHipq, ASQnn, ASTnn, ASHnn, ASMn, ASFInnn.

OP and complemented value of variable gated with AND (variable=Nvariable A OP)
Statement

A NS[variable]
A NSFInnn

complements the value of variable (without changing the contents of the variable) and gates the
contents of OP and the result with AND in the above mentioned way. The result of statement A
can be found in the variable. For syntax reasons the identity of variable must be substituted for
the expression “storing value of variable into register OP” in the statement. This is formally the
application of prefix S. Reference can be made to all variables with statement S:
ANSYpq, ANSOpq, ANSFpqr, ANSRHipq, ANSQnn, ANSTnn, ANSHnn, ANSMn, ANSFInnn.

 O: logical OR, result of statement into register OP
Constant or value of variable and the contents of register OP can be gated with OR:

Decimal constant and OP gated with OR (OP=OP O decimal constant)
Statement

O nnnnn (nnnnn=0...65535)
gates decimal constant nnnnn and the contents of OP with OR. The statement is executed for each
bit: bit No. 0 of OP with bit N.0 of constant, and so on. The result can be found into register OP.

Hexadecimal constant and OP gated with OR (OP=OP O hexadecimal constant)
Statement

O .nnnn (.nnnn=0000h...FFFFh)
gates hexadecimal constant .nnnn and the contents of OP with OR. The statement is executed for
each bit: bit No. 0 of OP with bit N.0 of constant, and so on. The result can be found into register
OP.

Value of variable and OP gated with OR (OP=OP O variable)
Statement

O L[variable], or
O LFInnn

gates the value of variable and the contents of OP with OR in binary form.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the variable in bit operation and only bit No. 0 of register OP participates in the statement.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the word-variable In this case the statement is executed for each bit: bit No. 0 of OP with bit

4 Instruction Set of PLC Program Language

189

No. 0 of data, and so on. The result can be found into register OP. For syntax reasons the identity
of variable must be substituted for the expression “loading value of variable into register OP” in
the statement. This is formally the application of prefix L. Reference can be made to all the
variables, the value of which can be stored into OP:
OLIpq, OLYpq, OLVpq, OLPpq, OLFpqr, OLRHipq, OLQnn, OLTnn, OLHnn, OLMn,
OLRP0nn, OLFInnn.

Complemented value of variable and OP gated with OR (OP=OP O Nvariable)
Statement

O NL[variable]
O NLFInnn

complements the value of variable (without changing the contents of the variable) and gates the
result and the contents of OP with OR in binary form in the above mentioned way. The result of
statement O can be found into register OP. For syntax reasons the identity of variable must be
substituted for the expression “loading value of variable into register OP” in the statement. This
is formally the application of prefix L. Reference can be made to all the variables, the value of
which can be stored into OP:
ONLIpq, ONLYpq, ONLVpq, ONLPpq, ONLFpqr, ONLRHipq, ONLQnn, ONLTnn, ONLHnn,
ONLMn, ONLRP0nn, ONLFInnn.

 O: logical OR result of statement in variable
OP and value of variable gated with OR(variable=variable O OP)

Statement
O S[variable], or
O SFInnn

gates the contents of OP and the value of the variable gated with OR.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the flag and only bit No. 0 of register OP participates in the statement.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the word-variable In this case the statement is executed for each bit: bit No. 0 of OP with bit
No. 0 of the value of variable, and so on. The result can be found in the variable. For syntax
reasons the identity of variable must be substituted for the expression “storing value of variable
into register OP” in the statement. This is formally the application of prefix S. Reference can be
made to all variables with statement S:
OSYpq, OSOpq, OSFpqr, OSRHipq, OSQnn, OSTnn, OSHnn, OSMn, OSFInnn.

OP and complemented value of variable gated with OR (variable=Nvariable O OP)
Statement

O NS[variable]
O NSFInnn

complements the value of variable (without changing the contents of the variable) and gates the
contents of OP and the result with OR in binary form in the above mentioned way. The result can
be found in the variable. For syntax reasons the identity of variable must be substituted for the
expression “storing value of variable into register OP” in the statement. This is formally the
application of prefix S. Reference can be made to all variables with statement S:
ONSYpq, ONSOpq, ONSFpqr, ONSRHipq, ONSQnn, ONSTnn, ONSHnn, ONSMn, ONSFInnn.

4 Instruction Set of PLC Program Language

190

 X: Logical eXclusive or, result of statement into register OP
Constant or value of variable and the contents of register OP can be gated with EXCLUSIVE OR:

Decimal constant and OP gated with EXCLUSIVE OR (OP=OP X decimal constant)
Statement

X nnnnn (nnnnn=0...65535)
gates decimal constant nnnnn and the contents of OP with EXCLUSIVE OR. The statement is
executed for each bit: bit No. 0 of OP with bit N.0 of constant, and so on. The result can be found
into register OP.

Hexadecimal constant and OP gated with EXCLUSIVE OR (OP=OP X hexadecimal
constant)

Statement
X .nnnn (.nnnn=0000h...FFFFh)

gates hexadecimal constant .nnnn and the contents of OP with EXCLUSIVE OR. The statement
is executed for each bit: bit No. 0 of OP with bit N.0 of constant, and so on. The result can be
found into register OP.

Value of variable and OP gated with EXCLUSIVE OR (OP=OP X variable)
Statement

X L[variable], or
X LFInnn

gates the value of variable and the contents of OP with EXCLUSIVE OR.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the flag and only bit No. 0 of register OP participates in the statement.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the work-variable In this case the statement is executed for each bit: bit No. 0 of OP with bit
No. 0 of the value of variable, and so on. The result can be found into register OP. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference can be
made to all the variables, the value of which can be stored into OP:
XLIpq, XLYpq, XLVpq, XLPpq, XLFpqr, XLRHipq, XLQnn, XLTnn, XLHnn, XLMn,
XLRP0nn, XLFInnn.

Complemented value of variable and OP gated with EXCLUSIVE OR (OP=OP X Nvari-
able)

Statement
X NL[variable]
X NLFInnn

complements the value of variable (without changing the contents of the variable) and gates the
result and the contents of OP with EXCLUSIVE OR in the above mentioned way. The result can
be found into register OP. For syntax reasons the identity of variable must be substituted for the
expression “loading value of variable into register OP” in the statement. This is formally the
application of prefix L. Reference can be made to all the variables, the value of which can be
stored into OP:
XNLIpq, XNLYpq, XNLVpq, XNLPpq, XNLFpqr, XNLRHipq, XNLQnn, XNLTnn, XNLHnn,
XNLMn, XNLRP0nn, XNLFInnn.

4 Instruction Set of PLC Program Language

191

 X: logical eXclusive or, result of statement in variable
OP and value of variable gated with EXCLUSIVE OR (variable=variable X OP)

Statement
X S[variable], or
X SFInnn

gates the contents of OP and the value of variable with EXCLUSIVE OR.
If 3 digits are entered after the address of the variable (4 digits after address F) reference is made
to the flag and only bit No. 0 of register OP participates in the statement.
If 2 digits are entered after the address of the variable (3 digits after address F) reference is made
to the word-variable In this case the statement is executed for each bit: bit No 0 of OP with bit
No. 0 of the value of variable, and so on. The result can be found in the variable. For syntax
reasons the identity of variable must be substituted for the expression “storing value of variable
into register OP” in the statement. This is formally the application of prefix S. Reference can be
made to all variables with statement S:
XSYpq, XSXpq, XSFpqr, XSRHipq, XSQnn, XSTnn, XSHnn, XSMn, XSFInnn.

OP and complemented value of variable gated with EXCLUSIVE OR (variable=Nvariable
X OP)

Statement
X NS[variable]
X NSFInnn

complements the value of variable (without changing the contents of the variable) and gates the
contents of OP and the result with EXCLUSIVE OR in the above mentioned way. The result can
be found in the variable. For syntax reasons the identity of variable must be substituted for the
expression “storing value of variable into register OP” in the statement. This is formally the
application of prefix S. Reference can be made to all variables with statement S:
XNSYpq, XNSXpq, XNSFpqr, XNSRHipq, XNSQnn, XNSTnn, XNSHnn, XNSMn, XNSFInnn.

 [...]: parenthesing logic statements executed into register OP
Logic statements executed into register OP can be connected optionally, as e.g.:

LI000 A LY022 O LF0012
SY001

The execution order of statements goes from left to right. In the above example the contents of
OP is 1 if both input line I000 and output line Y022 are set to 1, or the value of F0012 is 1. This
OP contents is stored into output line Y001. If this execution order is unsatisfactory, parentheses
need to be used.
The maximum nesting depth of parenthesed logic expressions is 8. Calculation of the value of OP
is started from the deepest parenthesis:

[LI000 A [LY022 O LF0012]]
SY001

In the above example first the deepest OR gate is calculated, than the two results are gated with
AND and the result is stored into output line Y001.
The above discussed statement are also valid for in word-variables if result of logic statements
are into register OP.

Note: in logic statement chain there may also be arithmetic statement.

4 Instruction Set of PLC Program Language

192

4.10 Relational Expressions with Register OP

 <: is the contents of OP less than...
The condition, that the contents of register OP is less than the constant or the value of variable,
can be tested. The condition test regards both the constant and the value of variable as an
unsigned number, i.e. considers condition .0 < .FFFF to be true.

Decimal constant (OP < decimal constant)
The first statement of conditional program branch

< nnnnn [true branch] E [false branch] Z
< nnnnn [true branch] Z

(nnnnn=0...65535)
tests, whether the value of OP is less than constant nnnn (true), or not (false), and the forthcoming
conditional program branches are executed on the basis of the result.

Hexadecimal constant (OP < hexadecimal constant)
The first statement of conditional program branch

< .nnnn [true branch] E [false branch] Z
< .nnnn [true branch] Z

(.nnnn=.0000FFFF)
tests, whether the value of OP is less than constant .nnnn (true), or not (false), and the
forthcoming conditional program branches are executed on the basis of the result.

Value of variable (OP < variable)
The first statement of conditional program branch

< L[variable] [true branch] E [false branch] Z
< LFInnn [true branch] E [false branch] Z
< L[variable] [true branch] Z
< LFInnn [true branch] Z

tests, whether the value of OP is less than the value of variable (true), or not (false), and the
forthcoming conditional program branches are executed on the basis of the result. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference is made
to all variables, the value of which can be stored into OP.
LIpq, LYpq, LVpq, LPpq, LFpqr, LRHipq, LQnn, LTnn, LHnn, LMn, LRP0nn, LFInnn.

Complemented value of variable (OP < Nvariable)
The first statement of conditional program branch

< NL[variable] [true branch] E [false branch] Z
< NLFInnn [true branch] E [false branch] Z
< NL[variable] [true branch] Z
< NLFInnn [true branch] Z

complements the value of variable (without changing the contents of variable), than compares the
result with the contents of OP, whether the value of OP is less than the result (true) or not (false),
and the forthcoming conditional program branches are executed on the basis of its result. For
syntax reasons the identity of variable must be substituted for the expression “loading value of
variable into register OP” in the statement. This is formally the application of prefix L. Reference
is made to all variables, the value of which can be stored into OP:
NLIpq, NLYpq, NLVpq, NLPpq, NLFpqr, NLRHipq, NLQnn, NLTnn, NLHnn, NLMn,
NLRP0nn, NLFInnn.

4 Instruction Set of PLC Program Language

193

 >: is the contents of OP greater than...
The condition, that the contents of register OP is greater than the constant or the value of variable,
can be tested. The condition test regards both the constant and the variable as an unsigned
number, i.e. considers condition .0 > .FFFF to be true.

Decimal constant (OP > decimal constant)
The first statement of conditional program branch

> nnnnn [true branch] E [false branch] Z
> nnnnn [true branch] Z

(nnnnn=0...65535)
tests, whether the contents of OP is greater than decimal constant nnnnn, or not, and the
forthcoming conditional program branches are executed on the basis of the result.

Hexadecimal constant (OP > hexadecimal constant)
The first statement of conditional program branch

> .nnnn [true branch] E [false branch] Z
> .nnnn [true branch] Z

(.nnnn=.0000FFFF)
tests, whether the contents of OP is greater than constant .nnnn, or not, and the forthcoming
conditional program branches are executed on the basis of the result.

Value of variable (OP > variable)
The first statement of conditional program branch

> L[variable] [true branch] E [false branch] Z
> LFInnn [true branch] E [false branch] Z
> L[variable] [true branch] Z
> LFInnn [true branch] Z

tests, whether the contents of OP is greater than the value of variable, or not, and the forthcoming
conditional program branches are executed on the basis of the result. For syntax reasons the
identity of variable must be substituted for the expression “loading value of variable into register
OP” in the statement. This is formally the application of prefix L. Reference is made to all
variables, the value of which can be stored into OP:
LIpq, LYpq, LVpq, LPpq, LFpqr, LRHipq, LQnn, LTnn, LHnn, LMn, LRP0nn, LFInnn.

Complemented value of variable (OP > Nvariable)
The first statement of conditional program branch

> NL[variable] [true branch] E [false branch] Z
> NLFInnn [true branch] E [false branch] Z
> NL[variable] [true branch] Z
> NLFInnn [true branch] Z

complements the value of variable (without changing the contents of variable), than compares the
result with the contents of OP, whether the value of OP is greater than the result, or not, and the
forthcoming conditional program branches are executed on the basis of its result. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference is made
to all variables, the value of which can be stored into OP:
NLIpq, NLYpq, NLVpq, NLPpq, NLFpqr, NLRHipq, NLQnn, NLTnn, NLHnn, NLMn,
NLRP0nn, NLFInnn.

4 Instruction Set of PLC Program Language

194

 =: is the contents of OP equal to...
The condition, that the contents of register OP is equal to the constant or the value of variable,
can be tested. The condition test regards both the constant and the value of variable as an
unsigned number, i.e. considers condition .0 = .FFFF to be true.

Decimal constant (OP = decimal constant)
The first statement of conditional program branch

= nnnnn [true branch] E [false branch] Z
= nnnnn [true branch] Z

(nnnnn=0...65535)
tests, whether the contents of OP is equal to constant nnnnn, or not, and the forthcoming
conditional program branches are executed on the basis of the result.

Hexadecimal constant (OP = hexadecimal constant)
The first statement of conditional program branch

= .nnnn [true branch] E [false branch] Z
= .nnnn [true branch] Z

(.nnnn=.0000FFFF)
tests, whether the contents of OP is equal to constant .nnnn, or not, and the forthcoming
conditional program branches are executed on the basis of the result.

Value of variable (OP = variable)
The first statement of conditional program branch

= L[variable] [true branch] E [false branch] Z
= LFInnn [true branch] E [false branch] Z
= L[variable] [true branch] Z
= LFInnn [true branch] Z

tests, whether the contents of OP is equal to the value of variable, or not, and the forthcoming
conditional program branches are executed on the basis of the result. For syntax reasons the
identity of variable must be substituted for the expression “loading value of variable into register
OP” in the statement. This is formally the application of prefix L. Reference is made to all
variables, the value of which can be stored into OP:
LIpq, LYpq, LVpq, LPpq, LFpqr, LRHipq, LQnn, LTnn, LHnn, LMn, LRP0nn, LFInnn.

Complemented value of variable (OP = Nvariable)
The first statement of conditional program branch

= NL[variable] [true branch] E [false branch] Z
= NLFInnn [true branch] E [false branch] Z
= NL[variable] [true branch] Z
= NLFInnn [true branch] Z

complements the value of variable (without changing the contents of variable), than compares the
result with the contents of OP, whether the value of OP is equal to the result, or not, and the
forthcoming conditional program branches are executed on the basis of the result. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference is made
to all variables, the value of which can be stored into OP:
NLIpq, NLYpq, NLVpq, NLPpq, NLFpqr, NLRHipq, NLQnn, NLTnn, NLHnn, NLMn,
NLRP0nn, NLFInnn.

4 Instruction Set of PLC Program Language

195

 <=: is the contents of OP less than or equal to...
The condition, that the contents of register OP is less than or equal to the constant or the value
of variable, can be tested. The condition test regards both the constant and the value of variable
as an unsigned number, i.e. considers condition .0 <= .FFFF to be true.

Decimal number (OP <= decimal number)
The first statement of conditional program branch

<= nnnnn [true branch] E [false branch] Z
<= nnnnn [true branch] Z

(nnnnn<=0...65535)
tests, whether the contents of OP is less than or equal to decimal constant nnnnn, or not, and the
forthcoming conditional program branches are executed on the basis of the result.

Hexadecimal number (OP <= hexadecimal number)
The first statement of conditional program branch

<= .nnnn [true branch] E [false branch] Z
<= .nnnn [true branch] Z

(.nnnn<=.0000FFFF)
tests, whether the contents of OP is less than or equal to constant .nnnn, or not, and the
forthcoming conditional program branches are executed on the basis of the result.

Value of variable (OP <= variable)
The first statement of conditional program branch

<= L[variable] [true branch] E [false branch] Z
<= LFInnn [true branch] E [false branch] Z
<= L[variable] [true branch] Z
<= LFInnn [true branch] Z

tests, whether the contents of OP is less than or equal to the value of variable, or not, and the
forthcoming conditional program branches are executed on the basis of the result. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference is made
to all variables, the value of which can be stored into OP:
LIpq, LYpq, LVpq, LPpq, LFpqr, LRHipq, LQnn, LTnn, LHnn, LMn, LRP0nn, LFInnn.

Complemented value of variable (OP <= Nvariable)
The first statement of conditional program branch

<= NL[variable] [true branch] E [false branch] Z
<= NLFInnn [true branch] E [false branch] Z
<= NL[variable] [true branch] Z
<= NLFInnn [true branch] Z

complements the value of variable (without changing the contents of variable), than compares the
result with the contents of OP, whether the value of OP is less than or equal to the result, or not,
and the forthcoming conditional program branches are executed on the basis of the result. For
syntax reasons the identity of variable must be substituted for the expression “loading value of
variable into register OP” in the statement. This is formally the application of prefix L. Reference
is made to all variables, the value of which can be stored into OP:
NLIpq, NLYpq, NLVpq, NLPpq, NLFpqr, NLRHipq, NLQnn, NLTnn, NLHnn, NLMn,
NLRP0nn, NLFInnn.

4 Instruction Set of PLC Program Language

196

 >=: is the contents of OP greater than or equal to...
The condition, that the contents of register OP is greater than or equal to the constant or the value
of variable, can be tested. The condition test regards both the constant and the value of variable
as an unsigned number, i.e. considers condition .0 >= .FFFF to be true.

Decimal number (OP >= decimal number)
The first statement of conditional program branch

>= nnnnn [true branch] E [false branch] Z
>= nnnnn [true branch] Z

(nnnnn>=0...65535)
tests, whether the contents of OP is greater than or equal to decimal constant nnnnn, or not, and
the forthcoming conditional program branches are executed on the basis of the result.

Hexadecimal number (OP >= hexadecimal number)
The first statement of conditional program branch

>= .nnnn [true branch] E [false branch] Z
>= .nnnn [true branch] Z

(.nnnn>=.0000FFFF)
tests, whether the contents of OP is greater than or equal to constant .nnnn or not, and the
forthcoming conditional program branches are executed on the basis of the result.

Value of variable (OP >= variable)
The first statement of conditional program branch

>= L[variable] [true branch] E [false branch] Z
>= LFInnn [true branch] E [false branch] Z
>= L[variable] [true branch] Z
>= LFInnn [true branch] Z

tests, whether the contents of OP is greater than or equal to the value of variable, or not, and the
forthcoming conditional program branches are executed on the basis of the result. For syntax
reasons the identity of variable must be substituted for the expression “loading value of variable
into register OP” in the statement. This is formally the application of prefix L. Reference is made
to all variables, the value of which can be stored into OP:
LIpq, LYpq, LVpq, LPpq, LFpqr, LRHipq, LQnn, LTnn, LHnn, LMn, LRP0nn, LFInnn.

Complemented value of variable (OP >= Nvariable)
The first statement of conditional program branch

>= NL[variable] [true branch] E [false branch] Z
>= NLFInnn [true branch] E [false branch] Z
>= NL[variable] [true branch] Z
>= NLFInnn [true branch] Z

complements the value of variable (without changing the contents of variable), than compares the
result with the contents of OP whether the value of OP is greater than or equal to the result, or
not, and the forthcoming conditional program branches are executed on the basis of the result. For
syntax reasons the identity of variable must be substituted for the expression “loading value of
variable into register OP” in the statement. This is formally the application of prefix L. Reference
is made to all variables, the value of which can be stored into OP:
NLIpq, NLYpq, NLVpq, NLPpq, NLFpqr, NLRHipq, NLQnn, NLTnn, NLHnn, NLMn,
NLRP0nn, NLFInnn.

4 Instruction Set of PLC Program Language

197

4.11 Goto Statements

 :nnn: label
Labels can be written in the PLC program. After goto statements the execution of program is
always continued from the specified label. The subroutines in the PLC program can be identified
with labels. Also the three main modules of the PLC program (:000, :001 and :002) are identified
with labels.
The address of label is ":". 3-decimal-digit identity number nnn follows the address. The value
range of the identity number:

000-200.
Th following labels are reserved, i.e. their use is standard:

:000 module 0
:001 module 1
:002 module 2
:197 module of softkey captions of PLC action menu
:198 module of message strings
:199 module of error message strings
:200 information module of PLC program

Other labels are freely available.

 J0, J1, J2: closing statements of modules
Statement J0 indicates the end of and closes module :000.
As the effect of statement J0 the PLC returns the control to the NC. In the next time slice after
module :001 has been executed the execution of module :000 is started from the beginning of the
module by the use of statement J1.
Statement J1 indicates the end of and closes module :001.
As the effect of statement J1 the control is transferred to module :000. The execution of module
:000 is continued, where it was interrupted in the previous time slice, except if statement J0 has
been reached in the preceding time slice. In this case the execution of module :000 is started from
its beginning. If the execution of module :001 or :002 is not finished within its time slice emer-
gency state is generated by the control by means of error message PLC TIMEOUT1 or PLC
TIMEOUT2 and loses signal NC READY. The error is fatal, can only be canceled by turning the
machine off.
The use of both statements is obligatory at the end of he appropriate module.
Statement J2 indicates the end of and closes module :002.

 $: closing message modules
Modules :197, :198, :199, :200 must be closed with character $.

 Gnnn: direct goto statement
As the effect of this statement the control is transferred to label :nnn of PLC program without
condition. The program execution is continued from here.
The usable values nnn: 0, 3-196

 GFnnn: indirect goto statement
As the effect of this statement the control is transferred to label :nnn of PLC program without
condition to the label of the PLC program, the code number of which can be found at local
variable Fnnn. The program execution is continued from here.
The value range of variable Fnnn: 3-196

4 Instruction Set of PLC Program Language

198

Flags to be set:
F0080: syntax error the value of variable Fnnn is not in value range 3-196.
F0082: the value of variable Fnnn is not decimal.

 Cnnn: direct subroutine call
As the effect of this statement the control is transferred to subroutine :nnn without condition. As
the effect of the first statement R, which is found by the program in the course of execution the
statement following statement Cnnn is returned.
The value range of identity number of label: 3-196

 CFnnn: indirect subroutine call
As the effect of this statement the control is transferred to the subroutine, the identity number of
which is the contents of variable Fnnn. As the effect of the first statement R, which is found by
the program in the course of execution the statement following statement Cnnn is returned.
The value range of data found at address nnn: 3-196
Flags to be set:
F0080: syntax error: the value of variable of Fnnn is not in value range 3-196.
F0082: the value of variable Fnnn is not decimal.

 R: return from subroutine
As the effect of statement R the program execution is continued from the statement following the
last subroutine call statement (Cnnn, CFnnn) before reaching statement R. It is usable only in the
valid label subroutine :003...:196.

4.12 Use of Up/Down Counters

 UQnn: incrementing the contents of the nn up/down counterth

Statement
UQnn

increases the contents of the nn up/down counter by one. If the contents of the counter is 65535th

by means of statement UQnn it becomes 0.

 DQnn: decrementing the contents of the nn up/down counterth

Statement
DQnn

decreases the contents of the nn up/down counter by one. If the contents of the counter is 0 byth

means of statement DQnn it becomes 65535.

 Qnn: state test of the nn up/down counterth

The following condition tests can be initiated on the state of the nn up/down counter:th

Qnn [Qnn � 0] E [Qnn = 0] Z
Qnn [Qnn � 0] Z

Complemented test of the contents of the counter is also possible:
NQnn [Qnn = 0] E [Qnn � 0] Z
NQnn[Qnn = 0] Z

4 Instruction Set of PLC Program Language

199

4.13 Condition Test on Timers

 Tnn: condition test on the state of the nn 20msec timerth

Condition test can be initiated on the state of the nn 20-msec 16-bit timer. There are two resultsth

of the test of the condition: true if the timer is running, false if the timer is terminated.
Tnn [running: Tnn>0] E [terminated: Tnn=0] Z
Tnn [running: Tnn>0] Z

Negated call of the timer is also possible:
NTnn [terminated: Tnn=0] E [running: Tnn>0] Z
NTnn [terminated: Tnn=0] Z

Running of timer is worked by the NC program.

 Hnn: condition test on the state of the nn second timerth

Condition test can be initiated on the state of the nn 1-sec 16-bit timer. There are two results ofth

the condition test: true if the timer is running, false if the timer is terminated.
Hnn [running: Hnn>0] E [terminated: Hnn=0] Z
Hnn [running: Hnn>0] Z

Negated call of the timer is also possible:
NHnn [terminated: Hnn=0] E [running: Hnn>0] Z
NHnn [terminated: Hnn=0] Z

Running of the timer is worked by the NC program.

 Mn: condition test on the state of the nn minute timerth

Condition test can be initiated on the state of the nn minute 16-bit timer. There are two resultsth

of the condition test: true if the timer is running, false if the timer is terminated.
Mn [running: Mn>0] E [terminated: Mn=0] Z
Mn [running: Mn>0] Z

Negated call of the timer is also possible:
NMn [terminated: Mn=0] E [running: Mn>0] Z
NMn [terminated: Mn=0] Z

Running of the timer is worked by the NC program.

4.14 Search Statements

 HFnnn: Search for the Contents of OP in Tables
This statement searches for the contents of register OP in the indicated table, which can be found
in the PLC local area. After the statement name (HF) the address of the local variable, where the
registers controlling the statement begin must be entered with three decimal digits. The parameter
area of the statement is 10 bytes. The parameter area of the statement must be placed in the freely
available working area.
Description of the statement:
nnn: address of a local variable, where the parameter area used in the statement starts.

4 Instruction Set of PLC Program Language

200

Address of registers Meaning of registers

nnn Format register

nnn+2 Start address of table

nnn+4 Length of table

nnn+6 Mask register

nnn+8 Address of found data

Format register
The format register can be found at address nnn of the parameter area. In this register the number
of bytes, into which the searched item is stored can be given.
Length of register: 1 word
Possible contents of register: 1, 2.
If a byte is searched for, the searched data must be placed in the lower byte of OP.

Start address of table
The start address of the defined table must be entered at address nnn+2 of the parameter area. The
value of start address must be given in decimal form.
Length of table
The length of the indicated table must be entered in two bytes, at address nnn+4 of the parameter
area. The length is specified in byte units. If for example the table is in the area of F300-F349 the
value to be written into register is 50. The length of table must be entered in binary form.
Mask register
It is found at address nnn+6. The search statement compares the contents of OP to the items of
table according to the following relation:

OP=TABLE(i item) AND MASKth

The i item of the table and the MASK register are gated with AND, the result is compared to theth

contents of OP.

Address of found data
If in the course of search the searched item is found in the table the address of data is written in
this register. The address of the found item is put in this register in decimal form.
After executing the statement the following flags can be tested
F0080: syntax error: the start address of table is not decimal

The lower byte of format register is not 1 or 2, or the address values are
not in range 000...999.

F0081:Data not found. If the searched data is not found in the defined table flag F0081 is set to
1, else it is set to 0.

Sample for the use of statement HFnnn:

.0002 ;format of search is in word operation
SF120 ;storing into format register
.0500 ;start address of tool pot table
SF122 ;storing into start address
LRP039 ;length of magazine: number of tool pots
*2 ;transforming to byte number,

;because items of tool pot table are words
+2 ;adding tool pot No. 0: length of table
SF124 ;entering length
.3FFF ;mask: width code (14 , 15 bit)is cut off tool pot :tableth th

data

4 Instruction Set of PLC Program Language

201

 1111 11
 5432 1098 7654 3210
[OP] [xxxx|xxxx|xxxx|xxxx]

 **.)))))))))))))))2))))Q x: do not care (position of returning tool)
 .2)))))))))))))))))))))Q width code of returning tool

SF126 ;entering mask
LF024 ;code of called tool is loaded into OP
HF120 ;searching for address of called tool in table

 F0080 ;if syntax error in search
U735 ;SEARCH ERROR WITH H error message strobe on,

 E ;otherwise no syntax error
 F0081 ;if data not found: MANUAL REPLACEMENT

;description of manual replacement actions
 E ;if data found

;description of auto replacement actions
LF128 ;address of tool is loaded into OP
BIN ;converting to binary form
-500 ;subtracting start address of tool pot table
/2 ;creating item number (word)
SF104 ;position of found tool in magazine

 ;
 Z ;end of condition data not found
 Z ;end of condition search error

 PFnnn: search for free pot with the appropriate width in tool pot table
This statement searches in the tool pot table for free tool position of the specified width code into
register OP by starting from the specified item of table in one direction (if magazine has only one
direction), or two directions (if magazine can be rotated in two directions).
The statement can be used in case of random access magazine handle, when tools reserving more
tool pots can also be positioned in the magazine, and the method mentioned in case of tool pot
table can be used for coding width. In this case the returning tool cannot be placed into the pot,
in which the replacement is to be done if the width code of tool in spindle and returning tool is
not the same.
The statement first examines, whether the width code into OP (width of returning tool) equals to
the width code of the pot. If yes, this pot number is defined for the returning tool. If their width
code differ the above statement searches for the nearest free tool position, the width code of
which equals to the returning tool in only positive direction or in both directions.
After the statement name (PF) the address of the local variable, where the registers controlling
the statement begin must be entered with three decimal digits. The parameter area of the
statement is 6 bytes.
The parameter area must be placed in the freely available working area. The form of register OP
must be as follows:

Description of the statement:
nnn: address of a local variable, where the parameter area used in the statement starts.

Address of registers Meaning of registers

nnn Format register

nnn+2
 Address of tool pot table, from where the search is started =
(number of the pot, in which the replacement is to be done)*2+500

nnn+4 address of found item

4 Instruction Set of PLC Program Language

202

Format register:
The format register can be found at address nnn of the parameter area. Both the lower and upper
bytes of the register are used.
Length of register: 1 word
The contents of nnn byte is always 2 (word).th

Byte nnn+1 0: search only in positive direction
1: search in both directions

Address of tool pot table, from where the search is started
It can be found at address nnn+2. The search is started from the address of tool pot table, which
corresponds to the contents of address nnn+2. The address can be calculated from the number
of the pot, in which the replacement is to be done with the help of the following relation:

(number of the pot, in which the replacement is to be done)*2+500
In the format register the nearest free tool position with the appropriate width code is searched
for in both directions or only in one direction as a function of the magazine. If in the course of
searching the maximum position has been reached in positive direction the search is continued
from position No. 1, while if the minimum is reached in negative direction it is continued from
the maximum position (Specified at parameter MAGAZINE).
The address, from where the search is started must always be entered in decimal form.

Address of found item
If in the course of search the position with the appropriate width code is found the address of the
free position is written into this register in decimal form. The returning tool is to be placed in this
pot.
The number of the found free pot corresponds to the number of the pot, in which the replacement
is to be done, if the width code of that pot corresponds to that of the returning tool.
In the course of search the contents of OP and the contents of the table is compared according to
the following relation:

(OP AND C000h) = TABLE(i item)th

After executing the statement the following status flags can be tested
F0080: syntax error: the start address of table is not decimal

The lower byte of format register is not 2, its upper byte is not 0 or 1, or
the address values are not in range 000...999.

F0081:Data not found. If the searched data is not found in the selected table flag F0081 is set to
1, else it is set to 0.

Sample for the use of statement PFnnn:

.0102 ;searching for data in word item in both directions
SF130 ;storing into format
LF110 ;current magazine position (opposing spindle) into OP
*2 ;transforming into byte
+500 ;adding start address of tool pot table
BCD ;converting to BCD form for search
SF132 ;search for free position is started from this address
LF500 ;number and width code of tool in spindle into OP
PF130 ;searching for free pot for tool with the above width

 F0080 ;if syntax error in search
U736 ;SEARCH ERROR WITH P error message strobe on,

 E ;else if no syntax error
 F0081 ;if data not found

U737 ;NO FREE POSITION error message strobe on
 E ;data found

LF134 ;number of found pot into OP
BIN ;converting to binary form
-500 ;subtracting start address of tool pot table

4 Instruction Set of PLC Program Language

203

/2 ;creating item number (word)
SF108 ;position of returning tool in magazine

 Z ;end of condition data not found
 Z ;end of search error

4.15 Reading and writing the memory of NC

 MRnnn: reading the NC memory
This statement is for reading the NC memory. Memory areas reachable for the PLC: macro
variables and parameters. After the statement name (MR) the start address of the register area
controlling the statement must be entered with three decimal digits. The register area of the
statement is 8 bytes.
Description of the statement:
nnn: start address of the local area containing the registers used in the statement.

Address of registers Meaning of registers

nnn Format register

nnn+2 Segment register

nnn+4 Index register

nnn+6 Start address of the data to be loaded

Format register:
The format register can be found at address nnn of the register area. Length of register: 1 word.
In the lower byte of the register the size of the allocated area in the bytes, into which the data to
be loaded is stored into the local area, can be given.

Possible contents of byte nnn: 1, 2, or 4.
If a flag is loaded from the parameter area and 2 bytes are reserved for it the flag is in bit No. 0
of the lower byte. Remember, that in case of filling a register if byte data is read bytes must be
reserved for it, if word data is read a word must be reserved for it, and so on. In case of reading
flags the reserved byte number is of no importance.
The upper byte of the register is only used when loading macro variables #1...#999. These
variables are in floating point format in the NC memory but in PLC programs there are only
integer variables. Therefore the value of the parameter must be transferred as an integer whereby
the decimal point is shifted by the number of possible places after the point (shift count).

possible contents of address nnn+1, i.e. shift count: 0,1,...,8
E.g.: if the value at address nnn is 4, the value in variable #100 is 1 and

the value of shift count is 3, then 1,000 can be entered with three decimal places.
The resulting integer is 1000.
If however the value of shift count is 0, the resulting integer is 1.

Segment register:
In this register the segment of the NC memory, to which the loading statement is referred to must
be specified.

Possible values of address nnn+2:
=1 macro variables
=2 parameters

4 Instruction Set of PLC Program Language

204

Index register:
The index register contains the reference number to be loaded within the indicated NC memory
segment.
When loading

Macro variables
it is the reference number of the macro variable (the number after signal #).

Possible values of address nnn+4:
1...999
2000...
The loading of macro variables #1000... #1999 is not possible.
When loading

NC parameters
it is the reference number of the parameter.
The contents of index register is always a BCD number

Start address of the area allocated for the data
The start address of local area, into where the data is loaded can be found at address nnn+6.
Bytes with lower local value are loaded into lower addresses, while those with higher local value
are loaded into higher addresses. The data written here is regarded by the compiler as a decimal
number, similarly to number nnn in statement LFnnn or SFnnn.
Start address of the data to be written is always a BCD number.

After executing the NC memory the reading of the state of the following status flags can be
tested:
F0080: Syntax error in statement
If the registers used for the statement are filled out correctly::
- the lower byte of format register is 1, 2, or 4, and the allocated area corresponds to the

size of data to be read,
- the shift count in case of parameter is within value range 0...8,
- both segment and index registers refer to readable NC memory area,
- the address register refers to the address range of freely available local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the value of index or address register is not in BCD form.

Sample for reading macro variable #180 into the PLC:

Location:
F200...F206 - registers of statement MR200
F270...F273 - data loaded from #180

.0304 ;number of decimal digits =3, format =4 (4 byte)
SF200 ;storing into format register
.0001 ;index of macro variables
SF202 ;storing into segment register
.0180 ;line number of macro variable #180
SF204 ;storing into index register
.0270 ;load data at address F270...F273
SF206 ;storing into address register
MR200 ;loading macro variable

(F0080 ;if syntax error
OF0082) ;or addresses are not in BCD form

U720 ;MACRO READING ERROR message strobe on
Z ;end of condition

;syntax error

4 Instruction Set of PLC Program Language

205

 MWnnn: overwriting data in the NC memory
This statement is for overwriting data in the NC memory. Memory areas reachable for the PLC
: macro variables and parameters. After the statement name (MR) the start address of the register
area controlling the statement must be entered with three decimal digits. The register area of the
statement is 8 bytes. The register and data areas must be placed in the freely available working
area.
Description of the statement:
nnn: start address of the local area containing the registers area used in the statement.

Address of registers Meaning of registers

nnn Format register

nnn+2 Segment register

nnn+4 Index register

nnn+6 Start address of the data area to be stored

Format register:
The format register can be found at address nnn of the register area. Length of register: 1 word.
In the lower byte of the register the size of the transferred data to be stored is stored among the
common variables, can be given.

possible contents of byte Fnnn: 1, 2, or 4.
If a flag is transferred from the data and 2 bytes are reserved for it the flag must be placed into bit
No. 0 of the lower byte. Remember, that in case of filling a register if byte data is transferred
bytes must be reserved for it, if word data is transferred a word must be reserved for it, and so on.
In case of flags the reserved byte number is of no importance.
The upper byte of the register is only used when overwriting macro variables #1...#999. These
variables are in floating point format in the NC memory but in PLC programs there are only
integer variables. Therefore the value of the data must be transferred as an integer whereby the
decimal point is shifted by the number of possible places after the point (shift count).

possible value of address nnn+1, i.e. shift count: 0,1,...,8
E.g.: if the value at address nnn is 4, the value of the data is 1000 and

the shift count is 3, then #100=1,
in case the shift count is 0, #100=1000..

Segment register:
In this register the segment of the NC memory, to which the overwriting statement is referred to
must be specified.

Possible values of address nnn+2:
=1 macro variables
=2 NC parameters

Index register:
The index register contains the reference number to be stored within the selected memory
segment.
When overwriting

4 Instruction Set of PLC Program Language

206

Macro variables
it is the reference number of the macro variable (the number after signal #).

Possible values of address nnn+4:
1...999
2000...
The overwriting of macro variables #1000... #1999 is not possible.
When overwriting

NC parameters
it is the reference number of the parameter.
The contents of index register is always a BCD number

Start address of the area allocated for the data
The start address of the local area, into where the data is stored can be found at address nnn+6.
Bytes with lower local value are stored into lower addresses, while those with higher local value
are stored into higher addresses. The data written here is regarded by the compiler as a decimal
number, similarly to number nnn in statement LFnnn or SFnnn.
Start address of the data to be stored is always a BCD number.

After executing the NC memory the overwriting of the state of the following status flags can be
tested:
F0080: Syntax error in statement
If the registers used for the statement are filled out correctly:
- the lower byte of format register is 1, 2, or 4, and the location corresponds to the size of

data to be stored,
- the upper byte is within value range 0...8,
- both segment and index registers refer to writeable memory area,
- the address register refers to the address range of freely available local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the value of index or start address register is not in BCD form.

Sample for storing macro variable #180 into the PLC:

Location:
F210...F216 - parameters of statement MR210
F298...F301 - data overwritten into #183

.0304 ;number of decimal digits =3, format =4 (4 byte)
SF210 ;storing into format register
.0001 ;index of macro variables
SF212 ;storing into segment register
.0183 ;reference number of macro variable #183
SF214 ;storing into index register
.0298 ;load data from address F270...F273
SF216 ;storing into address register
MR210 ;overwriting macro variable

(F0080 ;if syntax error
OF0082) ;or addresses are not in BCD form

U721 ;MACRO WRITING ERROR message strobe on
Z ;end of condition

;syntax error

4 Instruction Set of PLC Program Language

207

4.16 Arithmetic Operations
Beside the 16-bit unsigned arithmetic operations executed into register OP arithmetic operations
with 1, 2 or 4 byte numbers or signed numbers are also available.

 ADDnnn: addition: A + B = C
This statement is for adding 1, 2, or 4 byte numbers, signed numbers, or the two’s complement
of the numbers. After the statement name (ADD) the start address of the register area controlling
the statement must be entered with three decimal digits. The register area of the statement is 8
bytes. The register and data areas must be placed in the freely available working area.
Description of the statement:
nnn: start address of the local area containing the registers used in the statement..

Address of registers Meaning of registers

nnn Format register

nnn+2 Start address of 1 addable (A)st

nnn+4 Start address of 2 addable (B)nd

nnn+6 Start address of sum (C)

Format register:
The format register can be found at address nnn of the register area. In this register the number
of bytes, in which the numbers of statement are reserved can be given.
Length of register: 1 word
Possible contents of register: 1, 2, or 4.

Start address of 1 addable (A):st

The start address of the 1 addable can be found at address nnn+2 of the register area. Thisst

address must point to the local variable, at which the value of 1 addable can be found. At thisst

address the number of bytes specified at format register is taken into account during the addition
in order to calculate the result. Bytes with lower local value are at the lower addresses, while
those with higher local values are at higher addresses.
Start address of 1 addable is always a BCD number.st

Start address of 2 addable (B):nd

The start address of the 2 addable can be found at address nnn+4 of the register area. Thisnd

address must point to the local variable, at which the value of 2 addable can be found. At thisnd

address the number of bytes specified at format register is taken into account during the addition
in order to calculate the result. Bytes with lower local value are at the lower addresses, while
those with higher local values are at higher addresses.
Start address of 2 addable is always a BCD number.nd

Start address of sum (C):
The start address of the sum can be found at address nnn+6 of the register area. This address must
point to the local variable, at which the value of the sum can be found. At this address the number
of bytes specified at format register is taken into account during the addition in order to calculate
the result. Bytes with lower local value are at the lower addresses, while those with higher local
values are at higher addresses.
Start address of the sum is always a BCD number.

4 Instruction Set of PLC Program Language

208

After the execution of addition the state of the following status flags can be tested:
F0080: Syntax error in statement
If the registers used for the statement are filled out correctly::
- the contents of format register is 1, 2, or 4,
- the address registers refer to the address range of usable local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the values of address registers are not in BCD form.
F0046: The result is 0.
F0047: The result is negative
F0053: Overflow
If the result of addition does not have enough room at the bytes, the number of which is specified
at format register further bytes are not overwritten, but flag F0053 is set to 1.

Example for the use of statement ADDnnn

Location:
F220...F226 - input registers of statement ADD220
F270...F273 - 1 addablest

F274...F277 - 2 addablend

F282...F285 - sum

.0004 ;length of numbers =4 (4 bytes)
SF220 ;storing into addition format register
.0270 ;start address of 1 addable: F270(...F273) st

SF222 ;storing into 1 addable address registerst

.0274 ;start address of 2 addable: F274(...F277)nd

SF224 ;storing into 2 addable address registernd

.0282 ;start address of sum: F282(...F285)
SF226 ;storing into sum address register
ADD220 ;addition

(F0080 ;if syntax error
OF0082 ;or addresses are not in BCD form
OF0053) ;or overflow

U722 ;ADDITION ERROR message strobe on
Z ;end of condition

;syntax error

 SUBnnn: subtraction: A - B = C
This statement is for subtracting 1, 2, or 4 byte numbers, signed numbers, or the two’s
complement of the numbers. After the statement name (SUB) he start address of the register area
controlling the statement must be entered with three decimal digits. The register area of the
statement is 8 bytes. The register and data areas must be placed in the freely available working
area.
Description of the statement:
nnn: start address of the local area containing the registers used in the statement..

4 Instruction Set of PLC Program Language

209

Address of registers Meaning of registers

nnn Format register

nnn+2 Start address of subtractand (A)

nnn+4 Start address of subtractor (B)

nnn+6 Start address of difference (C)

Format register:
The format register can be found at address nnn of the register area. In this register the number
of bytes, in which the numbers of statement are shown can be given.
Length of register: 1 word
Possible contents of register: 1, 2, or 4.

Start address of subtractand (A):
The start address of the subtractand can be found at address nnn+2 of the register area. This
address must point to the local variable, at which the value of subtractand can be found. At this
address the number of bytes specified at format register is taken into account during the
subtraction in order to calculate the result. Bytes with lower local value are at the lower addresses,
while those with higher local values are at higher addresses.
Start address of subtractand is always a BCD number.

Start address of subtractor (B):
The start address of the subtractor can be found at address nnn+4 of the register area. This address
must point to the local variable, at which the value of subtractor can be found. At this address the
number of bytes specified at format register is taken into account during the subtraction in order
to calculate the result. Bytes with lower local value are at the lower addresses, while those with
higher local values are at higher addresses.
Start address of subtractor is always a BCD number.

Start address of difference (C):
The start address of the difference can be found at address nnn+6 of the register area. This address
must point to the local variable, at which the value of the difference can be found. At this address
the number of bytes specified at format register is taken into account during the subtraction in
order to calculate the result. Bytes with lower local value are at the lower addresses, while those
with higher local values are at higher addresses.
Start address of the difference is always a BCD number.

After the execution of subtraction the state of the following status flags can be tested:
F0080: Syntax error in statement
If the registers used for the statement are filled out correctly::
- the contents of format register is 1, 2, or 4,
- the address registers refer to the address range of usable local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the values of address registers are not in BCD form.
F0046: The result is 0.
F0047: The result is negative
F0053: Overflow

4 Instruction Set of PLC Program Language

210

If the result of subtraction does not have enough room at the bytes, the number of which is
specified at format register further bytes are not overwritten, but flag F0053 is set to 1.

Example for the use of statement SUBnnn

Location:
F230...F236 - input registers of statement SUB230
F270...F273 - subtractand
F274...F277 - subtractor
F286...F289 - difference

.0004 ;length of numbers =4 (4 bytes)
SF230 ;storing into subtraction format register
.0270 ;start address of subtractand: F270(...F273)
SF232 ;storing into subtractand address register
.0274 ;start address of subtractor: F274(...F277)
SF234 ;storing into subtractor address register
.0286 ;start address of difference: F286(...F289)
SF236 ;storing into difference address register
SUB230 ;subtraction

(F0080 ;if syntax error
OF0082 ;or addresses are not in BCD form
OF0053) ;or overflow

U723 ;SUBTRACTION ERROR message strobe on
Z ;end of condition

;syntax error

 MULnnn: multiplication: A * B = C
This statement is for multiplying 1, 2, or 4 byte numbers, signed numbers, or the two’s
complement of the numbers. After the statement name (MUL) the start address of the register area
controlling the statement must be entered with three decimal digits. The register area of the
statement is 8 bytes.
Description of the statement:
nnn: start address of a local area containing the registers used in the statement.

Address of registers Meaning of registers

nnn Format register

nnn+2 Start address of multiplicand (A)

nnn+4 Start address of multiplicator (B)

nnn+6 Start address of product (C)

Format register:
The format register can be found at address nnn of the register area. In this register the number
of bytes, in which the numbers of statement are shown can be given.
Length of register: 1 word
Possible contents of register: 1, 2, or 4.

Start address of multiplicand (A):
The start address of the multiplicand can be found at address nnn+2 of the register area. This
address must point to the local variable, at which the value of multiplicand can be found. At this
address the number of bytes specified at format register is taken into account during the
multiplication in order to calculate the result. Bytes with lower local value are at the lower
addresses, while those with higher local values are at higher addresses.
Start address of multiplicand is always a BCD number.

4 Instruction Set of PLC Program Language

211

Start address of multiplicator (B):
The start address of the multiplicator can be found at address nnn+4 of the register area. This
address must point to the local variable, at which the value of multiplicator can be found. At this
address the number of bytes specified at format register is taken into account during the
multiplication in order to calculate the result. Bytes with lower local value are at the lower
addresses, while those with higher local values are at higher addresses.
Start address of multiplicator is always a BCD number.

Start address of product (C):
The start address of the product can be found at address nnn+6 of the register area. This address
must point to the local variable, at which the value of the product can be found. At this address
the number of bytes specified at format register is taken into account during the multiplication
in order to calculate the result. Bytes with lower local value are at the lower addresses, while
those with higher local values are at higher addresses.
Start address of the product is always a BCD number.

After the execution of multiplication the state of the following status flags can be tested:
F0080: Syntax error in statement
If the registers used for the Statement are filled out correctly::
- the contents of format register is 1, 2, or 4,
- the address registers refer to the address range of usable local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the values of address registers are not in BCD form.
F0046: The result is 0.
F0047: The result is negative
F0053: Overflow
If the result of multiplication does not have enough room at the bytes, the number of which is
specified at format register further bytes are not overwritten, but flag F0053 is set to 1.

Example for the use of statement MULnnn

Location:
F240...F246 - input registers of statement MUL240
F282...F285 - multiplicand
F278...F281 - multiplicator
F290...F297 - product

.0004 ;length of numbers =4 (4 bytes)
SF240 ;storing into multiplication format register
.0282 ;start address of multiplicand: F282(...F285)
SF242 ;storing into multiplicand address register
.0278 ;start address of multiplicator: F278(...F281)
SF244 ;storing into multiplicator address register
.0290 ;start address of product: F290(...F297)
SF246 ;storing into product address register
MUL240 ;multiplication

(F0080 ;if syntax error
OF0082 ;or addresses are not in BCD form
OF0053) ;or overflow

U724 ;MULTIPLICATION ERROR message strobe on
Z ;end of condition

;syntax error

4 Instruction Set of PLC Program Language

212

 DIVnnn: division: A / B = C
This statement is for dividing 1, 2, or 4 byte numbers, signed numbers, or the two’s complement
of the numbers. After the statement name (DIV) the start address of the register area controlling
the statement must be entered with three decimal digits. The register area of the statement is 8
bytes.
Description of the statement:
nnn: start address of the local area containing the registers used in the statement.

Address of registers Meaning of registers

nnn Format register

nnn+2 Start address of dividend (A)

nnn+4 Start address of divisor (B)

nnn+6 Start address of quotient (C) and remainder

Format register:
The format register can be found at address nnn of the register area. In this register the number
of bytes, in which the numbers of statement are shown can be given.
Length of register: 1 word
Possible contents of register: 1, 2, or 4.

Start address of dividend (A):
The start address of the dividend can be found at address nnn+2 of the register area. This address
must point to the local variable, at which the value of dividend can be found. At this address the
number of bytes specified at format register is taken into account during the division in order to
calculate the result. Bytes with lower local value are at the lower addresses, while those with
higher local values are at higher addresses.
Start address of dividend is always a BCD number.

Start address of divisor (B):
The start address of the divisor can be found at address nnn+4 of the register area. This address
must point to the local variable, at which the value of divisor can be found. At this address the
number of bytes specified at format register is taken into account during the division in order to
calculate the result. Bytes with lower local value are at the lower addresses, while those with
higher local values are at higher addresses.
Start address of divisor is always a BCD number.

Start address of quotient (C) and remainder (R):
The start address of the result can be found at address nnn+6 of the register area. This address
must point to the local variable, at which the value of the result can be found. At this address the
number of bytes specified at format register is taken into account during the division in order to
calculate the result. Bytes with lower local value are at the lower addresses, while those with
higher local values are at higher addresses.
Start address of the quotient is always a BCD number.

After the execution of division the state of the following status flags can be tested:
F0080: Syntax error in statement
If the registers used for the statement are filled out correctly:
- the contents of format register is 1, 2, or 4,

4 Instruction Set of PLC Program Language

213

- the address registers refer to the address range of usable local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the values of address registers are not in BCD form.
F0046: The result is 0.
F0047: The result is negative

Example for the use of statement DIVnnn

Location:
F250...F256 - input registers of statement DIV250
F290...F297 - dividend
F286...F289 - divisor
F298...F301 - quotient
F302...F305 - remainder

.0004 ;length of numbers =4 (4 bytes)
SF250 ;storing into division format register
.0290 ;start address of dividend: F290(...F297)
SF252 ;storing into dividend address
.0286 ;start address of divisor: F286(...F289)
SF254 ;storing into divisor address
.0298 ;start address of quotient: F298(...F301, of remainder:
 ;F302...F305)
SF256 ;storing into quotient address
DIV250 ;division

(F0080 ;if syntax error
OF0082) ;or addresses are not in BCD form

U725 ;DIVISION ERROR message strobe on
Z ;syntax error

;end of condition

 CMPnnn: comparing binary data
This statement is for comparing 1, 2, or 4 byte numbers, signed numbers, or the two’s
complement of the numbers. After the statement name (CMP) the start address of the register area
controlling the statement must be entered with three decimal digits. The register area of the
statement is 6 bytes.
Description of the statement:
nnn: start address of the local area containing the registers used in the statement.

Address of registers Meaning of registers

nnn Format register

nnn+2 Start address of basic data

nnn+4 Start address of compared data

Format register:
The format register can be found at address nnn of the register area. In this register the number
of bytes, in which the numbers of statement are shown can be given.
Length of register: 1 word
Possible contents of register: 1, 2, or 4.

Start address of basic data:
The start address of the entered data can be found at address nnn+2 of the register area. This
address must point to the local variable, at which the basic data can be found. At this address the
number of bytes specified at format register is taken into account during the comparison in order

4 Instruction Set of PLC Program Language

214

to calculate the result. Bytes with lower local value are at the lower addresses, while those with
higher local values are at higher addresses.
Start address of entered data is always a BCD number.

Start address of compared data:
The start address of the compared data can be found at address nnn+4 of the register area. This
address must point to the local variable, at which the compared data can be found. At this address
the number of bytes specified at format register is taken into account during the comparison in
order to calculate the result. Bytes with lower local value are at the lower addresses, while those
with higher local values are at higher addresses.
Start address of compared data is always a BCD number.

The result of comparison can be read in the state of the status flags:
F0080: Syntax error in statement
If the registers used for the statement are filled out correctly:
- the contents of format register is 1, 2, or 4,
- the address registers refer to the address range of usable local variables.
Else flag F0080 is set to 1.
F0082: not BCD number
The flag is set to 1 if the values of address registers are not in BCD form.
F0046: The result is 0, i.e. the two data is equal
F0047: The result is negative, the basic data is less than the compared data
F0053: Overflow
If the result of comparison does not have enough room at the bytes, the number of which is
specified at format register further bytes are not overwritten, but flag F0053 is set to 1.

Example for the use of statement CMPnnn

Location:
F260...F264 - input registers of statement CMP260
F298...F301 - entered data
F270...F273 - compared data

.0004 ;length of number =4 (4 bytes)
SF260 ;storing into comparison format register
.0298 ;start address of entered data: F298(...F301)
SF262 ;storing into entered data address
.0270 ;start address of compared data: F270(...F273)
SF264 ;storing into compared data address
CMP260 ;comparison

(F0080 ;if syntax error
OF0082 ;or addresses are not in BCD form
OF0053) ;or overflow

U726 ;COMPARISON ERROR message strobe on
E ;if no error
 F0046

U727 ;EQUAL TO message strobe on
 E
 F0047

U730 ;LESS THAN message strobe on
 E

U731 ;GREATER THAN message strobe on
 Z
 Z
Z ;end of condition

;syntax error

5 Compiling and Loading PLC Program into NC Control

215

5 Compiling and Loading PLC Program into NC Control

The PLC source program is a text file, which is to be compiled for the NC control. The NC
control is only able to execute the statements of the compiled program.
The source program can contain any number of comments. Comments can be used in two ways

; comment rs

r fi.e. comment start ";" is closed by carriage return (C) or line feed (L). The other possibility
/* comment */

is when brackets are added to the comment as seen above. This comment can contain however
many lines.
The PLC program is to be loaded into the control compiled and in binary form.

PLC compiler Pe*.exe runs on MS DOS operating system of IBM PC or compatible computer.
In place of character * the version number of the compiler can be replaced. The compiler regards
only text files with extension *.plc as PLC programs, therefore it only loads those ones.
The following stipulations exist in connection with the length of the PLC program:
- The text length of the source program without comments and spaces, i.e. which is

displayed by the compiler when compiling cannot be longer than 64 kB.
- The compiling is done at the lower 640 kB of the PC (Conventional Memory). The

compiler program, the PLC source program and the operating system must have room in
this memory. If in the course of compiling memory problem occurs DOS or Norton
Commander must be directed to HMA (High Memory Area) or UMA (Upper Memory
Area).

After starting the compiler the following menu items are offered:

F HELP: starting the help1

F LIBR: selecting drive or directory. The selection is done by means of keys <up>,2

<down>, <right>, <left> and <ENTER>.
F COLOUR: changing the colors of screen 8

F LANGUA: languages to be selected: ENGLISH, DEUTSCH, MAGYAR9

F QUIT: exit from program10

If a menu item has been selected the menu can be returned by the use of <Esc> (except for QUIT).

If (after selecting drive and directory) the program to be compiled has been selected (the PLC
source must be saved to the directory with extension *.plc). After the highlighting bar has been
set to the program key <ENTER> needs to be pressed. In this case the compiler compiles the
program automatically, provided if no error has been found in it. The program statements are
displayed on the screen (without comments). In case of error beginning with the erroneous
statement the text is not formatted, but is displayed on screen in input format. The error message
can be read on the bottom of screen. The error code list and their meanings can be read in the
APPENDIX in chapter 6.3 Error Messages of the PLC Compiler on page 231.

If compiling is completed a file with extension *.bin beside the source with extension *.plc is
created, which can be sent to the NC control. At the same time the compiler writes the time of
compiling in form of

[year] [month] [day] [hour] [minute]
together with the version number of the compiler in the binary file. The above information is
displayed on screen Service—PLC. Make sure, that the version of the software in the control and

5 Compiling and Loading PLC Program into NC Control

216

of the PLC compiler is the same. On the above mentioned screen also the information data
entered by the programmer in module :200 can be read.

In this state the following actions are available by means of softkeys:

F HELP: starting the help1

F COM1: the compiled PLC program (file *.bin) is sent to the control, provided the serial2

port of the PC is connected to input RS232C of the control. If the number of port
is to be changed keys <1>, <2>, <3>, <4> must be used. This function can be
used just in case of NCT98 and NCT99 controls.

F MODUL9: the list goes to the label of the next module in the displayed text3

F MODUL8: the list goes to the label of the previous module in the displayed text4

F COND: If the cursor stands on the beginning of a condition, it goes to the condition5

closing Z, if it stands on a Z, it goes to the beginning of the state test.
F STAT: Here different statements and labels can be selected and the program evaluates,6

whether these references are in the text or not.
F 98SEAR: it searches for the entered text. The search direction can be selected by the use of8

keys 9and 8.
F VALUE: If the PLC is connected to the control through serial interface the program9

perpetually updates the values of variables in the statements on the right side of
screen. This gives help for the debugging of PLC program.

F QUIT: exit from program10

If a menu item has been selected the menu can be returned by the use of <Esc> (except for QUIT).

In case of NCT98 and 99 controls the compiled program (with extension .bin) must be loaded.
For all bytes are halved in order to transfer them on serial line the length of the compiled binary
file is two times the size the location the binary PLC program reserves in the control memory.

In case of NCT2000, 990, 100, 101, 104 and 115 controls the source code, that is the text file
(with extension .plc) must be loaded.
The compilation of PLC program happens in the control after loading it. If the source code is
syntactically erroneous the critical part is displayed and the same messages are produced as in
case of version running on PC. Before loading a PLC program it is avised to check it by
compiling it on a PC.

6.1 Summary of the variables of the connection between PLC and NC

217

6 APPENDIX

6.1 Summary of the Variables of the Connection between PLC and NC

I400 Ref posit setting mode push-button
I401 Handle mode push-button
I402 Incremental jog mode push-button
I403 Jog mode push-button
I404
I405 Manual data input mode push-button
I406 Automatic mode push-button
I407 Edit mode push-button

Y400 Ref posit setting mode lamp
Y401 Handle mode lamp
Y402 Incremental jog mode lamp
Y403 Jog mode lamp
Y404
Y405 Manual data input mode lamp
Y406 Automatic mode lamp
Y407 Edit mode lamp

I410 1 axis selector softkeyst

I411 2 axis selector softkeynd

I412 3 axis selector softkeyrd

I413 4 axis selector softkeyth

I414 5 axis selector softkeyth

I415 6 axis selector softkeyth

I416 7 axis selector softkeyth

I417 8 axis selector softkeyth

Y410 1 axis selected lampst

Y411 2 axis selected lampnd

Y412 3 axis selected lamprd

Y413 4 axis selected lampth

Y414 5 axis selected lampth

Y415 6 axis selected lampth

Y416 7 axis selected lampth

Y417 8 axis selected lampth

I420 1 increment push-button
I421 10 increment push-button
I422 100 increment push-button
I423 1000 increment push-button
I424
I425
I426 Auto tool length measure softkey
I427 JOG rapid traverse push-button

Y420 1 increment lamp
Y421 10 increment lamp
Y422 100 increment lamp
Y423 1000 increment lamp
Y424
Y425
Y426 Auto tool length measure lamp
Y427 JOG rapid traverse lamp

I430 JOG 1 push-button
I431 JOG 2 push-button
I432 JOG 3 push-button
I433 JOG 4 push-button
I434 JOG 5 push-button
I435 JOG 6 push-button
I436 JOG 7 push-button
I437 JOG 8 push-button

Y430 JOG X axis + direction selected
Y431 JOG Y axis + direction selected
Y432 JOG Z axis + direction selected
Y433 JOG + direction selected
Y434 JOG X axis ! direction selected
Y435 JOG Y axis ! direction selected
Y436 JOG Z axis ! direction selected
Y437 JOG ! direction selected

6.1 Summary of the variables of the connection between PLC and NC

218

I440 Test push-button
I441 Machine lock push-button
I442 Dry run push-button
I443 Block restart push-button
I444 Block return push-button
I445 Conditional stop push-button
I446 Cond block skip push-button
I447 Single block push-button

Y440 Test lamp
Y441 Machine lock lamp
Y442 Dry run lamp
Y443 Block restart lamp
Y444 Block return lamp
Y445 Conditional stop lamp
Y446 Conditional block skip lamp
Y447 Single block lamp

I450 1 user’s push-buttonst

I451 2 user’s push-buttonnd

I452 3 user’s push-buttonrd

I453 4 user’s push-buttonth

I454 5 user’s push-buttonth

I455 6 user’s push-buttonth

I456 7 user’s push-buttonth

I457 8 user’s push-buttonth

Y450 JOG 1 push-button lamp
Y451 JOG 2 push-button lamp
Y452 JOG 3 push-button lamp
Y453 JOG 4 push-button lamp
Y454 JOG 5 push-button lamp
Y455 JOG 6 push-button lamp
Y456 JOG 7 push-button lamp
Y457 JOG 8 push-button lamp

I460 9 user’s push-buttonth

I461 10 user’s push-buttonth

I462 11 user’s push-buttonth

I463 12 user’s push-buttonth

I464 13 user’s push-buttonth

I465 14 user’s push-buttonth

I466 15 user’s push-buttonth

I467 16 user’s push-buttonth

Y460 1 axis lock selectedst

Y461 2 axis lock selectednd

Y462 3 axis lock selectedrd

Y463 4 axis lock selectedth

Y464 5 axis lock selectedth

Y465 6 axis lock selectedth

Y466 7 axis lock selectedth

Y467 8 axis lock selectedth

I470 Start push-button
I471 Stop push-button
I472 function lock push-button
I473
I474 M3 push-button
I475 M4 push-button
I476 M5 push-button
I477 RESET push-button

Y470 Start state lamp
Y471 Stop state lamp
Y472 function lock lamp
Y473 Manual handle feed
Y474 M3 of control board 2 lamp
Y475 M4 of control board 2 lamp
Y476 M5 of control board 2 lamp
Y477 RESET from PLC

I480 1 user’s push-buttonst

I481 2 user’s push-button nd

I482 3 user’s push-button rd

I483 4 user’s push-button th

I484 5 user’s push-button th

I485 6 user’s push-button th

I486 7 user’s push-button th

I487 8 user’s push-button th

Y480 1 user’s push-button's lampst

Y481 2 user’s push-button's lampnd

Y482 3 user’s push-button's lamprd

Y483 4 user’s push-button's lampth

Y484 5 user’s push-button's lampth

Y485 6 user’s push-button's lampth

Y486 7 user’s push-button's lampth

Y487 8 user’s push-button's lampth

6.1 Summary of the variables of the connection between PLC and NC

219

I490
I491
I492
I493
I494
I495
I496
I497

Y490
Y491
Y492
Y493
Y494
Y495
Y496
Y497

I500 PLC defined softkey 1
I501 PLC defined softkey 2
I502 PLC defined softkey 3
I503 PLC defined softkey 4
I504 PLC defined softkey 5
I505 PLC defined softkey 6
I506 PLC defined softkey 7
I508 PLC defined softkey 8

Y500 PLC defined softkey 1 lamp
Y501 PLC defined softkey 2 lamp
Y502 PLC defined softkey 3 lamp
Y503 PLC defined softkey 4 lamp
Y504 PLC defined softkey 5 lamp
Y505 PLC defined softkey 6 lamp
Y506 PLC defined softkey 7 lamp
Y508 PLC defined softkey 8 lamp

I510 first call of module :001
I511 automatic operation interrupted
I512
I513
I514
I515
I516
I517 parts required=parts count

Y510 conditional block 2 skip
Y511 conditional block 3 skip
Y512 conditional block 4 skip
Y513 conditional block 5 skip
Y514 conditional block 6 skip
Y515 conditional block 7 skip
Y516 conditional block 8 skip
Y517 conditional block 9 skip

I520 1 M function strobest

I521 2 M function strobend

I522 3 M function stroberd

I523 4 M function strobeth

I524 5 M function strobeth

I525 S function strobe
I526 T function strobe
I527 A function strobe

Y520 Mode selection with softkeys
Y521 Axis selection with softkeys
Y522 Increment selection with softkeys
Y523 State selection with softkeys
Y524 PLC defined buttons with softkeys
Y525 R% with softkeys
Y526 S% with softkeys
Y527 F% with softkeys

I530 B function strobe
I531 C function strobe
I532 Chopping Function Strobe
I533
I534
I535
I536 Valid push-b. code in reg RH049
I537 Message on screen

Y530 Jog buttons from NC keyboard
Y531 Selection of mach control board 1
Y532 Selection of mach control board 2
Y533
Y534
Y535
Y536 Valid push-button code from PLC
Y537 Data input from PLC

6.1 Summary of the variables of the connection between PLC and NC

220

I540 Status of Machine on output
I541 Status of NC Ready signal
I542 Machine on output disabled
I543 module :000 start
I544
I545 programmed ref posit setting (G28)
I546 executable block in buffer
I547 STOP request from NC

Y540 Machine on request
Y541 No input synchronization in :000
Y542 Feed hold
Y543 General security gate enable
Y544 Interrupt macro call enable
Y545 Free purpose user’s timer enable
Y546 :002 call enable
Y547 FIN: functions executed by PLC

I550 interpolator stopped
I551 interpolator empty
I552 override disabled
I553 spindle rotation request
I554 thread cutting (G33)
I555 Thread cutting cycle (G76, G78)
I556
I557

Y550 1 axis on reference switchst

Y551 2 axis on reference switchnd

Y552 3 axis on reference switchrd

Y553 4 axis on reference switchth

Y554 5 axis on reference switchth

Y555 6 axis on reference switchth

Y556 7 axis on reference switchth

Y557 8 axis on reference switchth

I560 1 axis in positionst

I561 2 axis in positionnd

I562 3 axis in positionrd

I563 4 axis in positionth

I564 5 axis in positionth

I565 6 axis in positionth

I566 7 axis in positionth

I567 8 axis in positionth

Y560 1 axis on + limit switchst

Y561 2 axis on + limit switchnd

Y562 3 axis on + limit switchrd

Y563 4 axis on + limit switchth

Y564 5 axis on + limit switchth

Y565 6 axis on + limit switchth

Y566 7 axis on + limit switchth

Y567 8 axis on + limit switchth

I570 1 axis lubrication requestst

I571 2 axis lubrication requestnd

I572 3 axis lubrication requestrd

I573 4 axis lubrication requestth

I574 5 axis lubrication requestth

I575 6 axis lubrication requestth

I576 7 axis lubrication requestth

I577 8 axis lubrication requestth

Y570 1 axis on – limit switchst

Y571 2 axis on – limit switchnd

Y572 3 axis on – limit switchrd

Y573 4 axis on – limit switchth

Y574 5 axis on – limit switchth

Y575 6 axis on – limit switchth

Y576 7 axis on – limit switchth

Y577 8 axis on – limit switchth

I580
I581
I582
I583
I584
I585
I586
I587

Y580 Tool sensor pressed in X+ direction
Y581 Tool sensor pressed in X– direction
Y582 Tool sensor pressed in Z+ direction
Y583 Tool sensor pressed in Z– direction
Y584
Y585
Y586
Y587

6.1 Summary of the variables of the connection between PLC and NC

221

I590
I591
I592
I593
I594
I595
I596
I597

Y590 Axis 1 synchron slave on
Y591 Axis 2 synchron slave on
Y592 Axis 3 synchron slave on
Y593 Axis 4 synchron slave on
Y594 Axis 5 synchron slave on
Y595 Axis 6 synchron slave on
Y596 Axis 7 synchron slave on
Y597 Axis 8 synchron slave on

I600
I601
I602 Program execution in DNC
I603 Program execution in NCT DNC
I604 Message acknowledged
I605 Transmission error
I606 Data transmitted from memory
I607 Data received in memory

Y600 Program selection for automatic mode
Y601 Program selection for MDI mode
Y602 Program execution in DNC
Y603 Program execution in NCT DNC
Y604 Message strobe
Y605 Open input channel
Y606 Transmittable data in memory
Y607 PLC received data from memory

I610 1 axis motion request st

I611 2 axis motion request nd

I612 3 axis motion request rd

I613 4 axis motion request th

I614 5 axis motion request th

I615 6 axis motion request th

I616 7 axis motion request th

I617 8 axis motion requestth

Y610 1 axis motion disable st

Y611 2 axis motion disable nd

Y612 3 axis motion disable rd

Y613 4 axis motion disable th

Y614 5 axis motion disable th

Y615 6 axis motion disable th

Y616 7 axis motion disable th

Y617 8 axis motion disableth

I620 1 axis rapid traverse request st

I621 2 axis rapid traverse request nd

I622 3 axis rapid traverse request rd

I623 4 axis rapid traverse request th

I624 5 axis rapid traverse request th

I625 6 axis rapid traverse request th

I626 7 axis rapid traverse request th

I627 8 axis rapid traverse requestth

Y620 1 axis loop openst

Y621 2 axis loop opennd

Y622 3 axis loop openrd

Y623 4 axis loop openth

Y624 5 axis loop openth

Y625 6 axis loop openth

Y626 7 axis loop openth

Y627 8 axis loop openth

I630
I631
I632
I633
I634
I635
I636
I637

Y630 1 axis motion by PLCst

Y631 2 axis motion by PLCnd

Y632 3 axis motion by PLCrd

Y633 4 axis motion by PLCth

Y634 5 axis motion by PLCth

Y635 6 axis motion by PLCth

Y636 7 axis motion by PLCth

Y637 8 axis motion by PLCth

6.1 Summary of the variables of the connection between PLC and NC

222

I640 G51.2: polygonal turning
I641 polyg. turn., reverse direction (Q<0)
I642
I643
I644
I645
I646
I647

Y640 1 axis encoder check offst

Y641 2 axis encoder check offnd

Y642 3 axis encoder check offrd

Y643 4 axis encoder check offth

Y644 5 axis encoder check offth

Y645 6 axis encoder check offth

Y646 7 axis encoder check offth

Y647 8 axis encoder check offth

I650 1 spindle command ramping readyst

I651 1 spindle orientation readyst

I652 1 spindle in positionst

I653 State G96 on active spindle
I654 State G25 on active spindle
I655 State G25 on active spindle

SI656 1 spindle n=nst

I657 1 spindle n=0st

Y650 Active spindle rotates
Y651 1 spindle orientation requestst

Y652 1 spindle command signal enablest

Y653 1 spindle com signal with + polarityst

Y654 1 spindle binary com signal outp st

Y655 Synchronize 1 spindle to the 2st nd

Y656 1 sp. synchr. in counter directionst

Y657 1 sp. orient. in the shorter directionst

I660 2 spindle command ramping readynd

I661 2 spindle orientation readynd

I662 2 spindle in positionnd

I663 1 sp. synchronized to the 2 onest nd

I664 2 sp. synchronized to the 1 onend st

I665

SI666 2 spindle n=nnd

I667 2 spindle n=0nd

Y660 2 spindle is activend

Y661 2 spindle orientation requestnd

Y662 2 spindle command signal enablend

Y663 2 spindle com signal with + polaritynd

Y664 2 spindle binary com signal outpnd

Y665 Synchronize 2 spindle to the 1nd st

Y666 2 sp. synchr. in counter directionnd

Y667 2 sp. orient. in the shorter directionnd

I670 1 analog command ramping readyst

I671
I672 2 analog command ramping readynd

I673
I674
I675 Chopping Function Code
I676 Axis Is Chopping
I677 Chopping Axis on Point R

Y670 1 analog com signal with + polarityst

Y671 1 analog com signal output binaryst

Y672 2 analog com signal with+ polaritynd

Y673 2 analog com signal output binarynd

Y674 Piston turning
Y675 Chopping On
Y676 1 analog com signal enablest

Y677 2 analog com signal enablend

I680
I681
I682
I683
I684
I685
I686
I687

Y680
Y681
Y682
Y683
Y684
Y685
Y686
Y687

6.1 Summary of the variables of the connection between PLC and NC

223

I690
I691
I692
I693
I694
I695
I696
I697

Y690
Y691
Y692
Y693
Y694
Y695
Y696
Y697

I700 1 indexed message on the screenst

I701 2 indexed message on the sreennd

I702 3 indexed message on the sreenrd

I703 4 indexed message on the sreenth

I707 5 indexed message on the sreenth

I705 6 indexed message on the sreenth

I706 7 indexed message on the sreenth

I707 8 indexed message on the sreenth

Y700 1 indexed message requestst

Y701 2 indexed message requestnd

Y702 3 indexed message requestrd

Y703 4 indexed message requestth

Y707 5 indexed message requestth

Y705 6 indexed message requestth

Y706 7 indexed message requestth

Y707 8 indexed message requestth

I710 1 message on the sreenst

I711 2 message on the sreennd

I712 3 message on the sreenrd

I713 4 message on the sreenth

I714 5 message on the sreenth

I715 6 message on the sreenth

I716 7 message on the sreenth

I717 8 message on the sreenth

Y710 1 message requestst

Y711 2 message requestnd

Y712 3 message requestrd

Y713 4 message requestth

Y714 5 message requestth

Y715 6 message requestth

Y716 7 message requestth

Y717 8 message requestth

.. ...

I790 65 message on the sreenth

I791 66 message on the sreenth

I792 67 message on the sreenth

I793 68 message on the sreenth

I794 69 message on the sreenth

I795 70 message on the sreenth

I796 71 message on the sreenst

I797 72 message on the sreennd

Y790 65 message requestth

Y791 66 message requestth

Y792 67 message requestth

Y793 68 message requestth

Y794 69 message requestth

Y795 70 message requestth

Y796 71 message requestst

Y797 72 message requestnd

6.1 Summary of the variables of the connection between PLC and NC

224

I800 73 message on the sreenrd

I801 74 message on the sreenth

I802 75 message on the sreenth

I803 76 message on the sreenth

I804 77 message on the sreenth

I805 78 message on the sreenth

I806 79 message on the sreenth

I807 80 message on the sreenth

Y800 73 message requestrd

Y801 74 message requestth

Y802 75 message requestth

Y803 76 message requestth

Y804 77 message requestth

Y805 78 message requestth

Y806 79 message requestth

Y807 80 message requestth

.. ...

I890 145 message on the sreenth

I891 146 message on the sreenth

I892 147 message on the sreenth

I893 148 message on the sreenth

I894 149 message on the sreenth

I895 150 message on the sreenth

I896 151 message on the sreenst

I897 152 message on the sreennd

Y890 145 message requestth

Y891 146 message requestth

Y892 147 message requestth

Y893 148 message requestth

Y894 149 message requestth

Y895 150 message requestth

Y896 151 message requestst

Y897 152 message requestnd

I900 1 axis interpolator stoppedst

I901 1 axis interpolator emptyst

I902
I903 1 axis reference point readyst

I904
I905
I906
I907 1 axis drive readyst

Y900 1 axis interpolator STARTst

Y901 1 axis interpolator strobe signalst

Y902 1 axis movement with feedst

Y903 1 axis incremental movement st

Y904 1 axis go to reference point st

Y905 1 axis interpolator RESETst

Y906
Y907

I910 2 axis interpolator stoppednd

I911 2 axis interpolator emptynd

I912
I913 2 axis reference point readynd

I914
I915
I916
I917 2 axis drive readynd

Y910 2 axis interpolator STARTnd

Y911 2 axis interpolator strobe signalnd

Y912 2 axis movement with feednd

Y913 2 axis incremental movement nd

Y914 2 axis go to reference point nd

Y915 2 axis interpolator RESETnd

Y916
Y917

6.1 Summary of the variables of the connection between PLC and NC

225

I920 3 axis interpolator stoppedrd

I921 3 axis interpolator emptyrd

I922
I923 3 axis reference point readyrd

I924
I925
I926
I927 3 axis drive readyrd

Y920 3 axis interpolator STARTrd

Y921 3 axis interpolator strobe signalrd

Y922 3 axis movement with feedrd

Y923 3 axis incremental movement rd

Y924 3 axis go to reference point rd

Y925 3 axis interpolator RESETrd

Y926
Y927

I930 4 axis interpolator stoppedth

I931 4 axis interpolator emptyth

I932
I933 4 axis reference point readyth

I934
I935
I936
I937 4 axis drive readyth

Y930 4 axis interpolator STARTth

Y931 4 axis interpolator strobe signalth

Y932 4 axis movement with feedth

Y933 4 axis incremental movement th

Y934 4 axis go to reference point th

Y935 4 axis interpolator RESETth

Y936
Y937

I940 5 axis interpolator stopth

I941 5 axis interpolator emptyth

I942
I943 5 axis reference point readyth

I944
I945
I946
I947 5 axis drive readyth

Y940 5 axis interpolator STARTth

Y941 5 axis interpolator strobe signalth

Y942 5 axis movement with feedth

Y943 5 axis incremental movement th

Y944 5 axis go to reference point th

Y945 5 axis interpolator RESETth

Y946
Y947

I950 6 axis interpolator stoppedth

I951 6 axis interpolator emptyth

I952
I953 6 axis reference point readyth

I954
I955
I956
I957 6 axis drive readyth

Y950 6 axis interpolator STARTth

Y951 6 axis interpolator strobe signalth

Y952 6 axis movement with feedth

Y953 6 axis incremental movement th

Y954 6 axis go to reference point th

Y955 6 axis interpolator RESETth

Y956
Y957

I960 7 axis interpolator stoppedth

I961 7 axis interpolator emptyth

I962
I963 7 axis reference point readyth

I964
I965
I966
I967 7 axis drive readyth

Y960 7 axis interpolator STARTth

Y961 7 axis interpolator strobe signalth

Y962 7 axis movement with feedth

Y963 7 axis incremental movement th

Y964 7 axis go to reference point th

Y965 7 axis interpolator RESETth

Y966
Y967

6.1 Summary of the variables of the connection between PLC and NC

226

I970 8 axis interpolator stoppedth

I971 8 axis interpolator emptyth

I972
I973 8 axis reference point readyth

I974
I975
I976
I977 8 axis drive readyth

Y970 8 axis interpolator STARTth

Y971 8 axis interpolator strobe signalth

Y972 8 axis movement with feedth

Y973 8 axis icremental movement th

Y974 8 axis go to reference point th

Y975 8 axis interpolator RESETth

Y976
Y977

I980
I981
I982
I983
I984
I985
I986
I987 1 main drive readyst

Y980
Y981
Y982
Y983
Y984
Y985
Y986
Y987

I990
I991
I992
I993
I994
I995
I996
I997 2 main drive readynd

Y990
Y991
Y992
Y993
Y994
Y995
Y996
Y997

RH000 1 M function codest

RH001 2 M function codend

RH002 3 M function coderd

RH003 4 M function codeth

RH004 5 M function codeth

RH005 S function code
RH006 T function code
RH007 A function code
RH008 B function code
RH009 C function code

RH050 Number of prg to be executed
RH051 Start address of data to be sent
RH052 Number of bytes to be sent
RH053 Transmitter periphery code
RH054 Start address of received data
RH055 Number of received bytes
RH056 Receiver periphery code
RH057 A function current value
RH058 B function current value
RH059 C function current value

6.1 Summary of the variables of the connection between PLC and NC

227

RH010 1 spindle current revolution st

RH011 1 spindle modified prg revst

RH012 G96 revol. on the active spindle
RH013 Progrd max. rev. on active spindle
RH014
RH015 2 spindle current revolutionnd

RH016 2 spindle modified prg revnd

RH017
RH018
RH019

RH060 1 spindle programmed S registerst

RH061 1 spindle binary command registerst

RH062 1 spindle rotation codest

RH063 1 spindle range codest

RH064 Active tool code (T)
RH065 2 spindle programmed S registernd

RH066 2 spindle binary command registernd

RH067 2 spindle rotation codend

RH068 2 spindle range codend

RH069

RH020 active message code
RH021 Year
RH022 Month, Day
RH023 Hour, Minute
RH024 Second
RH025
RH026 Meanings of softkeys
RH027 Screen codes
RH028 F%
RH029 S%

RH070 1 M group displayst

RH071 2 M group displaynd

RH072 3 M group displayrd

RH073 4 M group displayth

RH074 5 M group displayth

RH075 6 M group displayth

RH076 7 M group displayth

RH077 8 M group displayth

RH078 F%
RH079 S%

RH030 Number of prg under execution
RH031 Number of prg selected for auto
RH032 Number of prg selected for MDI
RH033
RH034
RH035 1 analog input on 1 INT boardst st

RH036 2 analog input on 1 INT boardnd st

RH037 3 analog input on 1 INT boardrd st

RH038 4 analog input on 1 INT boardth st

RH039 R%

RH080 1 analog scaled com signalst

RH081 1 analog binary com signalst

RH082 1 analog.%st

RH083
RH084
RH085 2 analog scaled com signalnd

RH086 2 analog binary com signalnd

RH087 2 analog %nd

RH088 Chopping Override Register
RH089 R%

RH040 G51.2 polyg. turn. data P
RH041 G51.2 polyg. turn. data Q
RH042 Actual feed lower word
RH043 Actual feed higher word
RH044
RH045
RH046
RH047
RH048
RH049 Code of valid push-button

RH090 1 Y700 message variablest

RH091 2 Y701 message variablend

RH092 3 Y702 message variablerd

RH093 4 Y703 message variableth

RH094 5 Y704 message variableth

RH095 6 Y705 message variableth

RH096 7 Y706 message variableth

RH097 8 Y707 message variableth

RH098
RH099 Push-button code form PLC

6.1 Summary of the variables of the connection between PLC and NC

228

RH100 1 axis current position lower wordst

RH101 1 axis current position upper wordst

RH102 1 axis lag lower wordst

RH103 1 axis lag upper wordst

RH104 1 axis drive currentst

RH105 2 axis current position lower wordnd

RH106 2 axis current position upper wordnd

RH107 2 axis lag lower wordnd

RH108 2 axis lag upper wordnd

RH109 2 axis drive currentnd

RH150 1 axis position com lower wordst

RH151 1 axis position com upper wordst

RH152 1 axis feedrate com lower wordst

RH153 1 axis feedrate com upper wordst

RH154
RH155 2 axis position com lower wordnd

RH156 2 axis position com upper wordnd

RH157 2 axis feedrate com lower wordnd

RH158 2 axis feedrate com upper wordnd

RH159

RH110 3 axis current position lower wordrd

RH111 3 axis current position upper wordrd

RH112 3 axis lag lower wordrd

RH113 3 axis lag upper wordrd

RH114 3 axis drive currentrd

RH115 4 axis current position lower wordth

RH116 4 axis current position upper wordth

RH117 4 axis lag lower wordth

RH118 4 axis lag upper wordth

RH119 4 axis drive currentth

RH160 3 axis position com lower wordrd

RH161 3 axis position com upper wordrd

RH162 3 axis feedrate com lower wordrd

RH163 3 axis feedrate com upper wordrd

RH164
RH165 4 axis position com lower wordth

RH166 4 axis position com upper wordth

RH167 4 axis feedrate com lower wordth

RH168 4 axis feedrate com upper wordth

RH169

RH120 5 axis current position lower wordth

RH121 5 axis current position upper wordth

RH122 5 axis lag lower wordth

RH123 5 axis lag upper wordth

RH124 5 axis drive currentth

RH125 6 axis current position lower wordth

RH126 6 axis current position upper wordth

RH127 6 axis lag lower wordth

RH128 6 axis lag upper wordth

RH129 6 axis drive currentth

RH170 5 axis position com lower wordth

RH171 5 axis position com upper wordth

RH172 5 axis feedrate com lower wordth

RH173 5 axis feedrate com upper wordth

RH174
RH175 6 axis position com lower wordth

RH176 6 axis position com upper wordth

RH177 6 axis feedrate com lower wordth

RH178 6 axis feedrate com upper wordth

RH179

RH130 7 axis current position lower wordth

RH131 7 axis current position upper wordth

RH132 7 axis lag lower wordth

RH133 7 axis lag upper wordth

RH134 7 axis drive currentth

RH135 8 axis current position lower wordth

RH136 8 axis current position upper wordth

RH137 8 axis lag lower wordth

RH138 8 axis lag upper wordth

RH139 8 axis drive currentth

RH180 7 axis position com lower wordth

RH181 7 axis position com upper wordth

RH182 7 axis feedrate com lower wordth

RH183 7 axis feedrate com upper wordth

RH184
RH185 8 axis position com lower wordth

RH186 8 axis position com upper wordth

RH187 8 axis feedrate com lower wordth

RH188 8 axis feedrate com upper wordth

RH189

6.1 Summary of the variables of the connection between PLC and NC

229

RH140
RH141
RH142
RH143
RH144 1 main drive currentst

RH145
RH146
RH147
RH148
RH149 2 main drive currentnd

RH190 Number of axis doing ovality
RH191 Position of longer diameter
RH192 Ovality lower word
RH193 Ovality higher word
RH194 Barrellity lower word
RH195 Barrellity higher word
RH196
RH197
RH198
RH199

6.2 The Bit Map of Machine Control Board 2

230

6.2 The Bit Map of Machine Control Board 2

Y474 Y476 Y475 Y403 Y402 Y401 Y400 Y407 Y406 Y405

 I474 I476 I475 I403 I402 I401 I400 I407 I406 I405

Y420 Y421 Y422 Y423 Y447 Y446 Y445

 I420 I421 I422 I423 I447 I446 I445
Y450 Y451 Y452 Y487 Y486 Y485 Y484 Y440 Y441 Y442

 I430 I431 I432 I487 I486 I485 I484 I440 I441 I442
Y453 Y427 Y454 Y483 Y482 Y481 Y480 Y443 Y444 Y472

 I433 I427 I434 I483 I482 I481 I480 I443 I444 I472
Y455 Y456 Y457

 I435 I436 I437 Y470 Y471

 I470 I471

6.3 Error Messages of the PLC Compiler

231

6.3 Error Messages of the PLC Compiler

01 identity number of module exceeds 200
02 unnecessary “Z” in program
03 too long PLC object code (compiled PLC program)
04 full address table (too many statements)
05 no module :000
06 no module :001
07 statement not interpretable
08 no module
09 not decimal or octal number
10 not hexadecimal number
11 no closing parenthesis ')' or ']' found
12 number of levels > 8
13 illegal character after 'N'
14 illegal character after 'NL'
15 illegal character after 'NS'
16 value of number exceeds 2 bytes
17 condition test not closed
18 no condition test after opening parenthesis "("
19 not decimal number
20 no statement name “L” before name of variable when referred to within brackets “[...]”
21 illegal statement within parentheses
22 illegal statement SRPnnn
23 illegal character after 'SR' or 'LR'
24 shift count >15 when shifting OP left (statement <<nn)
25 shift count >15 when shifting OP right (statement >>nn)
26 illegal character after "B"
27 illegal character after "BI"
28 illegal character after "BC"
29 too long PLC source program
30 illegal character after "S"
31 illegal character after "<"
32 illegal character after "<N"
33 illegal character after "="
34 illegal character after "=N"
35 illegal character after ">"
36 illegal character after ">N"
37 illegal character after "<="
38 illegal character after "<=N"
39 illegal character after ">="
40 illegal character after ">=N"
41 illegal reference (:198 - :200)
42 identity number of counter > 31 in statement Q
43 identity number of timer > 49, 99, 9 in statements T, H, M
44 character not interpretable
45 illegal character after multiplication "*" or division " /"

6.3 Error Messages of the PLC Compiler

232

46 invalid address nnn in statements HF, PF, MR, MW, ADD, SUB, MUL, DIV, CMP
47 illegal character after "AD" (ADD)
48 illegal character after "SU" (SUB)
49 invalid PARAMETER index
50 illegal character after P
51 illegal character after "L" (in statement loading)
52 illegal character after "MU" (MUL)
53 reference to non-existing module
54 existing identity number of module
55 message module filled out incorrectly
56 illegal character after "DI" (DIV)
57 false index after statement "J"
58 writing at odd I/O address
59 illegal character after "CM" (CMP)
60 reference to non-existing I/O port (number of port>7)
61 no J0 or J1 in PLC program
62 false or useless statement name within parentheses
63 invalid condition connection (false: ,5 AI002; correct: ,5 ALI002)
64 index of statement RH is greater than 199
65 length of one of the messages is greater than 25 characters in module :199
66 index in statement SRH is not in the following ranges: 050#index#099, or

150#index#199
67 illegal reference in statement G (G001, G002)
68 illegal reference in statement C (C000, C001, C002)
69 length of one of the indexed messages is greater than 20 characters in module :198
70 no comma before $
71 instruction R befor J0, J1, J2
72 length of message > 16 characters
73 “E” without “Z”
74 before text modul not instruction Gnnn, R, Jn or $
75 J0, J1 instructio in condition expression
76 no comment character
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

6.3 Error Messages of the PLC Compiler

233

92
93
94
95
96
97
98
99

6.4 Listing of Global Messages

234

6.4 Listing of Global Messages

Below the code of each global message is listed and the message written by the control in
message field is given. For detailed description of messages, reason of error as well as trouble
shooting see “Operator’s Manual”.

0 SERVO 1

1 SERVO 2

2 SERVO 3

3 SERVO 4

4 SERVO 5

5 SERVO 6

6 SERVO 7

7 SERVO 8

8 SERVO 9

20 ENCODER 1

21 ENCODER 2

22 ENCODER 3

23 ENCODER 4

24 ENCODER 5

25 ENCODER 6

26 ENCODER 7

27 ENCODER 8

28 ENCODER 9

40 FEEDBACK 1

41 FEEDBACK 2

42 FEEDBACK 3

43 FEEDBACK 4

44 FEEDBACK 5

45 FEEDBACK 6

46 FEEDBACK 7

47 FEEDBACK 8

48 FEEDBACK 9

60 PLC TIMEOUT 1

61 PLC TIMEOUT 2

70 DPG TIMEOUT

80 15V FAILER

90 SYNC. FAILER 1

91 SYNC. FAILER 2

92 SYNC. FAILER 3

93 SYNC. FAILER 4

94 SYNC. FAILER 5

95 SYNC. FAILER 6

96 SYNC. FAILER 7

97 SYNC. FAILER 8

100 SHORT 000

120 SHORT 020

200 SHORT 100

220 SHORT 120

300 SHORT 200

320 SHORT 220

400 SHORT 300

420 SHORT 320

999 SHORT MON

1020 POSITION ERROR

1100 REFERENCE POINT t1

1110

1120

1130

1140

1150

1160

1170

1101 REFERENCE POINT t2

1111

1121

1131

1141

1151

1171

1102 REFERENCE POINT t3

1112

1122

1132

1142

1152

1162

1172

1103 REFERENCE POINT t4

1113

1123

1133

1143

1153

1163

1173

1104 REFERENCE POINT t5

1114

1124

1134

1144

1154

1164

1174

1105 REFERENCE POINT t6

1115

1125

1135

1145

1155

1165

1175

1300 FORBIDDEN AREA t+

1301

6.4 Listing of Global Messages

235

1302

1303

1304

1305

1306

1307

1320 FORBIDDEN AREA t–

1321

1322

1323

1324

1325

1326

1327

1340 LIMIT t+

1341

1342

1343

1344

1345

1346

1347

1360 LIMIT t–

1361

1362

1363

1364

1365

1366

1367

1380 SPINDLE LOOP OPEN

1400 INTERNALLY FORBIDDEN AREA

2000 PLC ERROR 001

2001 PLC ERROR 002

2002 PLC ERROR 003

...

...

2150 PLC ERROR 151

2151 PLC ERROR 152

2500 PLC MESSAGE 1

2501 PLC MESSAGE 2

2502 PLC MESSAGE 3

2503 PLC MESSAGE 4

2504 PLC MESSAGE 5

2505 PLC MESSAGE 6

2506 PLC MESSAGE 7

2507 PLC MESSAGE 8

3000 MIRROR IMAGE IN G51, G68

3001 VALUE EXCESS X,Y,...F

3002 PLANE SELECTION IN G68

3003 COORDINATE ADDRESS G68

3004 MISSING REFERENCE POINT

3005 ILLEGAL G CODE

3006 VALUE EXCESS H, D, P

3007 G43, G44, H IN G2, G3

3008 ERRONEOUS G45...G48

3009 G45...G48 IN G41, G42

3010 PLANE SELECT. IN G41, G42

3011 RADIUS DIFFERENCE

3012 ERRONEOUS CIRCLE DEF. R

3013 MULTITURN CIRCLE FAILER

3014 ERRONEOUS CIRCLE DEF.

3015

3016

3017 ,C AND ,R IN ONE BLOCK

3018 ,A IN G2, G3

3019 DOMINATOR CONSTANT=0

3020 DATA DEFINITION ERROR G33

3021 G51 IN G33

3022 DIVIDE BY 0 IN G33

3023 DATA DEFINITION ERROR G26

3024 ERRONEOUS P VALUE IN G96

3025 DEFINITION ERROR S

3026 DEFINITION ERROR G10 L3

3027 DEFINIT. ERROR T IN G10 L3

3028 MORE TOOLS IN G10 L3

3029 MORE GROUPS IN G10 L3

3030 DEFINITION ERROR T

3031 ALL TOOL LIVES ARE OVER

3032 CONFLICTING M CODES

3033 DEFINITION ERROR M

3034 DEFINITION ERROR A,B,C

3035 DEFINITION ERROR P

3036 G39 CODE IN G40

3037 BEFORE G39 NOT G1, G2, G3

3038 G38 NOT IN G0, G1STATE

3039 G38 CODE IN G40

3040 G38 NOT IN G0, G1

3041 AFTER G2, G3 ILLEG. BLOCK

3042 G40 IN G2, G3

3043 G41, G42 IN G2, G3

3044 G41, G42 DEFINITION ERROR

3045

3046 NO INTERSECTION G41, G42

3047 CHANGE NOT POSSIBLE

3048 INTERFERENCE ALARM

3049 CIRCLE ARC TOO LONG

3050 NO REFRNC POINT G29, G30

3051 G22, G28, ... G31, G37

3052 ERROR IN G76, G87

3053 NO BOTTOM OR R POINT

3054 G31 IN INCORRECT STATE

3055 G37 IN INCORRECT STATE

3056 LIMIT

3057 FORBIDDEN AREA

3058 NOT IN DNC

3059

3060

3061

3062

3063

3064 BAD MACRO STATEMENT

3065 TOO LONG BLOCK

3066 NO INTERSECTION POINT

6.4 Listing of Global Messages

236

3067 FAULTY ,A IN G16

3068 FAULTY READ

3069 LEVEL EXCESS

3070 NOT EXISTING BLOCK NO. P

3071 MISSING OR FAULTY P

3072 DEFINITION ERROR L

3073 NOT EXISTING PROGRAM NO.

3074 ODD G67

3075 DEFINITION ERROR N

3076 NO END OF PROGRAM

3077

3078

3079

3080 ERRONEOUS USE OF #

3081 DEFINITION ERROR ,C ,R

3082 NO RETURN M99

3083 R=0

3084 ,C ,R TOO HIGH

3085 CIRCLE ERROR G51

3086 DEFINITION ERROR G51

3087

3088

3089 BUFFER OVERRUN G41, G42

3090 # DEFINITION PROHIBITED

3091 ERRONEOUS OPERATION WITH #

3092 DIVISION BY 0 #

3093 BUFFER OVERRUN #

3094

3095

3096

3097

3098 ERRONEOUS ARGUMENT

3099

3100

3101 BLOCK NOT FOUND

3102 INCORRECT POSITION G12.1

3103 OUT OF RANGE

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3116

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3500 PROGRAM EDITED

3502 BAD BAUDRATE VALUE

3503 SERIAL BUFFER FULL

3504 TOOL PLACE TABLE BAD

3505 NOT EXISTING PROGRAM

3507 OVERWRITE (Y/N)

3508 NC STATUS TABLE BAD

3509 LIFE TIME TABLE BAD

3510 TOOL OFFSET TABLE BAD

3511 WORK OFFSET TABLE BAD

3512 MEMORY LOCKED

3513 PLC PROGRAM BAD

3514 OVERRUN ERROR

3515 PARITY ERROR

3516 FRAMING ERROR

3518 DIRECTORY FULL

3519 MEMORY FULL

3520 FILE NOT EXISTS

3521 FILE READ ONLY

3522 BCC ERROR

3523 OVERRREAD ERROR

3524 FILE NOT OPEN

3525 FILE EXIST

3527 INVALID PASSWORD

3528 INVALID ERROR CODE

3530 SYSTEM ERROR

3545 MACRO TABLE BAD

3547 RAMDISK ERROR

3549 RESTORE MODAL FUNCTIONS? Y

3550 RESTORE MODAL FUNCTIONS? N

4000 MACRO ERROR 000

4001 MACRO ERROR 001

4002 MACRO ERROR 002

... ...

4999 MACRO ERROR 999

5000 MACRO MESSAGE 000

5001 MACRO MESSAGE 001

5002 MACRO MESSAGE 002

... ...

5999 MACRO MESSAGE 999

6.5 Listing of Key Codes

237

6.5 Listing of Push-button Codes

The number of buttons on NC or data input keyboard delivered together with control may differ.
Codes of keyboards of different design are the same for corresponding functions or characters.
The only difference is that certain characters (e.g. lower cases) can be entered on many-key
keyboards but not on few-key ones. The keys or key combinations with which the appropriate
functions or characters are activated are shown beside the code.

Codes of NC keyboard delivered with 15" monitor (RH049 contents I536=1)

code button function code key function code key function code key function

00h F1 01h F2 02h F3 03h F4

04h F5 05h F6 06h F7 07h F8

08h F9 09h F0 0Ah 0Bh

0Ch 0Dh 0Eh INS 0Fh DEL

10h screen 11h action 12h 13h CAN-

CEL

14h PG UP 15h PG DN 16h 17h

18h 19h 1Ah 1Bh sign

1Ch 1Dh 1Eh 1Fh decimal

point

20h space 21h shift ? ! 22h “ “ 23h shift = #

24h shift , $ 25h shift : % 26h shift “ & 27h

28h shift [(29h shift]) 2Ah shift / * 2Bh shift – +

2Ch , , 2Dh – – 2Eh 2Fh / /

30h 0 0 31h 1 1 32h 2 2 33h 3 3

34h 4 4 35h 5 5 36h 6 6 37h 7 7

38h 8 8 39h 9 9 3Ah : : 3Bh

3Ch shift > < 3Dh = = 3Eh > > 3Fh ? ?

40h shift

space

41h A A 42h B B 43h C C

44h D D 45h E E 46h F F 47h G G

48h H H 49h I I 4Ah J J 4Bh K K

4Ch L L 4Dh M M 4Eh N N 4Fh O O

50h P P 51h Q Q 52h R R 53h S S

54h T T 55h U U 56h V V 57h W W

58h X X 59h Y Y 5Ah Z Z 5Bh [[

6.5 Listing of Key Codes

code button function code key function code key function code key function

238

5Ch 5Dh]] 5Eh 5Fh

60h 61h shift A a 62h shift B b 63h shift C c

64h shift D d 65h shift E e 66h shift F f 67h shift G g

68h shift H h 69h shift I i 6Ah shift J j 6Bh shift K k

6Ch shift L l 6Dh shift M m 6Eh shift N n 6Fh shift O o

70h shift P p 71h shift Q q 72h shift R r 73h shift S s

74h shift T t 75h shift U u 76h shift V v 77h shift W w

78h shift X x 79h shift Y y 7Ah shift Z z 7Bh

7Ch 7Dh 7Eh SHIFT 7Fh

Codes of NC keyboard delivered with 9" monitor (RH049 contents I536=1)

code key function code key function code key function code key function

00h F1 01h F2 02h F3 03h F4

04h F5 05h 06h 07h

08h 09h 0Ah 0Bh

0Ch 0Dh 0Eh INS 0Fh DEL

10h screen 11h action 12h 13h CAN-

CEL

14h PG UP 15h PG DN 16h 17h

18h 19h 1Ah 1Bh sign

1Ch 1Dh 1Eh 1Fh decimal

point

20h space 21h shift . ! 22h shift T “ 23h shift 7 #

24h 25h shift O % 26h 27h

28h shift

+/-

(29h shift 0) 2Ah shift 5 * 2Bh shift 8 +

2Ch shift G , 2Dh shift 9 – 2Eh 2Fh shift 6 /

30h 0 0 31h 1 1 32h 2 2 33h 3 3

34h 4 4 35h 5 5 36h 6 6 37h 7 7

38h 8 8 39h 9 9 3Ah shift N : 3Bh

3Ch 3Dh shift 4 = 3Eh 3Fh shift 1 ?

6.5 Listing of Key Codes

code key function code key function code key function code key function

239

40h shift

space

41h shift I A 42h shift J B 43h shift K C

44h shift H D 45h shift F E 46h F F 47h G G

48h H H 49h I I 4Ah J J 4Bh K K

4Ch shift S L 4Dh M M 4Eh N N 4Fh O O

50h shift M P 51h shift R Q 52h R R 53h S S

54h T T 55h shift X U 56h shift Y V 57h shift Z W

58h X X 59h Y Y 5Ah Z Z 5Bh shift 2 [

5Ch 5Dh shift 3] 5Eh 5Fh

60h 61h 62h 63h

64h 65h 66h 67h

68h 69h 6Ah 6Bh

6Ch 6Dh 6Eh 6Fh

70h 71h 72h 73h

74h 75h 76h 77h

78h 79h 7Ah 7Bh

7Ch 7Dh 7Eh SHIFT 7Fh

6.6 Codes of Screen Menu and Action Menu

240

6.6 Codes of Screen Menu and Action Menu Captions

Codes of screens in register RH027 in case of NCT98 and NCT99:

RH027 upper byte

lower

byte

01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah

01h Oprtr’s

Panel

02h Absolt Relatv Machin End Overll

03h Text Functn Last Active Messag

04h Direc-

tory

View Edit Block

input

05h Work

offsts

Tool

offsts

W. offs

measur

T. leng

measur

Rel. ps

offsts

06h Grphcs

setting

Draw

07h #1-#33 #100-

#199

#500-

#599

Timer /

countr

Tool pot PLC

table

User’s

params

Secrty

08h Params PLC Test

I/O

Logic

anal

Test

mes

Scope Errors Monitor Version

09h

0Ah

6.6 Codes of Screen Menu and Action Menu

241

Codes of screens in register RH027 in case of NCT2000, 990, 100, 101, 104 and 115:

RH027 upper byte

lower

byte

01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah

01h Absolt Relatv Machin End Overll Cartsn

02h Text Functn Last Active Cntrl Pn Message

03h Direc-

tory

View Edit Block

input

04h Work

offsts

Tool

offsts

W. offs

measur

T. leng

measur

Rel. ps

offsts

05h Grphcs

setting

Draw

06h #1-#33 #100-

#199

#500-

#599

Timer /

countr

Tool pot PLC

table

User’s

params

Secrty

07h Params PLC Test

I/O

Logic

anal

Test

mes

Scope Errors Monitor Version

08h

09h

0Ah

That is if the contents of register RH027: RH027=0104h, then sceen DIRECTORY is displayed
in case of NCT99 controls while Work offsts in NCT2000.
If the PLC needs to transmit data input key codes to NC and sets flag Y537 to 1 screen
ABSOLUTE POSITION is displayed and register RH027 acknowledges this screen code:

RH027=0102h (NCT99)
RH027=0101h (NCT2000)

6.6 Codes of Screen Menu and Action Menu

242

Softkey codes can be found in register RH026. If the upper byte of the register is 0 the screen
menu is seen on softkeys, if the upper byte is 1 the action menu is apparent.

RH026=00xxh: screen menu
RH026=01xxh: action menu

Independent of the upper byte (screen menu or action menu) state the lower byte of register
always shows the code of the previously selected action menu belonging to the screen.

If the PLC needs to transmit data input key codes to NC and sets flag Y537 to 1 softkeys and
register RH026 are set to default state:

RH026=0000h

RH026 lower byte

upper

byte

action

menu

sub-menus of action menu

1 2 3 4 5 6 7 8 9 0

00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah

01h

F1 1 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 0.1

F2 2 1.2 2.2 3.2 4.2 5.2 6.2 7.2 8.2 9.2 0.2

F3 3 1.3 2.3 3.3 4.3 5.3 6.3 7.3 8.3 9.3 0.3

F4 4 1.4 2.4 3.4 4.4 5.4 6.4 7.4 8.4 9.4 0.4

F5 5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 0.5

F6 6 1.6 2.6 3.6 4.6 5.6 6.6 7.6 8.6 9.6 0.6

F7 7 1.7 2.7 3.7 4.7 5.7 6.7 7.7 8.7 9.7 0.7

F8 8 1.8 2.8 3.8 4.8 5.8 6.8 7.8 8.8 9.8 0.8

F9 9 1.9 2.9 3.9 4.9 5.9 6.9 7.9 8.9 9.9 0.9

F0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0

On the basis of the above table the lower byte of the register can accept values 01h, 02h, ... if the
action menus belonging to the screen have sub-menus.

6.6 Codes of Screen Menu and Action Menu

243

For example let us examine the codes of actions belonging to DIRECTORY screen. The upper
byte of the register is 01h, thus action menu is on softkeys. If the lower byte is 00h action menu
captions (New, Search, ...) can be found on softkeys. The lower byte cannot be 01 since softkey
New F1 is action key, thus it implements data input. Softkey Load F4 is action menu key, i.e. it
covers further actions. Therefore when it is pressed the value of the lower byte changes to 04h
showing, that actions of action menu Load (Serial, Ramdisc, ...) can be found on softkeys.

RH026 lower byte

upper

byte

action

menu

sub-menus of action menu

Delete Load Save Run Reset Arran-

ge

00h 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah

01h

F1 New Ram-

disc

Serial Serial Auto OK Increa-

sing

F2 Search OK Ram-

disc

Ram-

disc

MDI. Cancel Decre-

asing

F3 Delete Cancel Prom OK DNC Select-

ed

F4 Load OK Cancel DNC

NCT

Type

F5 Save Cancel Table Size

(byte)

F6 Run No

F7 Reset OK

F8 Arran-

ge

F9 Protec-

ted

F0

6.7 Timing Diagrams of PLC Variables

244

6.7 Timing Diagrams of PLC Variables

Timing Diagram of the Machine On (Hydraulics, Machine Magnetics on) Request

The machine can be turned on when the MON output is not disabled (I542=0). As the effect of
button MACHINE ON timer T01 is started. If the machine is not in emergency state input line
EMG is set to 1. If this signal has arrived before the termination of the timer has run off MON
output is left switched on, otherwise it is switched off.

6.7 Timing Diagrams of PLC Variables

245

Procedure in Case of Emergency Stop, Stopping of NC READY or Servo Error.

In case of emergency stop, if emergency state is activated with a lag regarding the drive
permissions a deceleration process can be started by zeroing the spindle command signal and
switching FEED HOLD flag on. The time period of deceleration is initialized at timer T00, than
after the termination of the timer the MON output line is switched off by the PLC.
If the NC READY is stopped or the control detects servo error the switching MON output on
disabled flag is immediately set to 1, the MON output line, the command signal transfer lines and
all the interface outputs are instantly switched off by the control, independent of the PLC. The
machine can be started again only after turning the control off.

6.7 Timing Diagrams of PLC Variables

246

Timing Diagram of Strobe Flags and Transfer Registers of Functions
All functions entered
into the program
block are transferred
to the PLC in the
same period. The
strobe flag, in the
transfer register of
which valid code is
transferred, is set to 1
till the end of the
PLC period, than it is
set back to 0. When
receiving the appro-
priate code decoding
the command and set-
ting FIN (functions
executed) flag to 0 is
the task of the PLC.
The FIN flag is set
back to 1 by the PLC
after every function
has been executed.

This informs the NC that the function part of the block has been executed.

Timing Diagram of Function Execution in Single Block
In the above example
the execution of sing-
le block M3 S500 is
shown in JOG mode.
If executable block in
buffer flag I546 is set
to 1 the execution can
be started with the
help of START but-
ton. After the block
has been decoded by
the preprocessor
module through

strobe signals I520, I525 and transfer registers RH000 and RH005 the block is sent to the PLC
for execution. The PLC sets FIN flag Y547 to 0 until the command is under execution. After
execution FIN flag is set to 1 the NC cancels executable block in buffer flag I546, than the PLC
cancels start state Y470.

6.7 Timing Diagrams of PLC Variables

247

Timing Diagram of Flags Starting and Stopping Spindle Rotation
The above diagram
shows the case when
the stopped spindle is
rotated in direction
M3, than stopped by
means of command
M5.
In case of command
M3 before setting
command signal
transfer enabled flag
Y652 the direction
(Y653) must be
specified, Y654=0,
i.e. the command sig-
nal is taken from re-
gister RH060 and
programmed code S

is written into register RH060.
Flag I650 is set to 1 if the command signal integrator in NC has reached the value corresponding
to the programmed revolution, and flag I656 is set to 1 if the spindle reached the programmed
revolution. Afterwards spindle rotation flag (Y650) can be switched on.
In case of command M5 RH061 must be set to 0, and flag Y654 to 1, i.e. the command signal is
taken from register RH061.
After the command signal integrator has reached level No. 0 (I650=1)and 0 rotation signal has
been received (I657=1), i.e. the spindle has stopped, command signal transfer enabled flag Y652
and spindle rotation flag Y650 must be switched off.

6.7 Timing Diagrams of PLC Variables

248

Spindle Orientation (M19) Started from Rotation State
First the spindle has
to be decelerated by
se t t i ng r egi s t e r
RH061 and flagY654
to 1 (command signal
transfer from register
RH061).
After the spindle has
decelerated (I650=1
and I656=1) orienta-
tion request flag
Y651 must be set.
The orientation is fi-
nished when orienta-
tion ready flag I651,
as well as spindle in
position flag I652 re-

turns. During and after the process the spindle command signal transfer enabled flag Y652 must
be switched on.

Timing Diagram of the Execution of Single Block G0 X150 M3 S500
If special block G0
X150 M3 S500 is
entered in JOG mode
following the block
input executable
block in buffer flag
I546 is set to 1. In
this situation the
execution may be
started (Y470).
After the preproces-
sor had processed the
block it sends its

commands to the interpolator and the PLC for execution. At this point flags I550, I551 are set to
0 by the interpolator and FIN flag Y547 is set to 0 by the PLC.
The interpolation and spindle rotation occur simultaneously and the PLC finishes block execution
earlier. On this the PLC informs the NC by setting FIN signal to 1.
STOP can be issued during movement: Y470=0, Y471=1. In this case the interpolator stops
following a deceleration process, which is indicated by state I550=1.
After restart (Y470=1, Y471=0) the interpolator moves the rest path to be done and sets flags I550
and I551 to 1. If both flag Y547 (FIN) and I551 (empty interpolator) are set to 1 the block
execution is finished and flag I546 is set to 0 by the NC. Afterwards start and stop states can be
canceled.

6.7 Timing Diagrams of PLC Variables

249

Timing Diagram of the Execution of Single Block G1 X0 M5
If single block G1 X0
M5 is entered in JOG
mode following the
block termination
executable block in
buffer flag I546 is set
to 1. In this situation
the execution may be
started (Y470).
After the program
module preprocessor
had prepared the
block it sends the
commands of the
block to the interpo-

lator and the PLC for execution. At this point flags I550, I551 are set to 0 by the interpolator and
FIN flag Y547 is set to 1 by the PLC.
In block G1 (spindle rotation request flag I553 set to 1) the PLC must wait until the interpolation
is finished, which is indicated by the TRUE state of flag I551 (empty interpolator).
Afterwards the execution of command M5 can be started the end of which is indicated by
Y547=1. If both flag Y547 (FIN) and I551 (interpolator empty) are set to10 the block execution
is finished and flag I546 is set to 0 by the NC. Afterwards start and stop states can be canceled.

Effect of Spindle Rotation Request (I553) and Spindle Rotates (Y650) Flags
In blocks G1, G2, G3
the interpolator asks
for spindle rotation
through flag I553.
The movement of in-
terpolator is started
a f t e r t h e P LC
switched spindle ro-
tates flag Y650 on.
On the diagram the
spindle rotation starts
as the effect of button
M3 (flag I474) .
If the rotation is
stopped (as the effect

of button M5 flag I476) the PLC must wait until the interpolator is finished, only than can the
spindle be stopped. In case of restart the spindle rotation must be started before pressing START.

6.7 Timing Diagrams of PLC Variables

250

Thread Cutting Block G33
In case of thread
cutting G33 the inter-
polator asks for
spindle rotat ion
through flag I553.
Flag I552 of override
disabled command
G63 and flag I554 of
thread cutting com-
mand G33 are swit-
ched on.
If pulses are started
from the spindle en-
coder the thread cut-
ting can be started.
The thread cutting
cannot be stopped
with STOP button.
The feed is stopped

only if the spindle rotation has been already stopped, because this way pulses are not coming from
the encoder any longer. However interpolator stop signal is not set to 1, for the interpolator keeps
on waiting for the encoder pulses of spindle. The thread cutting can be restarted by means of
button M3.
Be aware of stopping spindle from PLC when switching FEED HOLD signal (Y542) on, for all
movements are instantly stopped due to the FEED HOLD signal.

Canned Cycles G74, G84
In case of tapping
G74, G84 the inter-
polator asks for
spindle rotat ion
through flag I553.
Flag I552 of override
disabled command
G63 and flag I554 of
thread cutting com-
mand G33 are swit-
ched on.
If spindle rotation
flag Y650 is returned
the milling is started.
The milling cannot be
stopped with STOP
button.
The feed can be stop-
ped only if the

6.7 Timing Diagrams of PLC Variables

251

spindle rotation has been already stopped, because in 0 state of spindle rotation flag there is no
feed.
Spindle rotation flag Y650 can be switched off as the effect of button M5. The command can be
restarted by means of button M3.
The feed may be stopped by FEED HOLD (Y542=1) in this case however the PLC programmer
must take care of stopping the spindle rotation.

Effect of RESET on Interpolator
By pressing RESET
button (I477=1) the
interpolator gets to
standard state, i.e. it
stops after decelera-
ting (I550=0) swit-
ches interpolator
empty flag I551 on
and flag I552 of over-
ride disabled com-
mand (G63) and flag
I554 of thread cutting
(G33) are switched

off.
After pressing RESET handling the machine tool is the PLC programmer’s task.

6.7 Timing Diagrams of PLC Variables

252

Interrupting Automatic Mode
The automatic mode
can be interrupted by
exiting from the
mode, pressing RE-
SET button or tur-
ning off the machine,
e.g. as the effect of
emergency s top
(switching MON off).
The NC stops the in-
terpolator, than swit-
ches f lag I511
(HOLD state) on,
PLC saves the func-
tions not executed yet
in HOLD state, and
sets FIN flag to 1.
In case of HOLD
state, if START has
been pressed in auto-
matic mode the NC
asks for stop through
flag I547. In STOP
state (Y471=1) mes-
sage RESTORE MO-
DAL FUNCTIONS?

Y, or (after pressing <shift> button) RESTORE MODAL FUNCTIONS? N is displayed.
After selecting Y(es) or N(o) HOLD state can be canceled (I511=0) with the help of START
button. The NC starts the interpolator, the PLC restores the saved functions not executed before
suspension and switches FIN signal off (Y547=0).

6.7 Timing Diagrams of PLC Variables

253

Timing Diagram of Execution in Block by Block Mode

In case of execution in block by block mode (Y447=1) at the end of block (Y547=1 and I551=1)
the NC informs on registering STOP state through flag I547. At this point the start state must be
switched off and the stop state switched on in the PLC.

Timing Diagram of Motion Request and Motion Disable Flags

The movement is not started in the appropriate axis till the movement disabled flag is on.
Movement request flag ceases only if the interpolator has stopped on the given axis. If two or
more axes are involved in the interpolation, the interpolation does not start unless there is
movement enable on each axis taking part in the interpolation.
After movement request (I610=1) brake unclamp output is switched on (Y010=1), feedback is
awaited (I010=1), than the movement is enabled (Y610=0).
After the movement is finished (I610=0) in position signal is awaited (I560=1), than movement
is disabled (Y610=1), and the brake unclamp is switched off (Y010=0). The process ends if

6.7 Timing Diagrams of PLC Variables

254

feedback of the brake has arived (I010=0).

Timing Diagram of Reference Point Return of PLC Controlled Axis
Reference point re-
turn on PLC control-
led axis can be initia-
ted by switching axis
go to reference posi-
tion flag (Y944 on
the diagram) to 1 and
switching start bit
(Y940) on. The cycle
has ended if the inter-
polator is stopped
and empty on the
given axis (I940=1,
I941=1) and axis re-

ference position ready signal has arrived (I943=1).

Timing Diagram of Moving PLC Controlled Axis
Before movement is
started on PLC cont-
rolled axis the appro-
priate flags and regis-
ters must be set.
In case of feed move-
ment (Y942=1) the
desired rate must be
entered into registers
RH172, RH173. It
must be specified,
whether the move-
ment is to be done
incrementally or ab-
solutely (Y943) and
the position registers
(RH170, RH171)
must be loaded accor-
ding to this.
Afterwards the strobe
flag (Y941) must be
switched on and the

signaling of interpolator by means of setting empty interpolator flag (Y941) to 0, that the
command has been transferred is awaited. Than the movement can be started by switching start
flag (Y940=1). The movement can be stopped and restarted by switching start flag off and on.
If stop and empty flags (I940=1, I941=1) are returned by the interpolator the start bit (Y940) can
be switched off. The movement stops if axis in position flag I564 has arrived.

6.7 Timing Diagrams of PLC Variables

255

Reseting the Movement of PLC Controlled Axis
The pressing of RE-
SET button on cont-
rol has no effect on
the PLC controlled
axes. If the move-
ment of PLC cont-
rolled axis is to be
suspended reset flag
(Y945 on the dia-

gram) needs to be set. This way the interpolator stops after deceleration (I940=1) and switches
interpolator empty flag (I941) on.

Timing Diagram of Data Output

After specifying data
(F010 ... F499) and
registers RH051, ...,
RH053 flag Y606 is
set to 1. After on in-
put flag I606 feed-
back was detected
flag Y606 is set to 0.

New output can be initiated after the NC has reset flag I606.

Timing Diagram of Data Input

After specifying
registers RH054, ...,
RH056 input channel
is enabled by the inst-
ruction U605. After
input data have arri-
ved the NC sets flag
I607 to 1. After the
PLC has evaluated
data it gives out
U607 instruction.

After it the NC resets flag I607 then the PLC resets Y607.

6.8 The Sample.plc Program

256

6.8 The Sample. plc Program

Below a PLC sample program is shown.
This PLC program covers a standard program capable of being the basic program of the PLC
program of any machine.
Pushbuttons of machine control board 2 are applied in the sample program.
JOG direction and rapid traverse buttons are held down by START button, which is ceased by
STOP button.
If in automatic mode handwheel is to be used the automatic mode button must be pressed and
held down, menawhile manual handle mode button must be also pressed. In this case automatic
and manual handle modes are simultaneously selected.
The sample program interprets tool replacement (T), spindle gear range change (M11-M18), S,
spindle rotation (M3, M4, M5, M19), coolant (M8, M9), and program control code (M0, M1, M2,
M30) functions.
Tool replacement and spindle gear range change need manual operation. The code of the tool or
spindle range to be activated is displayed by the control than goes on when START is pressed.
Tool replacement can be initiated by programming address T.
In case of test, machine lock and function lock conditions the tool number taken from program
is written into register RH064 without the tool replacement being initiated by the PLC for the
sake of comfortable part program test. As test, machine lock or function lock condition is
switched off the code of the current tool being in spindle appears in register RH064.
The sample program generates spindle stop and revolution signals from spindle encoder in PLC.
Spindle orientation (M19) is realised by closing position control loop.
No slide lubrication request is programmed in PLC.
Push-button arrangement of machine control board 2 applied by the PLC program is as follows:

6.8 The Sample.plc Program

257

/* SAMPLE.PLC PLC program with machine control board 2 */

 / *
input lines:

I000 - no emergency stop

I002 - machine power on line

I005 - FEED - HOLD switch

I020 - X ref position line
I021 - Y ref position line
I022 - Z ref position line
I023 - 4th ref position line

user’s push-buttons in case of external handwheel

I450 - X axis push-button
I451 - Y axis push-button
I452 - Z axis push-button
I453 - 4th axis push-button
I454 - 5th axis push-button
I455 - 6th axis push-button
I456 -
I457 -

Y474 Y476 Y475 Y403 Y402 Y401 Y400 Y407 Y406 Y405

 I474 I476 I475 I403 I402 I401 I400 I407 I406 I405

Y420 Y421 Y422 Y423 Y447 Y446 Y445

 I420 I421 I422 I423 I447 I446 I445
Y450 Y451 Y452 Y487 Y486 Y485 Y484 Y440 Y441 Y442

 I430 I431 I432 I487 I486 I485 I484 I440 I441 I442
Y453 Y427 Y454 Y483 Y482 Y481 Y480 Y443 Y444 Y472

 I433 I427 I434 I483 I482 I481 I480 I443 I444 I472
Y455 Y456 Y457

 I435 I436 I437 Y470 Y471

 I470 I471

6.8 The Sample.plc Program

258

I460 - 1 increment push-button
I461 - 10 increment push-button
I462 - 100 increment push-button
I463 -
I464 - from NC
I465 - external handwheel operates
I466 -
I467 -

JOG push-buttons in case of machine control board 2:

jog (in case of vertical machine)

I430 - +4th axis push-button
I431 - +Z axis push-button
I432 - +Y axis push-button
I433 - -X axis push-button
I434 - +X axis push-button
I435 - -Y axis push-button
I436 - -Z axis push-button
I437 - -4th axis push-button

optional push-buttons

I480 - M8 auto push-button
I481 - M9 push-button
I482 - M8 push-button
I483 - S jog push-button
I484 - R100% push-button
I485 - R50% push-button
I486 - R25% push-button
I487 - RF0% push-button

output lines

Y001 - drive enabled
Y002 - coolant on

output flags in case of machine control board 2:

jog push-buttons (in case of vertical machine)

Y450 - +4th axis active
Y451 - +Z axis active
Y452 - +Y axis active
Y453 - -X axis active
Y454 - +X axis active
Y455 - -Y axis active
Y456 - -Z axis active
Y457 - -4th axis active

optional push-buttons

Y480 - M8 auto active
Y481 - M9 active
Y482 - M8 active

6.8 The Sample.plc Program

259

Y483 - S jog active
Y484 - R100% active
Y485 - R50% active
Y486 - R25% active
Y487 - RFO% active

modules, labels:

:000 -
:001 - 20 msec rapid module
:002 -
:003 - M code classification
:004 - goto label in M code selection module
:005 - preparing spindle stop
:006 - resetting spindle rotation code
:007 -
:008 -
:009 - operations before interruption of AUTO
:010 - operations after return to AUTO
:011 - function RESET
:012 - start push-buttons RESET
:013 - interface board RESET
:014 - output flags RESET
:015 - auxiliary module: if OP>0 then OP=1
:016 - spindle rotation from push-buttons

:196 - skip module of module :000

messageing M codes:

RH070 - M8, M9 coolant state register

local flags:

F0100 - mode change
F0101 - JOG push-buttons enabled
F0102 - interruption enabled
F0103 - interruption enabling reset disabled
F0104 - test emergency stop timer
F0105 - evaluate MON on timer
F0106 - previous state of AUTO mode (Y406)
F0107 - external handwheel mode

F0110 - test JOG push-buttons on START
F0111 - initiate START state
F0112 - initiate STOP state
F0113 - initiate EMERGENCY STOP state
F0114 - spindle started flag
F0115 - spindle rotates
F0116 - PLC suspended state
F0117 - press M5 when suspending PLC

F0120 - executable M code found
F0121 - M3, M4 push-buttons:1, programmed:0
F0122 - M5 push-button:1, programmed:0
F0123 - saving coolant pump state
F0124 -
F0125 - initiate M3 state
F0126 - initiate M4 state
F0127 - initiate M5 state

6.8 The Sample.plc Program

260

F0130 - function stop
F0131 - tool replacement execution enabled
F0132 - tool preparation execution enabled
F0133 - gear range change execution enabled
F0134 - spindle revolution execution enabled
F0135 - spindle rotation execution enabled
F0136 -
F0137 -

F0147 - program controlling code execution enabled

F016 - range code shadow register
(Its value: 10, 11, ..., 18)

F018 - rotation code shadow register
(Its value: 3, 4, 5, 19)

F024 - T code shadow register
F026 - S code shadow register
F028 - program controlling code shadow register

(Its value: 0, 1, 2, 30)

F030 - rotation code register saving area
F032 - Q05 spindle rotation (M3, M4, M5, M19)

phase counter saving area
F034 -
F036 -

F050 - FIN counter saving register
F052 - Q01 tool replacement (M06) phase counter saving register
F054 - Q02 tool preparation (T) phase counter

saving register
F056 - Q03 gear range change (M10, M11, ..., M18)

phase counter saving register
F058 - Q04 spindle revolution (S) phase counter

saving register
F060 - Q05 spindle rotation (M3, M4, M5, M19) phase counter

saving register
F062 - Q06 coolant (M8, M9) phase counter saving register

F078 - Q19 program controlling codes (M00, M01, M02, M30)
phase counter saving register

F080 - active tool number
F082 - gained T code in case of test, machine lock, function lock

counters:

Q00 - FIN counter
=0 FIN signal transferable
>0 its content is the number of functions to be executed

Q01 - tool replacement (M06) phase counter
Q02 - tool preparation (T) phase counter
Q03 - gear range change (M10, M11, ..., M18) phase counter
Q04 - spindle revolution (S) phase counter
Q05 - spindle rotation (M3, M4, M5, M19) phase counter
Q06 - coolant(M8, M9) phase counter

6.8 The Sample.plc Program

261

Q19 - phase counter of program controlling codes (M00, M01, M02, M30)

Interpretation of the content of the counter:
=0 function executed
=1,2,... execution times of functions

20 msec timers:

T00 - emergency stop timer
T01 - MON timer
T02 - spindle revolution check timer

1 sec timers

H00 - spindle revolution ready

PLC constants:

CONST39 - rapid traverse override selection
if 0: from softkeys
if 1: from F% rotary switch 4 steps
if 2: from Machine control board 2 push-buttons
if 3: from F% rotary switch 13 steps, 1204 RAPOVER=0
if 4: from F% rotary switch 9 steps, 1204 RAPOVER=0

*/

/*SAMPLE.PLC */

/* :001 module start */

:001 ;20 msec cyclical PLC module

/* INITIALIZATION */

I510 ;if first execution of module :001 after turn-on

U521 ;axis selected
;from NC

U524 ;PLC push-buttons enabled from softkeys
U532 ;selecting machine control board 2

U407 ;start mode=EDIT
U420 ;start increment=1
U480 ;start spindle push-button=M8 auto
LRP039 ;loading CONST39

 =2 ;rapid traverse override from machine control board 2
U484 ;start rapid override=100%

 Z

UF0102 ;interruption enabled
,0 ;0 to OP
SRH060 ;start spindle revolution=0
SF080 ;start tool code=0

6.8 The Sample.plc Program

262

,5 ;5 to OP
SRH062 ;start spindle rotation state: stopped
,11 ;11 to OP
SRH063 ;start spindle range=11
,9 ;9 to OP
SRH070 ;start coolant state: off

Z ;end of condition
;first execution of module :001 after turn-on

/* EMERGENCY STOP */

(V000ANI000) ;if activating emergency stop
UF0113 ;initiate EMERGENCY STOP state

Z ;end of condition;
;activating emergency stop

(V540ANI540) ;if MON output line is off
UF0113 ;initiate EMERGENCY STOP state

Z ;MON output line is off

F0113 ;if initiate EMERGENCY STOP state

 Y001 ;if spindle enabled
D651 ;orientation request off

 U654 ;1st spindle command signal direct output
,0 ;0 to OP
SRH061 ;storing into spindle JOG command signal register

 Z ;spindle enabled

 (Y406 ;if AUTO mode active
 ANF0116) ;and PLC not suspended

C009 ;operations before interruption of AUTO
 E ;else

C011 ;function RESET
 Z ;end of condition AUTO operation ...

C012 ;start RESET
,50 ;50 to OP (1 sec lag)
ST00 ;storing into emergency stop timer
UF0104 ;test emergency stop timer
DF0113 ;clearing initiate EMERGENCY STOP state

Z ;end of condition
;initiate EMERGENCY STOP state

F0104 ;if initiate emergency stop timer
 T00 ;emergency stop timer testing
 E ;else, if terminated

C013 ;interface board RESET
C014 ;output flags RESET
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing
U407 ;activating EDIT mode
DF0107 ;external handwheel mode off
DF0104 ;evaluate emergency stop timer

 Z ;end of condition
;inactivating lagged

6.8 The Sample.plc Program

263

Z ;test emergency stop timer

/* handling MON output line */

(V002AI002) ;if MON input signal

 (NI542 ;if MON output line enabled
 ANY540 ;and MON off
 ANF0802) ;and no erroneous parameter writing

U540 ;activating MON output line
UF0105 ;evaluate MON timer
,126 ;126 to OP (2.5 sec lag)
ST01 ;initializing MON timer

 Z ;end of condition MON output line ...

Z ;end of condition MON input signal

F0105 ;if test MON timer

 T01 ;MON timer running

 I000 ;if no emergency stop
DF0105 ;clearing evaluate MON timer

 Z ;no emergency stop

 E ;else terminated
D540 ;activating MON output line off
DF0105 ;clearing test MON timer

 Z ;end of condition timer running

Z ;end of condition test MON timer

/* handling RESET push-button */

(V477AI477) ;if RESET push-button selected

 (Y406 ;if AUTO mode active
 ANF0116 ;and PLC not suspended
 A(Y470 ;and or START state
 OY471)) ;or STOP state

UF0117 ;press M5 when suspending PLC
C009 ;operations before interruption of AUTO
C012 ;start RESET

 E ;else
C011 ;function RESET
C012 ;start RESET
UF0127 ;initiate M5 state

 Z ;end of condition AUTO mode active

LI70 ;loading message word I70
 >0 ;if there is message on screen

ONLY70 ;
NSY70 ;clearing

;message on screen (I700 - I717)
 Z ;end of condition there is message on screen

LI72 ;loading message word I72
 >0 ;if there is message on screen

6.8 The Sample.plc Program

264

ONLY72 ;
NSY72 ;clearing

;message on screen (I720 - I737)
 Z ;end of condition there is message on screen

LI74 ;loading message word I74
 >0 ;if there is message on screen

ONLY74 ;
NSY74 ;clearing

;message on screen (I740 - I757)
 Z ;end of condition there is message on screen

LI76 ;loading message word I76
 >0 ;if there is message on screen

ONLY76 ;
NSY76 ;clearing

;message on screen (I760 - I777)
 Z ;end of condition there is message on screen

Z ;end of condition RESET push-button selected

/* handling USER’S push-buttons */

/* MODE switches */

Y406 ;if AUTO mode active
UF0106 ;previous state of AUTO mode (Y406) on

E ;else, if not on
DF0106 ;previous state of AUTO mode (Y406) off

Z ;end of condition AUTO mode active

/* MODE push-buttons */

(F0102 ;if interruption enabled
ANI552 ;and override is enabled
ANF0107) ;and no external handwheel mode

 (V400AI400) ;if REF mode selected
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing
U400 ;activating REF mode
UF0100 ;mode change on

 Z ;end of condition REF mode selected

 (V401AI401) ;if HNDL mode selected

 Y406 ;if AUTO mode active
 Y401 ;if HNDL mode active

D401 ;inactivating HNDL mode in auto
 E ;if HNDL mode inactive
 I406 ;if AUTO mode also selected

U401 ;activating HNDL mode in auto
D423 ;clearing 1000 increment

 E ;else if AUTO not selected
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U401 ;activating HNDL mode

6.8 The Sample.plc Program

265

D423 ;clearing 1000 increment
UF0100 ;mode switch

 Z ;end of condition AUTO mode also selected
 Z ;end of condition HNDL mode active
 E ;else, if not on

LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U401 ;activating HNDL mode
D423 ;clearing 1000 increment
UF0100 ;mode change

 Z ;end of condition AUTO mode active

 Z ;end of condition HNDL mode selected

 (V402AI402) ;if INCR mode selected
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U402 ;activating INCR mode
UF0100 ;mode change on

 Z ;end of condition INCR mode selected

 (V403AI403) ;if JOG mode selected
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U403 ;activating JOG mode
UF0100 ;mode change on

 Z ;end of condition JOG mode selected

 (V405AI405) ;if MDI mode selected
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U405 ;activating MDI mode
UF0100 ;mode change on

 Z ;end of condition MDI mode selected

 (V406AI406) ;if AUTO mode selected
 NY406 ;if no auto operation

LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U406 ;activating AUTO mode
UF0100 ;mode change on

 Z
 Z ;end of condition AUTO mode selected

 (V407AI407) ;if EDIT mode selected
LY40 ;loading line Y40
A.FF00 ;clearing bits Y400...Y407
SY40 ;storing

 U407 ;activating EDIT mode
UF0100 ;mode change on

 Z ;end of condition EDIT mode selected

 (Y403 ;if JOG operation
 OY402 ;or INCR operation
 OY401) ;or HNDL operation

 (V483AI483) ;if SPINDLE JOG selected
 NY483 ;if SPINDLE JOG inactive

6.8 The Sample.plc Program

266

U483 ;SPINDLE JOG mode
UF0127 ;initiate M5 state

 E ;else
D483 ;inactivating SPINDLE JOG

 Z ;end of condition
;SPINDLE JOG inactive

 Z ;end of condition
;SPINDLE JOG mode selected

 E ;if SPINDLE JOG not selected
D483 ;inactivating SPINDLE JOG

 Z ;end of condition SPINDLE JOG selected

Z ;end of condition
;interruption enabled and ...

/* Operations after mode change */

F0100 ;if mode change on
D470 ;inactivating START state and
D471 ;STOP state
DF0101 ;JOG push-buttons disabled
LY42 ;loading line Y42
A.007F ;clearing JOG bits Y427,Y430,...,Y437
SY42 ;storing
D713 ;SPINDLE ROTATION REQUEST off

LY40 ;loading line Y40
A.00FF ;clearing axis bits Y410...Y417
SY40 ;storing
LY44 ;loading line Y44
A.00FF ;clearing jog drive bits Y450...Y457
SY44 ;storing

 (F0106 ;if OTHER mode selected
 ANY406) ;from AUTO mode
 NF0116 ;if PLC not suspended

C009 ;operations before interruption of AUTO
 Z ;PLC not suspended
 Z ;end of condition

;OTHER mode switched from AUTO mode

 (NF0106AY406) ;if AUTO mode switched
;from OTHER mode

C011 ;function RESET
 Z ;end of condition

;AUTO mode switched from OTHER mode

DF0100 ;mode change off

Z ;end of condition mode change on

/* External handwheel */

Y401 ;if manual handle mode selected

 NI465 ;if no external handwheel

DF0107 ;no external handwheel mode

6.8 The Sample.plc Program

267

 (I433OI434) ;if JOG-X, or JOG+X axis selected
LY40 ;loading line Y40
A.00FF ;clearing axis bits Y410...Y417
SY40 ;storing
LY44 ;loading line Y44
A.00FF ;clearing bits Y450...Y457
SY44 ;storing
U410 ;activating

;1st axis
U453 ;activating -X on control board 2
U454 ;activating +X on control board 2

 Z ;

 (I435OI432) ;if JOG-Y, or JOG+Y axis selected
LY40 ;loading line Y40
A.00FF ;clearing axis bits Y410...Y417
SY40 ;storing
LY44 ;loading line Y44
A.00FF ;clearing bits Y450...Y457
SY44 ;storing
U410 ;activating

;2nd axis
U452 ;activating -Y on control board 2
U455 ;activating +Y on control board 2

 Z ;

 (I436OI431) ;if JOG-Z, or JOG+Z axis selected
LY40 ;loading line Y40
 A.00FF ;clearing axis bits Y410...Y417
SY40 ;storing
LY44 ;loading line Y44
A.00FF ;clearing bits Y450...Y457
SY44 ;storing
U410 ;activating

;3rd axis
U451 ;activating -Z on control board 2
U456 ;activating +Z on control board 2

 Z ;

 (I430OI437) ;if JOG-4, or JOG+4 axis selected
LY40 ;loading line Y40
 A.00FF ;clearing axis bits Y410...Y417
SY40 ;storing
LY44 ;loading line Y44
A.00FF ;clearing bits Y450...Y457
SY44 ;storing
U410 ;activating

;4th axis
U450 ;activating -4 on control board 2
U457 ;activating +4 on control board 2

 Z

 E ;else, if external handwheel
LI46 ;loading word I46 I47
A.00FF ;clearing byte I470

 >32 ;if increment push-button byte
;not in transitional state

 I464 ;if push-button state from NC
DF0107 ;no external handwheel mode
,0 ;0 to OP
SY41 ;inactivating increments and axes

;in NC state of push-button, in order
;not to move, for there is already
;manual handle mode for the NC

6.8 The Sample.plc Program

268

 E ;else manual handle
UF0107 ;activating external handwheel mode
LI45 ;loading user’s push-buttons
A.07FF ;inactivating increments and axes
SY41 ;storing

;axis and increment lamp
 Z ;end of condition push-button state from NC
 Z ;end of condition increment push-button

;is not in transitional state
 Z ;end of condition no external handwheel

Z ;end of condition
;manual handle mode selected

/* handling AXIS push-buttons */

NF0107 ;if no external handwheel mode

 (V410AI410) ;if 1st axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U410 ;activating

;1st axis
 Z ;end of condition
 ;1st axis selected

 (V411AI411) ;if 2nd axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U411 ;activating

;2nd axis
 Z ;end of condition
 ;2nd axis selected

 (V412AI412) ;if 3rd axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U412 ;activating

;3rd axis
 Z ;end of condition
 ;3rd axis selected

 (V413AI413) ;if 4th axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U413 ;activating

;4th axis selected
 Z ;end of condition
 ;4th axis mode selected

 (V414AI414) ;if 5th axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing

6.8 The Sample.plc Program

269

U414 ;activating
;5th axis

 Z ;end of condition
 ;5th axis selected

 (V415AI415) ;if 6th axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U415 ;activating

;6th axis
 Z ;end of condition
 ;6th axis selected

 (V416AI416) ;if 7th axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U416 ;activating

;7th axis
 Z ;end of condition
 ;7th axis selected

 (V417AI417) ;if 8th axis
;selected

LY40 ;loading line Y40
A.00FF ;clearing bits Y410...Y417
SY40 ;storing
U417 ;activating

;8th axis
 Z ;end of condition
 ;8th axis selected

/* handling INCREMENT push-buttons */

 (V420AI420) ;if 1 increment selected
LY42 ;loading line Y42
A.FF00 ;clearing bits Y420...Y427
SY42 ;storing
U420 ;activating 1 increment

 Z ;end of condition
;1 increment selected

 (V421AI421) ;if 10 increment selected
LY42 ;loading line Y42
A.FF00 ;clearing bits Y420...Y427
SY42 ;storing
U421 ;activating 10 increment

 Z ;end of condition
;10 increment selected

 (V422AI422) ;if 100 increment selected
LY42 ;loading line Y42
A.FF00 ;clearing bits Y420...Y427
SY42 ;storing
U422 ;activating 100 increment

 Z ;end of condition
;100 increment selected

 NY401 ;if no manual handle mode
 (V423AI423) ;if 1000 increment selected

6.8 The Sample.plc Program

270

LY42 ;loading line Y42
A.FF00 ;clearing bits Y420...Y427
SY42 ;storing
U423 ;activating 1000 increment

 Z ;end of condition
;1000 increment selected

 Z ;end of condition no manual handle mode

Z ;end of condition
;no external handwheel mode

/* handling push-buttons of CONDITIONS */

(NI546O ;if no executable block
;in buffer or

(Y447A ;special block and
Y547A ;FIN and
I551A ;interpolator empty and
NI552)) ;override enabled

 (V440AI440) ;if TEST selected
 NY440 ;if TEST state inactive

U440 ;activating TEST state
 E ;else

D440 ;inactivating TEST state
 Z ;end of condition TEST state inactive
 Z ;end of condition TEST selected

 (V441AI441) ;if MCH.LK selected
 NY441 ;if MCH.LK state inactive

U441 ;activating MCH.LK state
 E ;else

D441 ;inactivating MCH.LK state
 Z ;end of condition MCH.LK state inactive
 Z ;end of condition MCH.LK selected

 (V472AI472) ;if FUNCT LK selected
NLY472 ;inverse load of FUNCT LK active
SY472 ;enter FUNKC ZAR active

 Z ;end of condition FUNCT LK selected

Z ;end of condition
;no executable block...

(V442AI442) ;if DRY RN selected
 NY442 ;if DRY RN state inactive

U442 ;activating DRY RN state
 E ;else

D442 ;inactivating DRY RN state
 Z ;end of condition DRY RN state inactive
Z ;end of condition DRY RN selected

(V443AI443) ;if BK.RST selected
 (NY443 ;if BK.RST state inactive
 AI511) ;and HOLD state

U443 ;activating BK.RST state
D444 ;inactivating BK.RET state

 E ;else
D443 ;inactivating BK.RST state

 Z ;end of condition BK.RST state inactive
Z ;end of condition BK.RST selected

6.8 The Sample.plc Program

271

(V444AI444) ;if BK.RET selected
 (NY444 ;if BK.RET state inactive
 AI511) ;and HOLD state

U444 ;activating BK.RET state
D443 ;inactivating BK.RST state

 E ;else
D444 ;inactivating BK.RET state

 Z ;end of condition BK.RET state inactive
Z ;end of condition BK.RET selected

(V445AI445) ;if CND.SP selected
 NY445 ;if CND.SP state inactive

U445 ;activating CND.SP
 E ;else

D445 ;inactivating CND.SP state
 Z ;end of condition CND.SP state inactive
Z ;end of condition CND.SP selected

(V446AI446) ;if CND.BK 1 selected
 NY446 ;if CND.BK 1 state inactive

U446 ;activating CND.BK 1
 E ;else

D446 ;inactivating CND.BK 1 state
 Z ;end of condition CND.BK 1 state inactive
Z ;end of condition CND.BK 1 selected

(V447AI447) ;if SGL.BK selected
 NY447 ;if SGL.BK state inactive

U447 ;activating SGL.BK
 E ;else

D447 ;inactivating SGL.BK state
 Z ;end of condition SGL.BK state inactive
Z ;end of condition SGL.BK selected

/* handling JOG push-buttons */

(I000 ;if no emergency state
AI540) ;and MON on

 I427 ;if JOG rapid traverse selected
U427 ;activating JOG rapid traverse

 E ;else
 NF0101 ;JOG push-buttons are disabled

D427 ;inactivating JOG rapid traverse
 Z ;end of condition

;JOG push-buttons disabled
 Z ;end of condition

;JOG rapid traverse selected

 (Y400 ;if activating REF
 OY402 ;or INCR
 OY403) ;or JOG mode

 I433 ;if JOG 4th axis selected
U434 ;activating JOG X- on control board 2
U453 ;activating 4th axis
D430 ;inactivating JOG X+ on control board 2
D454 ;inactivating 5th axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D434 ;inactivating JOG X- on control board 2

6.8 The Sample.plc Program

272

D453 ;inactivating 4th axis
 Z ;end of condition

;JOG push-buttons disabled
 Z ;;end of condition JOG 4th axis selected

 I434 ;if JOG 5th axis selected
U430 ;activating JOG X+ on control board 2
U454 ;activating 5th axis
D434 ;inactivating JOG X- on control board 2
D453 ;inactivating 4th axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D430 ;inactivating JOG X+ on control board 2
D454 ;inactivating 5th axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 5th axis selected

 I435 ;if JOG 6th axis selected
U435 ;activating JOG Y- on control board 2
U455 ;activating 6th axis
D431 ;inactivating JOG Y+ on control board 2
D452 ;inactivating 3rd axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D435 ;inactivating JOG Y- on control board 2
D455 ;inactivating 6th axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 6th axis selected

 I432 ;if JOG 3rd axis selected
U431 ;activating JOG Y+ on control board 2
U452 ;activating JOG 3rd axis
D435 ;inactivating JOG Y- on control board 2
D455 ;inactivating JOG 6th axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D431 ;inactivating JOG Y+ on control board 2
D452 ;inactivating 3rd axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 3rd axis selected

 I436 ;if JOG 7th axis selected
U436 ;activating JOG Z- on control board 2
U456 ;activating 7th axis
D432 ;inactivating JOG Z+ on control board 2
D451 ;inactivating 2nd axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D436 ;inactivating JOG Z- on control board 2
D456 ;inactivating 7th axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 7th axis selected

 I431 ;if JOG 2nd axis selected
U432 ;activating JOG Z+ on control board 2
U451 ;activating 2nd axis
D436 ;inactivating JOG Z- on control board 2
D456 ;inactivating 7th axis

 E ;else
 NF0101 ;JOG push-buttons disabled

6.8 The Sample.plc Program

273

D432 ;inactivating JOG Z+ on control board 2
D451 ;inactivating 2nd axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 2nd axis selected

 I437 ;if JOG 8th axis selected
U437 ;activating 8th axis
U413 ;activating 4th axis
D433 ;inactivating JOG + on control board 2
D450 ;inactivating 1st axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D437 ;inactivating JOG - on control board 2
D457 ;inactivating 8th axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 8th axis selected

 I430 ;if JOG 1st axis selected
U433 ;activating JOG + on control board 2
U450 ;activating 1st axis
U413 ;activating 4th axis
D437 ;inactivating JOG - on control board 2
D457 ;activating 8th axis

 E ;else
 NF0101 ;JOG push-buttons disabled

D433 ;inactivating JOG + on control board 2
D450 ;inactivating 1st axis

 Z ;end of condition
;JOG push-buttons disabled

 Z ;end of condition JOG 1st axis selected

 Z ;end of condition
;activating REF or INCR or JOG mode

Z ;end of condition no emergency state
;and MON on

/* handling OVERRIDE push-buttons */

LRP039 ;selecting rapid traverse override
;at parameter CONST20

=0 ;if 0: from NC keyboard
U525 ;R% from NC keyboard
LRH039 ;loading input register R%

E ;else

 =1 ;from F% override push-button
D525 ;R% not from NC keyboard
LRH028 ;loading input register F%

 <4 ;if F%<10%
,0 ;R%=F0

 E ;else
 <7 ;if 5%<F%<40%

,1 ;R%=25%
 E ;else
 <10 ;if 40%<F%<70%

,2 ;R%=50%
 E ;else, if 70%<F%

6.8 The Sample.plc Program

274

,3 ;R%=100%
 Z ;end of condition 40%<F%<70%
 Z ;end of condition 5%<F%<40%
 Z ;end of condition F%<10%
 E ;
 =2 ;push-buttons from machine control board 2
 (V487AI487) ;if RF0

;selected
LY48 ;loading line Y48
A.FF0F ;clearing bits Y484...Y487
SY48 ;storing
U487 ;activating

;RF0
 Z ;end of condition

;RF0 selected
 (V486AI486) ;if R25%

;selected
LY48 ;loading line Y48
A.FF0F ;clearing bits Y484...Y487
SY48 ;storing
U486 ;activating

;R25%
 Z ;end of condition

;R25% selected
 (V485AI485) ;if R50

;selected
LY48 ;loading line Y48
A.FF0F ;clearing bits Y484...Y487
SY48 ;storing
U485 ;activating

;R50%
 Z ;end of condition

;R50% selected
 (V484AI484) ;if R100%

;selected
LY48 ;loading line Y48
A.FF0F ;clearing bits Y484...Y487
SY48 ;storing
U484 ;activating

;R100%
 Z ;end of condition

;R100% selected

 Y487 ;if RF0 active
,0 ;R% code=0

 Z ;end of condition RF0 active

 Y486 ;if R25% active
,1 ;R% code=1

 Z ;end of condition R25% active

 Y485 ;if R50% active
,2 ;R% code=2

 Z ;end of condition R50% active

 Y484 ;if R100% active
,3 ;R% code=3

 Z ;end of condition R100% active
 E ;
 =3 ;if feedrate override affects

LRH028 ;loading input register F%
 E ;else not affects

LRH028 ;loading input register F%
 >8

6.8 The Sample.plc Program

275

,13 ;100%
 Z ;Z of >8
 =8

,11 ;80%
 Z
 =7

,9 ;60%
 Z
 =6

,7 ;40%
 Z
 Z ;Z of =3
 Z ;Z of =2
 Z ;Z of =1
Z ;Z of =0

SRH089 ;storing into output register R%
LRH028 ;loading input register F%
SRH078 ;storing into output register F%
LRH029 ;loading input register S%
SRH079 ;storing into output register S%

/* Handling START push-button */

(I000 ;if no emergency state
AI540) ;and MON on

 (V470AI470) ;if START mode selected

 NY470 ;if START state inactive

 Y400 ;if REF mode active
UF0101 ;JOG push-buttons enabled
UF0111 ;initiate START state

 Z ;end of condition REF mode active

 (Y401 ;if HNDL mode active
 OY402) ;or INCR mode active

 (I546 ;if executable block in buffer
 ONY547 ;or FIN inactive
 ONI551) ;or interpolator not empty

UF0111 ;initiate START state
 Z ;end of condition

;executable block ...

 Z ;end of condition
;HNDL or INCR mode active

 Y403 ;if JOG mode active

 (I546 ;if executable block in buffer
 ONY547 ;or FIN inactive
 ONI551) ;or interpolator not empty

UF0111 ;initiate START state
 E ;else

UF0110 ;test JOG push-buttons for START
 Z ;end of condition

6.8 The Sample.plc Program

276

;executable block in buffer

 Z ;end of condition JOG mode active

 (Y405 ;if MDI mode active
 OY406) ;or AUTO mode active

 (I546 ;if executable block in buffer
 ONY547 ;or FIN inactive
 ONI551) ;or interpolator not empty

UF0111 ;initiate START state
 Z ;end of condition

;executable block in buffer
 Z ;end of condition

;MDI or AUTO mode active

 I545 ;if G28 active
UF0111 ;initiate START state

 Z ;end of condition G28 active

 F0130 ;if initiate FUNCTION STOP
UF0111 ;initiate START state
DF0130 ;clearing FUNCTION STOP

 Z ;end of condition initiate FUNCTION STOP

 Z ;end of condition START state inactive
 Z ;end of condition START mode selected

Z ;end of condition no emergency state
;and MON on

/* Enabling jog push-buttons */

F0110 ;if test JOG push-buttons
;for START

LY42 ;loading line Y42
A.FF00 ;clearing bits Y42n

 >0 ;one of JOG push-buttons on
UF0111 ;initiate START state
UF0101 ;JOG push-buttons enabled

 Z ;end of condition
;one of JOG push-buttons on

DF0110 ;clearing test JOG push-buttons
;for START

Z ;end of condition
;test JOG push-buttons

/* Creating START state at flag */

F0111 ;if initiate START state

U470 ;activating START state
D471 ;inactivating STOP state

 DF0111 ;clearing initiate START state

Z ;end of condition
;initiate START state

6.8 The Sample.plc Program

277

/* Handling STOP push-buttons */

(V471AI471) ;if STOP selected
UF0112 ;initiate STOP state

Z ;end of condition STOP selected

/* STOP state from NC */

I547 ;if NC asks for STOP state
UF0112 ;initiate STOP state

Z ;NC switched on in STOP state now

/* Creating STOP state at flag */

F0112 ;if initiate STOP state

 (NI552 ;if override and STOP is disabled
 OI555) ;or G76, G78

D470 ;inactivating START state
U471 ;activating STOP state

 F0101 ;if JOG push-buttons enabled
DF0101 ;clearing JOG push-buttons enabled
D471 ;inactivating STOP state
LY42 ;loading line Y42
A.007F ;clearing JOG bits Y427,Y430,...,Y437
SY42 ;storing

 Z ;end of condition JOG push-buttons enabled
 Z ;Z of override and STOP

DF0112 ;clearing initiate STOP state
Z ;end of condition initiate STOP state

/* INTD state after STOP */

(I555 ;if thread cutting cycle
AY471 ;and STOP state
AY406) ;and AUTO mode

 NF0116 ;if PLC is not interrupted
C009 ;activity after interrupting AUTO

 Z ;PLC not interrupted

Z ;Z of thread cutting cycle

/* Handling spindle rotating push-buttons */

(I000 ;if no emergency state
AI540) ;and MON on
 (;filtering start
 (F0131 ;if tool replacement execution enabled
 ANF0102) ;and interruption disabled (process M6)
 O ;or
 (F0132 ;if tool preparation execution enabled
 ANF0102) ;and interruption disabled (process T)
 O ;or
 (F0133 ;if gear range change execution enabled
 ANF0102) ;and interruption disabled (process M11, ..., M18)
 O ;or
 (F0147 ;if program controlling code execution enabled

6.8 The Sample.plc Program

278

 ANF0102) ;and interruption disabled (process M0, ..., M30)
) ;push-button disabled
 E ;else either S or M3, ... M19 under execution

 (V476AI476) ;if M5 selected on control board 2
UF0127 ;initiate M5 state

 Z ;end of condition M5 selected on control board 2

 (NY483 ;if no spindle JOG
 ANY440 ;and no test
 ANY441 ;and no machine lock
 ANY472) ;and no function lock

 (V474AI474) ;if M3 selected on control board 2
UF0125 ;initiate M3 state

 Z ;end of condition M3 selected on control board 2
 (V475AI475) ;if M4 selected on control board 2

UF0126 ;initiate M4 state
 Z ;end of condition M4 selected on control board 2
 Z ;end of condition no spindle JOG, ...

 Z ;end of condition filtering

Z ;end of condition no emergency state ...

(NI000 ;if emergency state
ONI540) ;or MON off

DF0125 ;clearing initiate spindle start M3
DF0126 ;clearing initiate spindle start M4
DF0127 ;clearing initiate spindle stop M5

Z ;

(F0121 ;if M3, M4 from control board
OF0122) ;or M5 from control board

LQ04 ;loading S phase counter to OP
 =2 ;if waiting for N=Ns exit

DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled
,0 ;loading 0 to OP
SQ04 ;storing into phase counter

 Z ;end of condition waiting for N=Ns

LQ05 ;M3,M4,M5,M19 phase counter to OP
 =0 ;if finished
 DF0135 ;spindle rotation execution disabled

LF030 ;loading rotation code save
SF018 ;storing into rotation code shadow register
LF032 ;loading Q05 spindle rotation

;(M3, M4, M5, M19)
;phase counter save

 >1 ;if greater than 1
;M3, M4 processing

DQ00 ;FIN decrements
,0 ;resetting phase number

 Z ;end of condition greater than 1
SQ05 ;storing into M3,M4,M5,M19 phase counter

 F0121 ;if M3, M4 processing from control board
DF0121 ;inactivating M3, M4 from control board

 Z ;end of condition
;M3, M4 processing from control board

6.8 The Sample.plc Program

279

 F0122 ;if M5 processing from control board
DF0122 ;inactivating M5 from control board

 Z ;end of condition
;M5 processing from control board

 Z ;end of condition finished

Z ;end of condition M3, M4, M5 from control board

/* M3, M4 start at flag */

((F0125 ;if requesting spindle start M3,
OF0126) ;or M4 push-buttons
ANF0122) ;and end of M5 from push-buttons

 (NY710 ;if no SPINDLE REVOLUTION ERROR
 ANY711) ;and no SPINDLE RISING/FALLING EDGE

 (NI546 ;if executable block in buffer
 ONY470 ;or no START state
 OF0121 ;or manual start processing
 OY713) ;or if message SPINDLE ROTATION REQUEST

C016 ;spindle rotation from push-buttons
UF0121 ;activating M3, M4 from push-button

 Z ;end of condition no spindle rotation
 Z ;end of condition no spindle error

DF0125 ;clearing initiate M3 state
DF0126 ;clearing initiate M4 state

Z ;end of condition requesting spindle start

/* Spindle stop M5 at flag */

(F0127 ;if spindle stop M5 request
ANF0122) ;and end of M5 from push-button

 Y652 ;if spindle command signal output enabled
C016 ;spindle rotation from push-buttons
UF0122 ;setting flag from M5 push-button

 Z ;spindle command signal enabled
DF0127 ;clearing initiate M5 state

Z ;end of condition
;spindle stop M5 request

6.8 The Sample.plc Program

280

/* Handling SPINDLE JOG */

(Y483 ;if SPINDLE JOG active
ANF0122) ;and M5 not selected
 (I474 ;if M3
 OI475) ;or M4 selected on control board 2

U001 ;drive enabled
U652 ;1st spindle command signal output enabled
U654 ;1st spindle command signal direct output

 I475 ;if M4 selected (CCW)
D474 ;inactivating M3 on control board 2
U475 ;activating M4 on control board 2
D476 ;inactivating M5 on control board 2
.007F ;positive number to OP

 E ;else M3 selected
U474 ;activating M3 on control board 2
D475 ;inactivating M4 on control board 2
D476 ;inactivating M5 on control board 2
.FF80 ;negative number to OP

 Z ;end of condition M4 direction
SRH061 ;storing into spindle JOG command signal register

 E ;else if M3 or M4
;not selected on control board 2

D474 ;inactivating M3 on control board 2
D475 ;inactivating M4 on control board 2
U476 ;activating M5 on control board 2
D001 ;inactivating spindle drive
D652 ;inactivating 1st spindle command signal output
U654 ;activating 1st spindle command signal direct output
,0 ;0 to OP
SRH061 ;storing into SPINDLE JOG command signal register

 Z ;end of condition
;4th or 5th JOG selected

Z ;end of condition
;SPINDLE JOG active and M5 not selected

/* Handling COOLANT */

(I000 ;if no emergency state
AI540) ;and MON on
 (;filtering start
 (F0131 ;if tool replacement execution enabled
 ANF0102) ;and interruption disabled (process M6)
 O ;or,
 (F0132 ;if tool preparation execution enabled
 ANF0102) ;and interruption disabled (process T)
 O ;or,
 (F0133 ;if gear range change execution enabled
 ANF0102) ;and interruption disabled (process M11, ..., M18)
 O ;or,
 (F0147 ;if program controlling code execution enabled
 ANF0102) ;and interruption disabled (process M0, ..., M30)
) ;push-button disabled
 E ;else either S or M3, ... M19 under execution

 (V480AI480) ;if M8 auto selected on control board 2
 Y480 ;if M8 auto active

D480 ;inactivating M8 auto on control board 2
 E ;else

U480 ;activating M8 auto on control board 2
 Z ;end of condition M8 auto active
 Z ;end of condition M8 auto selected on control board 2

6.8 The Sample.plc Program

281

 NY480 ;if coolant handling from push-buttons

 (V482AI482) ;if M8 selected on control board 2
U002 ;coolant pump on

 Z ;end of condition M8 selected on control board 2

 (V481AI481) ;if M9 selected on control board 2
D002 ;coolant pump off

 Z ;end of condition M9 selected on control board 2

 Z ;end of condition
;coolant handling from push-buttons

 Y480 ;if automatic coolant handling
LRH070 ;programmed M8/M9 state

 =8 ;if M8 programmed
U002 ;coolant pump on

 E ;else
D002 ;coolant pump off

 Z ;end of condition M8 programmed

 Z ;end of condition
;automatic coolant handling

 Z ;end of condition
;no M06, T, M11, M30 under execution

Z ;end of condition no emergency and...

Y002 ;if coolant pump on
U482 ;activating M8 on control board 2
D481 ;inactivating M9 on control board 2

E ;else
D482 ;inactivating M8 on control board 2
U481 ;activating M9 on control board 2

Z ;end of condition
;coolant pump on

/* SUPERVISION */

/* reference point return and limit test */

(Y400 ;if REF mode active,
OI545) ;or G28

LI020 ;REFX line
SY550 ;1st axis reference position ready

LI021 ;REFY line
SY551 ;2nd axis reference position ready

LI022 ;REFZ line
SY552 ;3rd axis reference position ready

LI023 ;REF4 line
SY553 ;4th axis reference position ready

E ;else limit test

Z ;end of condition
;REF mode active, or G28

/* spindle revolution check */

6.8 The Sample.plc Program

282

(F0114 ;if spindle started
ANF0134 ;and no command S under execution
ANF0135 ;and no spindle rotation under execution
AI650) ;and command signal edge
 NI655 ;if no spindle fluctuation

UF0115 ;spindle rotation
 E ;spindle fluctuation

DF0115 ;no spindle rotation
U710 ;SPINDLE REVOLUTION ERROR on

 Z ;end of condition no spindle fluctuation
Z ;end of condition spindle started ...

I657 ;if N=0
DF0115 ;no spindle rotation

Z ;end of condition N=0

/* handling spindle rotation output flag */

(Y441 ;if MCH.LK state,
OY472 ;or function lock state
OY440) ;or TEST state active

U650 ;spindle rotates
E ;else, if none

LF0115 ;clearing spindle rotation flag
SY650 ;storing into spindle rotation output

Z ;end of condition
;MCH.LK or function lock

/* process in case of spindle revolution error */

(F0114 ;if spindle started
ANF0134 ;and no command S under execution
ANF0135 ;and no spindle rotation under execution
AY710) ;and SPINDLE REVOLUTION ERROR

UF0127 ;initiate M5 state
Z ;end of condition SPINDLE REVOLUTION ERROR

/* initiating FEED HOLD */

(I005 ;if FEED HOLD line on
OF0104) ;if test EMG timer
 U542 ;activating FEED HOLD state
E ;else, deceleration

D542 ;inactivating FEED HOLD state
Z ;end of condition FEED HOLD line on

/* spindle stop in case of FEED HOLD and disabled override state */

(Y542 ;if FEED HOLD state active
AI552 ;and override disabled
AF0114 ;and spindle on
ANF0135) ;and no spindle rotation under execution

UF0127 ;initiating M5 state
Z ;end of condition FEED HOLD ...

/* push-buttons in case of HOLD state */

(I511AV511) ;if FEED HOLD selected
C011 ;function RESET

6.8 The Sample.plc Program

283

 F0117 ;if select M5 when suspending PLC
UF0127 ;initiate M5 state

 Z
DF0117 ;do not select M5 when suspending PLC
UF0116 ;PLC suspended
D443 ;inactivating BK.RST state
D444 ;inactivating BK.RET state

Z ;end of condition FEED HOLD selected

/* push-buttons in case of clearing HOLD state */

(NI511AV511) ;if HOLD state cleared now

DF0116 ;PLC not suspended
 (Y406 ;if AUTO mode active
 AY470 ;and START state
 ANY443) ;if not BK.RST state

C010 ;operations after return to AUTO
 Z ;end of condition if AUTO mode ...

Z ;end of condition
;HOLD state cleared now

/* receiving functions */

(NY441 ;if no machine lock state
ANY472 ;and no function lock state
ANY440) ;and no TEST state

 I520 ;1st M function sent
DF0120 ;no executable M code found
LRH000 ;code of 1st M function
C003 ;M code classification

 Z ;end of condition 1st M function sent

 I521 ;2nd M function sent
DF0120 ;no executable M code found
LRH001 ;code of 2nd M function
C003 ;M code classification

 Z ;end of condition 2nd M function sent

 I522 ;3rd M function sent
DF0120 ;no executable M code found
LRH002 ;code of 3rd M function
C003 ;M code classification

 Z ;end of condition 3rd M function sent

 I523 ;4th M function sent
DF0120 ;no executable M code found
LRH003 ;code of 4th M function
C003 ;M code classification

 Z ;end of condition 4th M function sent

 I524 ;5th M function sent
DF0120 ;no executable M code found
LRH004 ;code of 5th M function
C003 ;M code classification

 Z ;end of condition 5th M function sent

 I525 ;if S function sent
,1 ;1 to OP
SQ04 ;storing into S schedule counter

6.8 The Sample.plc Program

284

LRH005 ;loading S function code to OP
SF026 ;storing into S function code

;to shadow register
DF0134 ;revolution execution disabled
UQ00 ;increment FIN counter

 Z ;end of condition S function sent

Z ;end of condition
;inactivating MCH.LK state

I526 ;if T function sent
 (NY441 ;if no machine lock
 ANY472 ;and no function lock
 ANY440) ;and no test

,1 ;1 to OP
SQ02 ;storing into T schedule counter
LRH006 ;loading T function code to OP
SF024 ;storing into T function code

;to shadow register
DF0132 ;tool preparation execution

;disabled
UQ00 ;increment FIN counter

 E ;else test
LRH006 ;loading T function code into OP
SF082 ;gained T code

 Z ;end of condition no function lock ...

Z ;end of condition T function sent

/* handling FIN flag */

LQ00 ;loading FIN counter to OP
 =0 ;if content 0

U547 ;functions executed by PLC
 E ;else

D547 ;execution in progress
 Z ;end of condition content 0

/* clearing START / STOP state */

(NI546 ;if no executable block
;in buffer

AY547 ;and FIN on
AI551 ;and interpolator empty
ANY507 ;and no FSBS state
ANF0101 ;and JOG push-buttons disabled
ANI545) ;if no G28

D470 ;inactivating START state
D471 ;inactivating STOP state

Z ;end of condition
;no executable ...

6.8 The Sample.plc Program

285

/* handling M3, M4, M5 */

NY483 ;if no spindle JOG push-button

D474 ;inactivating M3 on control board 2
D475 ;inactivating M4 on control board 2
D476 ;inactivating M5 on control board 2
LRH062 ;loading rotation code

 =3 ;if M3
U474 ;activating M3 on control board 2

 Z ;end of condition M3

 =4 ;if M4
U475 ;activating M4 on control board 2

 Z ;end of condition M4

 =5 ;if M5
U476 ;activating M5 on control board 2

 Z ;end of condition M5

Z ;end of condition no spindle jog push-button

/* taking constant surface speed into account */

(NY440 ;if no test
ANY441 ;and no machine lock
ANY472) ;and no function lock
 I653 ;if G96

LRH012 ;calculated spindle revolution
SRH060 ;storing

 Z ;end of condition G96
Z ;end of condition

;if no test ...

/* tool number display */

(NY441 ;if no machine lock
ANY472 ;and no function lock
ANY440) ;and no test

LF080 ;loading active tool
E ;else

LF082 ;gained T code
Z ;end of condition if no machine lock ...

SRH064 ;storing for display

/* scrolling functions: FSBS */

(V507AI507) ;if FSBS softkey selected
 NY507 ;if FSBS active

U507 ;activating FSBS
DF0130 ;function stop on

6.8 The Sample.plc Program

286

 E ;else
D507 ;inactivating FSBS
UF0130 ;activating function stop

 Z ;end of condition FSBS active
Z ;end of condition FSBS softkey selected

J1 ;end of module :001

/* end of module :001 */

/* selecting M codes */

:003 ;M code classification

=6 ;if equal to 6
,1 ;1 to OP
SQ01 ;storing into M06 tool replacement phase counter
DF0131 ;tool replacement execution disabled

;function executions start from here
UF0120 ;executable M code found
G004 ;goto label :004

Z ;end of condition equal to 6

>=10 ;if greater than or equal to 10
 <=18 ;if less than or equal to 18

SF016 ;storing into range code register
;(value: 10, 11, ..., 18)

,1 ;1 to OP
SQ03 ;storing into M10,...,M18 gear range change phase counter
DF0133 ;gear range change execution disabled
UF0120 ;executable M code found
G004 ;goto label :004

 Z ;end of condition less than or equal to 18
Z ;end of condition greater than or equal to 10

>=3 ;if greater than or equal to 3
 <=5 ;if less than or equal to 5

D483 ;spindle jog cancel
SF018 ;storing into rotation code register

;(value: 3, 4, 5)
,1 ;1 to OP
SQ05 ;storing into M3,M4,M5,M19 spindle rotation phase counter
DF0135 ;spindle rotation execution disabled
UF0120 ;executable M code found
DF0121 ;M3, M4 from program
DF0122 ;M5 from program
G004 ;goto label :004

 Z ;less than or equal to 4 end of condition
Z ;greater than or equal to 3 end of condition

=19 ;if equal to 19
D483 ;spindle jog cancel
SF018 ;storing into rotation code register

;(value: 19)
,1 ;1 to OP
SQ05 ;storing into M3,M4,M5,M19 spindle rotation phase counter
DF0135 ;spindle rotation execution disabled
UF0120 ;executable M code found
DF0121 ;M3, M4 from program
DF0122 ;M5 from program
G004 ;goto label :004

Z ;end of condition equal to 19

6.8 The Sample.plc Program

287

>=8 ;if greater than or equal to 8
 <=9 ;if less than or equal to 9

SRH070 ;storing into programmed M8/M9 state
G004 ;goto label :004

 Z ;end of condition less than or equal to 9
Z ;end of condition greater than or equal to 8

>=0 ;if greater than or equal to 0
 <=2 ;if less than or equal to 2

SF028 ;storing into program controlling code register
,1 ;1 to OP
SQ19 ;storing into program controlling phase counter
DF0147 ;program controlling command execution

;disabled
UF0120 ;executable M code found
G004 ;goto label :004

 Z ;end of condition less than or equal to 2
Z ;end of condition greater than or equal to 0

=30 ;if equal to 30
SF028 ;storing into program controlling code register
,1 ;1 to OP
SQ19 ;storing into program controlling phase counter
DF0147 ;program controlling command execution

;disabled
UF0120 ;executable M code found
G004 ;goto label :004

Z ;end of condition equal to 30

:004 ;label :004
F0120 ;if executable M code found

UQ00 ;incrementing FIN counter
Z ;end of condition

;executable M code found

R ;return from M code classification

/* operations before interruption of AUTO */

:009 ;operations before interruption of AUTO

LQ00 ;loading FIN counter to OP
SF050 ;storing into FIN counter saving register
LQ01 ;loading tool replacement (M06) phase counter

;to OP
C015 ;auxiliary module: if OP<0 then OP=1
SF052 ;storing into tool replacement (M06) phase counter

;saving register
LQ02 ;loading tool preparation (T) phase counter

;to OP
C015 ;auxiliary module: if OP<0 then OP=1
SF054 ;storing into tool preparation (T) phase counter

;saving register
LQ03 ;loading gear range change (M10, M11, ..., M18)

;phase counter to OP
C015 ;auxiliary module: if OP<0 then OP=1
SF056 ;storing into gear range change (M10, M11, ..., M18)

;phase counter saving register
LQ04 ;loading spindle revolution (S) phase counter

;to OP
C015 ;auxiliary module: if OP<0 then OP=1
SF058 ;storing into spindle revolution (S) phase counter

;saving register

6.8 The Sample.plc Program

288

LQ05 ;loading spindle rotation (M3, M4, M5, M19)
;phase counter to OP

C015 ;auxiliary module: if OP<0 then OP=1
SF060 ;storing into spindle rotation (M3, M4, M5, M19)

;phase counter saving register
LQ06 ;loading coolant (M8, M9) phase counter to OP
C015 ;auxiliary module: if OP<0 then OP=1
SF062 ;storing into coolant (M8, M9) phase counter

;saving register
LQ19 ;loading program controlling codes (M00, M01, M02,

;M30) phase counter to OP
C015 ;auxiliary module: if OP<0 then OP=1
SF078 ;storing into program controlling codes (M00, M01, M02,

;M30) phase counter saving register

R ;return from
;operations before interruption of AUTO

/* for auxiliary module :009 */

:015
>0 ;if function under execution

,1 ;start function execution from the beginning
Z ;end of condition function ...
R

/* operations after return to AUTO */

:010 ;operations after return to AUTO

LF050 ;loading FIN counter saving register
;to OP

SQ00 ;storing into FIN counter
LF052 ;loading tool replacement (M06) phase counter

;saving register to OP
SQ01 ;storing into tool replacement (M06) phase counter
LF054 ;loading tool preparation (T) phase counter

;saving register to OP
SQ02 ;storing into tool preparation (T)

;phase counter
LF056 ;loading range code (M10, M11, ..., M18)

;phase counter saving register to OP
SQ03 ;storing into range code (M10, M11, ..., M18)

;phase counter
LF058 ;loading spindle revolution (S) phase counter

;saving register to OP
SQ04 ;storing into spindle revolution (S)

;phase counter
LF060 ;loading spindle rotation (M3, M4, M5, M19)

;phase counter saving register to OP
SQ05 ;storing into spindle rotation (M3, M4, M5, M19)

;phase counter
LF062 ;loading coolant (M8, M9) phase counter

;saving register to OP
SQ06 ;storing into coolant (M8, M9) phase counter
LF078 ;loading program controlling codes (M00, M01, M02,

;M30) phase counter saving register
;to OP

SQ19 ;storing into program controlling codes (M00, M01, M02,
;loading M30) phase counter

R ;return from

6.8 The Sample.plc Program

289

;operations after return to AUTO

/* function RESET */

:011 ;function RESET

DF0130 ;clearing function stop
DF0131 ;tool replacement execution disabled
DF0132 ;tool preparation

;execution disabled
DF0133 ;gear range change execution disabled
DF0134 ;spindle revolution

;execution disabled
DF0135 ;spindle rotation execution disabled
DF0147 ;program controlling command

;execution disabled
DF0103 ;interruption enabling

;reset enabled
UF0102 ;interruption enabled
,0 ;0 to OP
SQ00 ;clearing FIN counter
SQ01 ;clearing tool replacement (M06) phase counter
SQ02 ;clearing tool preparation (T)

;phase counter
SQ03 ;clearing range code (M10, M11, ..., M18)

;phase counter
SQ04 ;clearing spindle revolution (S)

;phase counter
SQ05 ;clearing spindle rotation (M3, M4, M5, M19)

;phase counter
SQ06 ;clearing coolant (M8, M9) phase counter
SQ19 ;program controlling codes

;(M00, M01, M02, M30)
;clearing phase counter

R ;return from function RESET

/* start push-buttons RESET */

:012 ;start push-buttons RESET

D470 ;inactivating START state
D471 ;inactivating STOP state
DF0110 ;clearing test JOG push-buttons for START
DF0111 ;clearing initiate START state
DF0112 ;clearing initiate STOP state
DF0101 ;clearing JOG push-buttons enabled
LY42 ;loading line Y42
A.007F ;clearing JOG bits Y427,Y430,...,Y437
SY42 ;storing
LY44 ;loading line Y42
A.007F ;clearing JOG lamps Y427,Y430,...,Y437
SY44 ;storing
DF0125 ;clearing initiate M3 state
DF0126 ;clearing initiate M4 state
DF0127 ;clearing initiate M5 state

R ;return from start push-buttons RESET

/* interface board RESET */

6.8 The Sample.plc Program

290

:013 ;interface board RESET

,0 ;0 to OP
SY00 ;1st interface board Y000...Y017 output lines off
SY02 ;1st interface board Y020...Y037 output lines off
SY10 ;2nd interface board Y100...Y117 output lines off
SY12 ;2nd interface board Y120...Y137 output lines off
SY20 ;3rd interface board Y200...Y217 output lines off
SY22 ;3rd interface board Y220...Y237 output lines off
SY30 ;4th interface board Y300...Y317 output lines off
SY32 ;4th interface board Y320...Y337 output lines off

R ;return from interface board RESET

/* output flags RESET */

:014 ;output flags RESET

D650 ;no spindle rotation
D652 ;1st spindle command signal output disabled
DF0114 ;spindle not started
,5 ;5 to OP
SRH062 ;storing into 1st spindle rotation state register
,9 ;9 To OP
SRH070 ;storing into M9
D470 ;inactivating START state
D471 ;inactivating STOP state
D540 ;inactivating MON output line

R ;return from output flags RESET

/* spindle rotation from push-buttons */

:016

NF0121 ;if end of M3, M4 from push-buttons
LQ05 ;loading M3,M4,M5,M19 phase counter
SF032 ;storing into Q05 spindle rotation (M3, M4, M5, M19)

;phase counter
LF018 ;loading rotation code register
SF030 ;storing into rotation code

E ;else, if no save needed under process
DQ00 ;decrementing FIN counter

Z ;end of M3, M4 from control board

F0125 ;if initiate M3 state
,3 ;3 to OP

Z ;end of condition initiate M3 state
F0126 ;if initiate M4 state

,4 ;4 to OP
Z ;end of condition initiate M4 state
F0127 ;if initiate M5 state

DF0121 ;M3, M4 not under process
,5 ;5 to OP

Z ;end of condition initiate M5 state
SF018 ;storing into rotation code register

;(value: 3, 4)
,1 ;1 to OP
SQ05 ;storing into spindle rotation (M3,M4,M5,M19) phase counter
UQ00 ;increment FIN counter
UF0135 ;spindle rotation execution enabled
DF0102 ;interruption disabled

6.8 The Sample.plc Program

291

R ;end of module

/* start of module :000 */

:000 ;module :000 started

Y507 ;if FSBS operation

 F0130 ;if function stop
G196 ;goto end module

 E ;else
UF0130 ;making a cycle

;and requesting FUNCTION STOP
UF0112 ;initiate STOP state

 Z ;end of condition function stop

Z ;end of condition FSBS operation

/* function dispatcher */

Y470 ;if START state

 I553 ;if spindle rotation request

 (NF0133 ;if no range code enabled
 ONF0134 ;or revolution enabled
 ONF0135) ;or spindle rotation under process

 (NY710 ;if no SPINDLE REVOLUTION ERROR
 ANY711) ;and no SPINDLE RISING/FALLING EDGE

LQ05 ;loading spindle rotation phase counter
 =0 ;if not started
 NY650 ;if no spindle rotation

U713 ;SPINDLE ROTATION REQUEST message on
 E ;if rotation

D713 ;SPINDLE ROTATION REQUEST message off
UF0131 ;tool replacement execution enabled

 Z ;end of condition no spindle rotation
 E ;else, if started

LF018 ;loading rotation code shadow register
 =3 ;if M3

UF0133 ;range execution enabled
D713 ;SPINDLE ROTATION REQUEST message off

 Z ;end of condition M3
 =4 ;if M4

UF0133 ;range execution enabled
D713 ;SPINDLE ROTATION REQUEST message off

 Z ;end of condition M4
 NF0133 ;if no command M3 or M4
 NY650 ;if no spindle rotation

U713 ;SPINDLE ROTATION REQUEST message on
 E ;else

D713 ;SPINDLE ROTATION REQUEST message off
 Z ;end of condition no spindle rotation
 Z ;end of condition no command M3 or M4
 Z ;end of condition not started
 E ;else SPINDLE REVOLUTION ERROR

D713 ;SPINDLE ROTATION REQUEST message off
 Z ;end of condition no SPINDLE REVOLUTION ERROR
 Z ;end of condition no ... under process

 E ;interpolator does not request spindle rotation...

6.8 The Sample.plc Program

292

UF0131 ;tool replacement execution
;enabled

 Z ;end of condition
;interpolator requests spindle rotation,

Z ;end of condition START state

/* function executions */

/* M6 tool replacement execution */

F0131 ;if M6 execution enabled,

LQ01 ;loading Q01 to OP
 =0 ;if no M6

DF0131 ;M6 execution disabled
UF0132 ;T execution enabled

 Z ;end of condition no M6

 =1 ;if 1st phase: test
 I551 ;if interpolator empty

,0 ;0 to OP
SQ01 ;clearing M6 phase counter (no action)
DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled

 Z ;end of condition empty interpolator
,1 ;1 To OP

 Z ;end of condition 1st phase

Z ;end of condition
;M6 execution enabled

/* T execution */

F0132 ;if T execution enabled

LQ02 ;loading Q02 to OP
 =0 ;if no T

DF0132 ;T execution disabled
UF0133 ;range code execution enabled

;enabled
 Z ;end of condition no T

 =1 ;if 1st phase: test,
;requesting STOP state

 I551 ;if empty interpolator
DF0102 ;interruption disabled
LF080 ;code of tool in spindle to OP

 =LF024 ;tool in spindle=programmed tool
,0 ;0 to OP
SQ02 ;clearing T command (no action)
DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled

 E ;if not equal
UF0112 ;initiate STOP state
UQ02 ;goto 2nd phase

 Z ;end of condition
;tool in spindle=programmed tool

 Z ;end of condition empty interpolator
,1 ;1 to OP

 Z ;end of condition 1st phase

6.8 The Sample.plc Program

293

 =2 ;if 2nd phase: requesting spindle stop
 Y471 ;if STOP state

LRH062 ;loading 1st spindle rotation state to OP
 =5 ;if M5 state

,4 ;4 to OP
SQ02 ;storing into phase counter Q02

 E ;else, if spindle rotation
C005 ;preparing spindle stop
UQ02 ;incrementing Phase counter Q02

 Z ;end of condition M5 state
 Z ;end of condition STOP state

,2 ;2 to OP
 Z ;end of condition 2nd phase

 =3 ;if 3rd phase: resetting spindle
;rotation code

 LQ05 ;loading phase counter M3,M4,M5,M19
 =0 ;cmmand M5 executed

C006 ;resetting spindle rotation code
UQ02 ;incrementing phase counter Q02

 Z ;end of condition command M5 executed
,3 ;3 To OP

 Z ;end of condition 3rd phase

 =4 ;if 4th phase: coolant stop
LY002 ;loading coolant pump state
SF0123 ;saving coolant pump state
D002 ;coolant pump off
UQ02 ;incrementing phase counter Q02
,4 ;4 to OP

 Z ;end of condition 4th phase

 =5 ;if 5th phase: messageing tool number
LRH006 ;loading T code to OP
BCD ;binary BCD conversion
SRH090 ;into T code message register in decimal form
U700 ;requesting 1st indexed message
UQ02 ;goto 3rd phase
,5 ;5 to OP

 Z ;end of condition 5th phase

 =6 ;if 6th phase
 (I700 ;if 1st indexed message on screen
 AY470) ;and START state

LF024 ;loading T function code to OP
SF080 ;code of tool in 1st spindle
D700 ;inactivating 1st indexed message
LF0123 ;loading coolant pump state
SY002 ;activating coolant pump
,0 ;0 to OP
SQ02 ;clearing T phase counter (no push-button)
DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled

 Z ;end of condition 1st indexed
;message on screen and START state

,6 ;6 to OP
 Z ;end of condition 6th phase

Z ;end of condition
;T execution enabled

/* spindle gear range change execution */

6.8 The Sample.plc Program

294

F0133 ;if gear range change execution
;enabled

LQ03 ;loading Q03 to OP
 =0 ;if no gear range change command

DF0133 ;gear range change execution disabled
UF0134 ;S execution enabled

 Z ;end of command no gear range change command

 =1 ;if 1st phase: test,
;requesting STOP state

DF0102 ;interruption disabled
 LRH063 ;1st spindle range state to OP
 =LF016 ;=programmed tool

,0 ;0 to OP
SQ03 ;clearing gear range change phase counter (no push-button)
DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled

 E ;if not equal
UF0112 ;initiate STOP state
UQ03 ;goto 3rd phase

 Z ;end of condition =programmed tool
,1 ;1 to OP

 Z ;end of condition 1st phase

 =2 ;if 2nd phase: requesting spindle stop
 Y471 ;if STOP state

LRH062 ;loading 1st spindle rotation state to OP
 =5 ;if M5 state

,4 ;4 to OP
SQ03 ;storing into phase counter Q03

 E ;else, if rotation
C005 ;preparing spindle stop
UQ03 ;incrementing phase counter Q03

 Z ;end of condition M5 state
 Z ;end of condition STOP state

,2 ;2 to OP
 Z ;end of condition 2nd phase

 =3 ;if 3rd phase: resetting spindle rotation code
 LQ05 ;loading phase counter M3,M4,M5,M19
 =0 ;command M5 executed

C006 ;resetting spindle rotation code
UQ03 ;incrementing phase counter Q03

 Z ;end of condition command M5 executed
,3 ;3 to OP

 Z ;end of condition 3rd phase

 =4 ;if 4th phase: requesting coolant stop
LY002 ;loading coolant pump state
SF0123 ;saving coolant pump state
D002 ;coolant pump off
UQ03 ;incrementing phase counter Q03
,4 ;4 to OP

 Z ;end of condition 4th phase

 =5 ;if 5th phase
LF016 ;loading range code to OP
-10 ;subtracting 10
BCD ;binary BCD conversion
SRH091 ;range code to message register in decimal form
U701 ;requesting 2nd indexed message
UQ03 ;goto 7th phase

6.8 The Sample.plc Program

295

,5 ;5 to OP
 Z ;end of condition 5th phase

 =6 ;if 6th phase
 (I701 ;if 2nd indexed message
 AY470) ;and START state

LF016 ;loading range code to OP
SRH063 ;code of 1st spindle range
D701 ;clearing 2nd indexed message
LF0123 ;loading coolant pump state
SY002 ;activating coolant pump
,0 ;0 to OP
SQ03 ;clearing gear range change phase counter

;(no action)
DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled

 Z ;end of condition
;2nd indexed message and START

,6 ;6 to OP
 Z ;end of condition 6th phase

Z ;gear range change execution
;end of condition enabled

/* S execution */

F0134 ;if S execution enabled

LQ04 ;loading phase counter Q04 to OP
 =0 ;if no command S

DF0134 ;S execution disabled
UF0135 ;spindle rotation execution

;enabled
 Z ;end of condition no command S

 =1 ;if 1st phase
DF0102 ;interruption disabled
LF026 ;code of S function to OP
SRH060 ;loading 1st spindle current

;revolution register
 F0114 ;if spindle started

,5 ;5 to OP
SH00 ;loading spindle timer
UQ04 ;incrementing phase counter

 E ;else no spindle rotation
DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled
,0 ;loading 0 to OP
SQ04 ;clearing phase counter

 Z ;end of condition spindle rotation

,1 ;1 to OP
 Z ;end of condition 1st phase

 =2 ;if 2nd phase
 NH00 ;loading timer
 ;if terminated

,0 ;0 to OP
SRH061 ;loading spindle JOG command signal register
U654 ;1st spindle command signal direct output
D652 ;1. spindle command signal output enabled

6.8 The Sample.plc Program

296

D001 ;drive enabled
 DF0114 ;spindle not started

UF0112 ;initiate STOP state
,5 ;M5
SRH062 ;loading 1st spindle rotation state register
U711 ;SPINDLE RISING/FALLING EDGE message on
UF0102 ;interruption enabled

 E ;else
 (I650 ;if 1st spindle command signal ready
 AI656) ;and N=Ns

DQ00 ;decrementing FIN counter
UF0102 ;interruption enabled
,0 ;loading 0 To OP
SQ04 ;clearing phase counter

 Z ;end of condition
;1st spindle command signal ready

 Z ;loading timer
,2 ;2 to OP

 Z ;end of condition 2nd phase

Z ;end of condition
;S execution enabled

/* spindle rotation execution */

F0135 ;if spindle rotation execution enabled

LQ05 ;loading Q05 to OP
 =0 ;if no spindle rotation command

DF0135 ;spindle rotation execution disabled
UF0147 ;program controlling commands enabled

 Z ;end of condition
;no spindle rotation command

 =1 ;if 1st phase
DF0102 ;interruption disabled
LF018 ;loading rotation code register to OP

 =5 ;if M5
,10 ;M5 start from 10th phase

 Z ;end of condition M5
 =19 ;if M19

,10 ;M19 start from 10th phase
 Z ;end of condition M19
 =3 ;if M3

,50 ;M3 start from 50th phase
 Z ;end of condition M3
 =4 ;if M4

,50 ;M4 start from 50th phase
 Z ;end of condition M4

SQ05 ;storing into phase counter
,1 ;1 to OP

 Z ;end of condition 1st phase

/* cycles M5, M19 */

 =10 ;if 10th phase (M5, M19 start)
 F0122 ;if M5 from push-buttons

,11 ;goto 11th phase
 E ;else from program

,15 ;goto 15th phase
 Z ;end of condition M5 from push-buttons

6.8 The Sample.plc Program

297

SQ05 ;storing into phase counter
,10 ;10 to OP

 Z ;end of condition
;10th phase (M5, M19 start)

 =11 ;if 11th phase (evaluations if M5
;from control board, or flag F0127)

 NI552 ;if override enabled
 (I553 ;if spindle rotation request
 ANY710) ;and no SPINDLE REVOLUTION ERROR message

UF0112 ;initiate STOP state
,12 ;goto 12th phase

 E ;else, if no spindle
;rotation request ...

,20 ;goto stop
 Z ;end of condition spindle rotation request

SQ05 ;storing into phase counter
 E ;else, if override disabled

,20 ;goto stop
SQ05 ;storing into phase counter

 Z ;end of condition override enabled
,11 ;11 to OP

 Z ;end of condition 11th phase

 =12 ;if 12th phase (did feed stop)
 (I550 ;if interpolator standstill
 AY471) ;and STOP state active

,20 ;goto stop
SQ05 ;storing 20 to phase counter

 Z ;interpolator standstill and STOP state active
,12 ;12 to OP

 Z ;end of condition 12th phase

 =15 ;if 15th phase (test
;if M5, M19 from program)

 (NI553 ;if no spindle rotation request
 OF0133) ;or gear range change occurs

,20 ;goto stop
SQ05 ;storing into phase counter

 Z ;end of condition no spindle rotation
;request or gear range change occurs

,15 ;15 to OP
 Z ;end of condition 15th phase

 =20 ;if 20 phase (initiating stop)th

D651 ;orientation request off
 I651 ;if loop closed on 1 spindlest

 E ;else, if not
LF018 ;loading spindle rotation code register into OP

 =19 ;if M19
LRH063 ;loading 1 spindle rangen codest

 =11 ;if M11
.00FF ;zero pulse search rate in 1 rangest

SRH061 ;storing 1 spindle jog command signal registerst

,11 ;11 back to OP
 Z ;end of condition M11
 =12 ;if M12

.00FF ;zero pulse search rate in 2 rangend

SRH061 ;storing 1 spindle jog command signal registerst

,12 ;12 back to OP
 Z ;end of condition M12
 =13 ;if M13

.00FF ;zero pulse search rate in 3 rangerd

SRH061 ;storing 1 spindle jog command signal registerst

6.8 The Sample.plc Program

298

,13 ;13 back to OP
 Z ;end of condition M13
 =14 ;if M14

.00FF ;zero pulse search rate in 4 rangeth

SRH061 ;storing 1 spindle jog command signal registerst

,14 ;14 back to OP
 Z ;end of condition M14
 =15 ;if M15

.00FF ;zero pulse search rate in 5 rangeth

SRH061 ;storing 1 spindle jog command signal registerst

,15 ;15 back to OP
 Z ;end of condition M15
 =16 ;if M16

.00FF ;zero pulse search rate in 6 range th

SRH061 ;storing 1 spindle jog command signal registerst

,16 ;16 back to OP
 Z ;end of condition M16
 =17 ;if M17

.00FF ;zero pulse search rate in 7 rangeth

SRH061 ;storing 1 spindle jog command signal registerst

,17 ;17 back to OP
 Z ;end of condition M17
 =18 ;if M18

.00FF ;zero pulse search rate in 8 rangeth

SRH061 ;storing 1 spindle JOG command signal registerst

,18 ;18 back to OP
 Z ;end of condition M18

 Y653 ;if - yes
LRH061 ;
NSRH061 ;command signal sign reversal for

;orientation in spindle rotation direction
 Z ;end of condition - yes

 F0114 ;if spindle started
,25 ;5 to OP
SH00 ;storing spindle timer
U654 ;direct 1 spindle command signal transferst

U652 ;enabling 1 spindle command signal transferst

U001 ;enabling main drive
,30
SQ05 ;30 phaseth

 E ;spindle not started
,25 ;5 to OP
SH00 ;storing spindle timer
D654 ;direct 1 spindle command signal transfer offst

U651 ;orientation request
U652 ;enabling 1 spindle command signal transferst

U001 ;enabling main drive
,31
SQ05 ;31 phasest

 Z ;end of condition spindle started

 E ;else M5
DF0114 ;spindle not started
,5 ;5 to OP
SH00 ;storing spindle timer
U654 ;direct 1 spindle command signal transferst

,0 ;ö to OP
SRH061 ;storing 1 spindle JOG command signal registerst

U652 ;enabling 1 spindle command signal transfer onst

U001 ;enabling main drive on
UQ05 ;incrementing phase counter

 Z ;end of condition =19

6.8 The Sample.plc Program

299

 Z ;end of condition loop closed on 1 spindlest

,20 ;20 to OP
 Z ;end of condition 20 phaseth

/* cycle M5 */

 =21 ;if 21 phase st

 NH00 ;testing timer
 ;if terminated

D652 ;disabling 1 spindle command signal transferst

D001 ;disabling main drive off
UF0112 ;activate STOP state
SRH062 ;storing 1 spindle rotation state registerst

U711 ;SPINDLE RISE/FALL ERROR on
UF0102 ;enabling interrupt

 E ;else
 (I650 ;if spindle command signal ramped down
 AI657) ;and spindle stopped

D652 ;disabling 1 spindle command signal transferst

D001 ;disabling main drive
SRH062 ;storing 1 spindle rotation state registerst

DQ00 ;decrementing FIN counter
 F0103 ;if disabling resetting

;enabling interrupt
 E ;else

UF0102 ;enabling interrupt
 Z ;end of condition disabling resetting

;enabling interrupt
,0 ;0 to OP
SQ05 ;clearing phase counter

 Z ;end of condition spindle command signal ramped down
 Z ;displaying timer

,21 ;21 to OP
 Z ;end of condition 21 phasest

/* cycle M19 */

 =30 ;if 30 phaseth

 NH00 ;testing timer
 ;if terminated

,0 ;0 to OP
SRH061 ;storing 1 spindle JOG command signal registerst

U654 ;direct 1 spindle command signal transferst

D652 ;disabling 1 spindle command signal transferst

D001 ;disabling main drive
 DF0114 ;spindle not started

UF0112 ;activate STOP state
U712 ;SPINDLE ORIENTATION ERROR on
,5 ;M5
SRH062 ;storing 1 spindle rotation state registerst

UF0102 ;enabling interrupt
 E ;else
 (I650 ;if command signal ready
 AI656) ;and n=ns

,25 ;5 to OP
SH00 ;storing spindle timer
D654 ;direct 1 spindle command signal transfer offst

U651 ;orientation request
U652 ;enabling 1 spindle command signal transferst

UQ05 ;incrementing phase counter
 Z
 Z ;end of condition NH00

6.8 The Sample.plc Program

300

,30 ;30 to OP
 Z ;end of condition =30

 =31 ;if 31 phasest

 NH00 ;displaying timer
 ;if terminated

,0 ;0 to OP
SRH061 ;storing 1 spindle JOG command signal registerst

D651 ;orientation request off
U654 ;direct 1 spindle command signal transferst

D652 ;disabling 1 spindle command signal transferst

D001 ;disabling main drive
 DF0114 ;spindle not started

UF0112 ;activate STOP state
U712 ;SPINDLE ORIENTATION ERROR on
,5 ;M5
SRH062 ;storing 1 spindle rotation state registerst

UF0102 ;enabling interrupt
 E ;else
 (I651 ;if 1 spindle loop closed and orientedst

 AI652) ;and spindle in position
DF0114 ;spindle not started
LF018 ;loading spindle rotation code register to OP
SRH062 ;storing 1 spindle rotation state registerst

DQ00 ;incrementing FIN counter
 F0103 ;if disabling resetting

;enabling interrupt
 E ;else

UF0102 ;enabling interrupt
 Z ;end of condition disabling resetting

;enabling interrupt
,0 ;0 to OP
SQ05 ;clearing phase counter

 Z ;end of condition 1 spindle loop closed and orientedst

 Z ;end of condition
 ;displaying timer

,31 ;31 to OP
 Z ;end of condition 31 phasest

/* cycles M3, M4 */

 =50 ;if 50th phase (M3, M4 start)
 (I552 ;if override disabled
 AY542) ;and FEED HOLD

;exit and no start
DQ00 ;decrementing FIN counter

 F0103 ;if interruption enabling
;reset disabled

 E ;else
UF0102 ;interruption enabled

 Z ;end of condition interruption enabling
;reset disabled

,0 ;loading 0 to OP
SQ05 ;clearing phase counter

 E ;else
D651 ;inactivating orientation request

 I651 ;if 1st spindle loop closed
 E ;else, if not
 (I552 ;if override disabled
 ANY470) ;and no START state

U714 ;START REQUEST message on
 E ;else

D714 ;START REQUEST message off

6.8 The Sample.plc Program

301

LF018 ;loading spindle rotation code register to OP
 =3 ;if M3

U653 ;1st spindle command signal + polarity
 E ;else M4

D653 ;1st spindle command signal - polarity
 Z ;end of condition M3

D654 ;1st spindle command signal
;direct output disabled

U652 ;1st spindle command signal output enabled
U001 ;drive enabled

 UF0114 ;spindle started
,5 ;5 to OP
SH00 ;storing into spindle timer
UQ05 ;incrementing phase counter

 Z ;end of condition override disabled ...
 Z ;end of condition 1st spindle loop closed
 Z ;end of condition override disabled ...

,50 ;50 to OP
 Z ;end of condition 50th phase (M3, M4 start)

 =51 ;if 51st phase
 NH00 ;if revolution ready timer terminated

,0 ;0 to OP
SRH061 ;storing into spindle JOG command signal register
U654 ;1st spindle command signal direct output
D652 ;1st spindle command signal output disabled
D001 ;drive disabled

 DF0114 ;spindle not started
UF0112 ;initiate STOP state
,5 ;M5
SRH062 ;loading 1st spindle rotation state register
U711 ;SPINDLE RISING/FALLING EDGE message on
UF0102 ;interruption enabled

 E ;else
 (I650 ;if spindle command signal ready
 AI656) ;and N=Ns

LF018 ;loading spindle rotation code register
;to OP

SRH062 ;storing into 1st spindle rotation state
;register

DQ00 ;decrementing FIN counter
 F0103 ;if interruption enabling

;reset disabled
 E ;else

UF0102 ;interruption enabled
 Z ;end of condition interruption enabling

;reset disabled
,0 ;loading 0 to OP
SQ05 ;clearing phase counter

 Z ;spindle command signal ready
 Z ;end of condition

;testing revolution ready timer
,51 ;51 to OP

 Z ;end of condition 51st phase

Z ;spindle rotation execution

;end of condition enabled

/* execution of program controlling commands */

F0147 ;if program controlling command
;execution enabled

6.8 The Sample.plc Program

302

LQ19 ;loading Q19 to OP
 =0 ;if no program controlling command

DF0147 ;program controlling code execution disabled
 Z ;end of condition no program controlling command

 =1 ;if 1st phase: waiting for end of block
 I551 ;if empty interpolator

DF0102 ;interruption disabled
UQ19 ;incrementing phase counter
LF028 ;program controlling code loading to OP

 =1 ;if M1: conditional STOP
 Y445 ;if CND.SP (conditional STOP) state active
 E ;else, if inactive

DQ00 ;decrementing FIN counter
,0 ;0 to OP
SQ19 ;clearing phase counter: exit
UF0102 ;interruption enabled

 Z ;end of condition CND.SP state active
 Z ;end of condition M1
 Z ;end of condition empty interpolator

,1 ;1 to OP
 Z ;end of condition 1st phase

 =2 ;if 2nd phase: requesting M5
 C005 ;preparing spindle stop

UQ19 ;incrementing phase counter Q19
,2 ;2 to OP

 Z ;end of condition 2nd phase

 =3 ;if 3rd phase
 LQ05 ;loading phase counter M3,M4,M5,M19
 =0 ;command M5 executed

LF028 ;loading program controlling code to OP
 >1 ;if M2, or M30

,9 ;loading 9 to OP
SRH070 ;storing into programmed coolant code
D002 ;coolant pump off
D470 ;inactivating START state
D471 ;inactivating STOP state
,0 ;loading 0 to OP
SQ00 ;clearing FIN counter
SQ05 ;clearing phase counter M3,M4,M5,M19
SQ19 ;clearing program controlling commands

;phase counter Q19, exit
UF0102 ;interruption enabled
DF0103 ;interruption enabling

;reset enabled
 E ;else M0, or M1

LY002 ;loading coolant pump state
SF0123 ;saving coolant pump state
D002 ;coolant pump off
UF0112 ;initiate STOP state
UQ19 ;incrementing phase counter Q19

 Z ;end of condition M2, or M30
 Z ;end of condition command M5 executed

,3 ;3 to OP
 Z ;end of condition 3rd phase

 =4 ;if 4th phase:
 Y471 ;if STOP state active

UQ19 ;incrementing phase counter Q19
 Z ;end of condition stop state

,4 ;4 to OP
 Z ;end of condition 4th phase

6.8 The Sample.plc Program

303

 =5 ;if 5th phase: waiting, waiting for START,
;and spindle back

 Y470 ;START state active
C006 ;resetting spindle rotation code
UF0135 ;spindle rotation execution

;enabled
UF0103 ;interruption enabling

;reset disabled
UQ19 ;incrementing phase counter Q19

 Z ;START state active
,5 ;5 to OP

 Z ;end of condition 5th phase

 =6 ;if 6th phase: waiting for spindle
;rotation, resetting coolant

 LQ05 ;loading phase counter M3,M4,M5,M19
 =0 ;spindle command executed

LF0123 ;loading coolant pump state
SY002 ;storing into coolant pump line
DF0103 ;interruption enabling

;reset enabled
DQ00 ;decrementing FIN counter
DF0147 ;program controlling command execution

;disabled
,0 ;0 to OP
SQ19 ;clearing phase counter: exit
UF0102 ;interruption enabled

 Z ;end of condition command M5 executed
,6 ;6 to OP

 Z ;end of condition 6th phase

Z ;program controlling command execution
;enabled end of condition

:196 ;skip module of module :000

J0 ;end of module :000

/* end of module :000 */

:005 ;preparing spindle stop

LQ05 ;loading phase counter (M3,M4,M5,M19)
SF032 ;storing into spindle rotation Q05 (M3, M4, M5, M19)

;phase counter
>0 ;rotation command waits

LF018 ;loading rotation code register
E ;else rotation command does not wait

LRH062 ;loading 1st spindle rotation state
;register

Z ;rotation command waits

SF030 ;saving rotation code
DF0122 ;M5 from program
,5 ;loading 5 to OP
SF018 ;M5 to rotation code register
,1 ;loading 1 to OP
SQ05 ;storing into phase counter (M3,M4,M5,M19)
UF0135 ;spindle rotation execution

;enabled
UQ00 ;incrementing FIN counter
UF0103 ;interruption enabling

6.8 The Sample.plc Program

304

;reset disabled

R ;end of module :005

:006 ;resetting spindle rotation code

 DF0135 ;spindle rotation execution disabled
LF030 ;loading rotation code save
SF018 ;storing into rotation code register
,1 ;loading 1 to OP
SQ05 ;1st phase phase counter (M3,M4,M5,M19)
LF032 ;loading spindle rotation Q05

;(M3, M4, M5, M19)
;phase counter

=0 ;if rotation not programmed
UQ00 ;incrementing FIN counter

Z ;end of condition rotation not programmed

DF0103 ;interruption enabling
;reset enabled

R ;end of module :006

/* labels of PLC softkeys */

:197
, ;Y500
, ;Y501
, ;Y502
, ;Y503
, ;Y504
, ;Y505
, ;Y506
FSBS, ;Y507
$

/* end of labels of PLC softkeys */

/* PLC messages */

:198
TOOL REPLACEMENT T, ;Y700, RH090
RANGE, ;Y701, RH091
$

/* end of PLC messages */

/* PLC error messages */

:199
SPINDLE REVOLUTION ERROR, ;Y710
SPINDLE RISING/FALLING EDGE, ;Y711
SPINDLE ORIENTATION ERROR, ;Y712
SPINDLE ROTATION REQUEST, ;Y713
START REQUEST, ;Y714
, ;Y715
, ;Y716

6.8 The Sample.plc Program

305

, ;Y717

, ;Y720
, ;Y721
, ;Y722
, ;Y723
, ;Y724
, ;Y725
, ;Y726
, ;Y727

, ;Y730
$

/* end of PLC error messages */

/* PLC program code */

:200 MILLSAMPLE.PLC PROGRAM
MACHINE CONTROL BOARD 2
- RAPID TRAVERSE OVERRIDE:
CONST39=0 FROM SOFTKEYS,
CONST39=1 FROM F% ROTARY SWITCH, 4 STEPS
CONST39=2 MACHINE CONTROL BOARD Push-buttonS
CONST39=3 FROM F% ROTARY SWITCH, 13 STEPS
CONST39=4 FROM F% ROTARY SWITCH, 9 STEPS
$

/* end of PLC program code */

6.9 The Axrandom.plc Sample Program

306

6.9 The Axrandom.plc Sample Program

Below excerpts of the sample program are shown. Expect of those below the program
corresponds to example.plc program.
Tool preparation is implemented as the effect of T code, while replacement is executed by means
of M06. The magazine handle is of random access, thus PLC uses tool pot table and PLC table.
Code M20 empties tool from spindle.
If the called tool is not in the magazine PLC initiates manual replacement. Manual replacement
and manual empty are activated by the use of codes M6 and M20.
Magazine rotation is bidirectional and realised by PLC axis. Running to position always occurs
from positive direction. In case of magazine rotation in negative direction it overruns by one tool
pot and runs to position in positive direction. Magazine rotation is executed at rapid traverse rate
except for the last tool pot period which is done at feed rate.

/*

inner variables:
.........
F1000 - incoming T code
F1001 - new T=T in spindle
F1002 - put tool manually in spindle
F1003 - put tool from magazine in spindle

F1004 - rotate magazine to called tool
F1005 - magazine has reference position
F1006 - magazine rotation direction=0: positive
F1007 - magazine rotation

F1010 - spindle empty command: M20
F1011 - empty spindle
F1012 - tool in spindle placed manually
F1013 - tool in spindle placed from magazine

F1014 - rotate magazine to returning tool
F1015 - magazine error
F1016 -
F1017 -

F102 - code of called tool
F104 - pot of called tool in magazine

F106 - code of returning tool
F108 - pot of returning tool in magazine

F110 - current magazine position (in front of spindle)
F112 - target position for magazine rotation

F114 - relative path for magazine rotation
F116 -
F118 - magazine length/2

F120 - HF120 format register
F122 - start address of table
F124 - table length
F126 - mask register
F128 - address register

F130 - PF130 format register

6.9 The Axrandom.plc Sample Program

307

F132 - search from this line
F134 - address register

F140 - start address of PLC table

F150...F157 - operand A: 8 byte
F158...F161 - operand B: 4 byte
F162...F169 - operand C: 8 byte

F170...F177 - MUL170 registers
F180...F187 - MW180 registers

F190...F193 - magazine position (display at #190)

F500 -

...

F[501+2*MAGAZINE] end of magazine table

F[502+2*MAGAZINE] start address of PLC table
n - =0: empty spindle

=1: tool in spindle placed manually
=2: tool in spindle placed from magazine
=4: cycles M6, M20 not closed

...

F[501+2*MAGAZINE+2*PLC_TAB] end address of PLC table

counters:

....
Q20 - magazine rotation phase counter

H10 - magazine rotation timer
H11 - M6 timer

1-minute timers

M0 - timer of magazine actions

PLC constants:

CONST037 - rate/10000
CONST038 - pulse number between two magazine positions
CONST039 - magazine length

PLC axes:

3 axis selected as PLC axisrd

modifications in connection with axis movement:

- initializing

6.9 The Axrandom.plc Sample Program

308

- emergency stop handle
- MON handle
- magazine rotations

*/

/* start of module :001 */

:001 ;20-msec cyclical PLC module

/* INITIALIZING */

I510 ;if first module :001 after power-on

U520 ;mode selection from SW control panel
U521 ;axis selection from SW control panel
U522 ;increment selection from SW control panel
U523 ;status selection from SW control panel
U524 ;PLC buttons from SW control panel
U525 ;R% from SW control panel
D526 ;S% from SW control panel
D527 ;F% from SW control panel
U407 ;selecting EDIT mode
UF0102 ;interrupt enabled
,0 ;0 to OP
SRH060 ;S0
SRH064 ;T0
,5 ;5 to OP
SRH062 ;M5
,11 ;11 to OP
SRH063 ;M11
,9 ;9 to OP
SRH070 ;M9

;***********register storing for search for new tool
LRP039 ;magazine length
/2 ;divided by 2
SF118 ;storing
.0002 ;word
SF120 ;storing format register
.0500 ;start address of table
SF122 ;defining start address
LRP039 ;magazine length
*2 ;
+2 ;table length
SF124 ;defining length
+500
BCD ;start address of PLC table
SF140 ;start address of PLC table
.3FFF ;mask
SF126 ;defining mask

;***********register storing for
;returning tool

.0102 ;bidirectional search, word
SF130 ;entering format

.0004 ;4 bytes
SF170 ;writing into format register MUL170
.0150 ;start address of multiplicand (A)
SF172 ;storing address register

6.9 The Axrandom.plc Sample Program

309

.0158 ;start address of multiplicator (B)
SF174 ;storing address register
.0162 ;start address of product (C)
SF176 ;storing address register

.0004 ;no decimal point, 4 bytes
SF180 ;storing format register MW180
.0001 ;writing at macro variable
SF182 ;storing segment register
.0190 ;at macro variable #190
SF184 ;storing index register
.0190 ;start address of magazine position
SF186 ;storing address register

U632 ;3 Axis from PLCrd

Z ;end of condition
;first module :001 after power-on

F0113 ;if activate EMERGENCY STOP state

 Y000 ;if spindle enabled
D651 ;orientation request off

 U654 ;direct 1 spindle command signal transferst

,0 ;0 to OP
SRH061 ;storing spindle JOG command signal register

 Z ;spindle enabled
;**********************************change

 D920 ;3 axis interpolator STOPrd

D921 ;3 axis interpolator strobe signal offrd

D924 ;3 axis run to reference position offrd

U925 ;3 axis interpolator RESETrd

DF1005 ;magazine has no reference position
UF1015 ;magazine error
,0 ;
SQ20 ;clearing rotation phase counter
DF1007 ;not under revolution

 ;**********************************change
C011 ;calling function RESET
C012 ;calling start buttons RESET
,50 ;50 to OP (1 sec lag)
ST00 ;storing emergency stop timer
UF0104 ;check emergency stop timer
DF0113 ;clearing activate EMERGENCY STOP state

Z ;end of condition
;activate EMERGENCY STOP

F0105 ;if check MON timer

 T01 ;checking MON timer

 I003 ;if no emergency stop
DF0105 ;check MON timer cleared

;******************************change
 F1015 ;if magazine error

U742 ;MAGAZINE ERROR on

6.9 The Axrandom.plc Sample Program

310

 Z ;magazine error
;******************************change

 Z ;no emergency stop

 E ;else terminated
D540 ;MON output off
D506 ;MON lamp off
DF0105 ;check MON timer cleared

 Z ;end of condition clock still active

Z ;end of condition check MON timer

/* receiving magazine rotation command */

NF1007 ;if magazine not rotated

 F1004 ;if rotate magazine to called tool
LF104 ;place of called tool in magazine
SF112 ;target position for magazine rotation
DF1015 ;no magazine error
DF1004 ;clearing rotate magazine to called tool
UF1007 ;magazine under rotation
,1 ;
SQ20 ;clearing phase counter

 Z ;end of condition rotate magazine to called tool

Z ;end of condition magazine not rotated

NF1007 ;if magazine not rotated

 F1014 ;if rotate magazine to returning tool
 LF108 ;place of returning tool in magazine

SF112 ;target position for magazine rotation
DF1015 ;no magazine error
DF1014 ;clearing rotate magazine to returning tool
UF1007 ;magazine under rotation
,1 ;
SQ20 ;clearing phase counter

 Z ;a end of condition rotate magazine to returning tool

Z ;end of condition magazine not rotated

/* magazine rotation */

F1007 ;if magazine under rotation

LQ20 ;loading Q20 to OP
 =0 ;if no rotation

DF1007 ;magazine not rotated
 Z ;end of condition magazine not rotated

 =1 ;if 1 phasest

 F1005 ;if magazine has reference position
LF112 ;target position

 =LF110 ;if =current position
DF1007 ;clearing magazine under rotation
,0
SQ20 ;no duty

 E ;if not =
 <LF110 ;if target position is less

6.9 The Axrandom.plc Sample Program

311

;then current position
+LRP039 ;plus magazine length

 Z ;end of condition less
-LF110 ;mínus current magazine position

 >LF118 ;if greater then magazine length/2
SF114 ;storing
LRP039 ;magazine length
-LF114 ;mínus stored value
+1 ;in case of magazine rotated in negative direction

;position is overrun by 1
;to run from + direction
;to position

SF114 ;relative offset for magazine rotation
UF1006 ;magazine rotation direction=1: negative

 E ;if less
-1 ;one subtracted
SF114 ;relative offset for magazine rotation
DF1006 ;magazine rotation direction=0: positive

 Z ;end of condition greater then ...
LF114 ;relative offset for magazine rotation

 =0 ;if 0
,21 ;
SQ20 ;goto 21 phasest

 E ;not 0
SF150 ;A lower word=relative offset
,0 ;
SF152 ;A upper word=0
LRP038 ;pulse number between two magazine positions
SF158 ;B lower word=pulse number
,0 ;
SF160 ;B upper word=0
MUL170 ;multiplication C=A*B

 F1006 ;if magazine rotation direction=1: negative
LF162 ;
SF150 ;A lower word=C lower word
LF164 ;
SF152 ;A upper word=C upper word
.FFFF ;-1
SF158 ;B lower word=-1
SF160 ;B upper word=-1
MUL170 ;multiplication C=A*B

 Z ;end of condition negative rotation direction
LF162 ;
SRH160 ;3 axis position command lower wordrd

LF164 ;
SRH161 ;3 axis position command upper wordrd

D920 ;3 axis interpolator STOPrd

U921 ;3 axis interpolator strobe signal offrd

D922 ;3 axis move at rapid traverse raterd

U923 ;3 axis incremental movementrd

D924 ;3 axis run to reference position offrd

D925 ;3 axis interpolator RESET offrd

,20 ;
SQ20 ;goto 20 phaseth

 Z ;end of condition =0
 Z ;end of condition =current position
 E ;if no reference position
; D920 ;3 axis interpolator STARTrd

U920
D921 ;3 axis interpolator strobe signal offrd

U924 ;3 axis run to reference positionrd

D925 ;3 axis interpolator RESET offrd

; ,40 ;
,41

6.9 The Axrandom.plc Sample Program

312

SQ20 ;goto 40 phaseth

 Z ;end of condition magazine has reference position
,1 ;

 Z ;end of condition 1 phasest

 =20 ;if 20 phaseth

 NI921 ;if 3 axis received datard

U920 ;3 axis interpolator STARTrd

D921 ;3 axis interpolator strobe signal offrd

UQ20
 Z ;end of condition 3 axis received datard

,20 ;
 Z ;end of condition 20 phaseth

 =21 ;if 21 phasest

 (I921 ;3 axis interpolator terminatedrd

 AI562) ;and 3 axis in positionrd

LRP038 ;pulse number between two magazine positions
SRH160 ;3 axis position command lower wordrd

,0 ;
SRH161 ;3 axis position command upper wordrd

LRP037 ;rate constant
SF150 ;A lower word=rate constant
,0 ;
SF152 ;A upper word=0
,10000 ;constant
SF158 ;B lower word=constant
,0 ;
SF160 ;B upper word=0
MUL170 ;multiplication C=A*B
LF162 ;C lower word
SRH162 ;writing rate command lower word
LF164 ;C upper word
SRH163 ;writing rate command upper word
D920 ;3 axis interpolator STOPrd

U921 ;3 axis interpolator strobe signal offrd

D922 ;3 axis move at feed raterd

U923 ;3 axis incremental movementrd

D924 ;3 axis run to reference position offrd

D925 ;3 axis interpolator RESET offrd

;increments last unit in positive direction
UQ20 ;goto 22 phasend

 Z ;end of condition 3 axis interpolator terminatedrd

 Z ;end of condition 21 phasest

 =22 ;if 22 phasend

 NI921 ;if 3 axis received datard

U920 ;3 axis interpolator STARTrd

D921 ;3 axis interpolator strobe signal offrd

UQ20
 Z ;end of condition 3 axis received datard

,22 ;
 Z ;end of condition 22 phasend

 =23 ;if 23 phaserd

 (I921 ;if 3 axis interpolator terminatedrd

 AI562) ;and 3 axis in positionrd

D920 ;3 axis interpolator STOPrd

DF1015 ;no magazine error
LF112 ;loading target position
SF110 ;=current position
,0

6.9 The Axrandom.plc Sample Program

313

SQ20 ;no duty
DF1007 ;clearing magazine under rotation

 Z ;end of condition 3 axis interpolator terminatedrd

,23 ;
 Z ;end of condition 23 phaserd

/*
 =40 ;if 40 phaseth

 NI921 ;if 3 axis received datard

U920 ;3 axis interpolator STARTrd

D924 ;3 axis run to reference position offrd

UQ20
 Z ;end of condition 3 axis received datard

,40 ;
 Z ;end of condition 40 phaseth

*/

 =41 ;if 41 phasest

 (I923 ;if reference position on 3 axisrd

 AI562) ;and 3 axis in positionrd

D920 ;3 axis interpolator STOPrd

D924 ;3 axis run to reference position offrd

UF1005 ;reference position
,1 ;position
SF110 ;storing current position
,1 ;
SQ20 ;end of condition

 Z ;goto 1 phasest

,41 ;
 Z ;end of condition 41 phase végest

Z ;end of condition magazine under rotation

/* PLC axis reference point return */

Y924 ;if 3 axis run to reference positionrd

LI055 ;REFZ switch
SY552 ;3 axis reference position switchrd

Z

/* MAGAZINE RESET */

(I505AV505) ;if MAGAZINE RESET button pressed
 F1007 ;if magazine under rotation

,0 ;
SQ20 ;zeroing phase counter
DF1005 ;magazine has no reference position
DF1007 ;clearing magazine under rotation
UF1015 ;magazine error
D920 ;3 axis interpolator STOPrd

U921 ;3 axis interpolator strobe signal offrd

D924 ;3 axis run to reference position offrd

D925 ;3 axis interpolator RESET offrd

 Z ;end of condition magazine under rotation
Z ;end of condition MAGAZINE RESET button pressed

6.9 The Axrandom.plc Sample Program

314

/* displaying magazine position */

LRH110 ;3 axis current position lower wordrd

SF190 ;storing
LRH111 ;3 axis current position upper wordrd

SF192 ;storing
MW180 ;writing at #190

J1 ;end of module :001

/* end of module :001 */

/* selecting M codes */

:003 ;M code selection

=6 ;if equals to 6
,1 ;1 to OP
SQ01 ;storing phase counter M06, M20
DF0131 ;disabling tool replacement execution

;function execution starts from here
DF1010 ;not spindle empty command: not M20, but M6
UF0120 ;executable M code found
G004 ;goto label :004

Z ;end of condition equals to 6

=20 ;if equals to 20
,1 ;1 to OP
SQ01 ;storing phase counter M06, M20
DF0131 ;disabling tool replacement execution

;function execution starts from here
UF1010 ;spindle drift command: M20
UF0120 ;executable M code found
G004 ;goto label :004

Z ;end of condition equals to 20

**

/* function execution */

/* M6, M20 execution */

F0131 ;if M6 execution enabled,
;and function execution start

LQ01 ;loading Q01 to OP
 =0 ;if no M6

DF0131 ;disabling M6 execution
UF0132 ;enabling T execution

 Z ;end of condition no M6

 =1 ;if 1 phase: testst

 I551 ;if interpolator terminated
DF0102 ;disabling interrupt
C021 ;state set before replacement cycle

 (Y733 ;If READ ERROR
 OY740 ;or REPLACEMENT CYCLE NOT CLOSED
 OY732) ;or WRITE ERROR
 E ;if OK

6.9 The Axrandom.plc Sample Program

315

 ((F1000 ;if incoming T code
 ANF1001 ;and new T not=T in spindle
 ANF1010) ;and command M6
 O(F1010 ;or spindle empty command: M20
 ANF1011)) ;and spindle not empty

LRH070 ;loading coolant state register
;to OP

 =9 ;if state M9
,3 ;3 to OP
SQ01 ;storing phase counter Q01

 E ;else state M8
C007 ;preparing coolant stop
UQ01 ;incrementing phase counter Q01

 Z ;and of condition state M9
 E ;else if no incoming T code ...

C022 ;decoding flags and exit
;**exit

 Z ;end of condition incoming T ocde ...
 Z ;end of condition READ ERROR ...
 Z ;end of condition interpolator terminated

,1 ;1 to OP
 Z ;end of condition 1 phasest

 =2 ;if 2 phasend

LQ06 ;loading phase counter M8, M9
 =0 ;command M9 executed

C008 ;resetting coolant code
UQ01 ;incrementing phase counter Q01

 Z ;end of condition command M9 executed
,2 ;2 to OP

 Z ;end of condition 2 phasend

 =3 ;if 3 phaserd

LQ05 ;loading phase counter M3,M4,M5,M19
SF032 ;saving spindle rotation (M3, M4, M5, M19)

;phase counter Q05
 >0 ;rotation command waiting

LF018 ;loading rotation code register
 E ;else no rotation command change

LRH062 ;loading 1 spindlest

;rotation state register
 Z ;rotation command waiting

SF030 ;saving rotation code
DF0122 ;M5 from program
,19 ;19 to OP
SF018 ;rotation code into register M19
,1 ;1 to OP
SQ05 ;storing phase counter M3,M4,M5,M19
UF0135 ;enabling

;spindle rotation execution
UQ00 ;incrementing FIN counter
UF0103 ;disabling resetting

;enabling interrupt
UQ01 ;incrementing phase counter
,3 ;3 to OP

 Z ;end of condition 3 phaserd

 =4 ;if 4 phaseth

LQ05 ;loading phase counter M3, ... M19
 =0 ;command M19 executed
 DF0135 ;disabling spindle rotation execution

LF030 ;loading saved rotation code
SF018 ;resetting rotation code register
LF032 ;loading spindle rotation (M3, M4 M5, M19)

6.9 The Axrandom.plc Sample Program

316

;phase counter Q05
SQ05 ;
DF0103 ;disabling resetting

;enabling interrupt off
 F1011 ;if empty spindle
 (NF1010 ;if M6
 AF1002) ;and place tool manually

,60 ;60 to OP
SQ01 ;storing phase counter
UF0112 ;activate STOP state

;*************************************manual placement
 Z ;end of condition place tool manually
 (NF1010 ;if M6
 AF1003) ;and place tool form magazine

,20 ;20 to OP
SQ01 ;storing phase counter

;**********************************automatic replacement
;**********************************empty spindle-tool in

 Z ;end of condition place tool from magazine
 E ;spindle not empty
 F1012 ;tool in spindle placed manually

UF0112 ;activate STOP state
UQ01 ;goto 5 phaseth

;***************************************manual removal
 E ;tool on spindle placed from magazine

,20 ;20 to OP
SQ01 ;storing phase counter

;**********************************automatic replacement
;**********************************tool out-tool in
;**********************************or tool out

 Z ;end of condition ... placed manually
 Z ;end of condition empty spindle
 Z ;end of condition command M9 executed

,4 ;4 to OP
 Z ;end of condition 4 phaseth

 =5 ;if 5 phase: testth

 Y471 ;if STOP state
LRH064 ;loading T in spindle to OP
BCD ;binary BCD conversion
SRH092 ;to tool out message register in decimal form
U702 ;requesting T-index message TOOL OUT
UQ01 ;increasing phase counter

 Z ;end of condition STOP state
,5 ;5 to OP

 Z ;end of condition 5 phaseth

 =6 ;if 6 phaseth

 (I702 ;if TOOL OUT T
 AY470) ;and START

D702 ;clearing message TOOL OUT T
,0 ;0 OP-ba
SRH064 ;T in spindle
SF500 ;tool table note
UF1011 ;empty spindle
DF1012 ;tool in spindle not placed manually
DF1013 ;tool in spindle not placed from magazine

 (NF1010 ;if M6
 AF1002) ;and place tool manually

,60 ;60 to OP
SQ01 ;storing phase counter
UF0112 ;activate STOP state

;***************************************manual placement
 Z ;end of condition place tool manually

6.9 The Axrandom.plc Sample Program

317

 (NF1010 ;if M6
 AF1003) ;if place tool from magazine

,20 ;20 to OP
SQ01 ;storing phase counter

;**********************************automatic replacement
;**spindle
;**empty-tool in

 Z ;end of condition place tool from magazine
 F1010 ;if spindle empty command: M20

,0 ;empty spindle
C023 ;exit tool replacement

;**exit
 Z ;end of condition spindle empty command: M20
 Z ;end of condition TOOL OUT T...

,6 ;6 to OP
 Z ;end of condition 6 phaseth

 =20 ;if 20 phaseth

 NF1015 ;no magazine error
 NF1007 ;if magazine not rotating
 (NF1010 ;if M6
 AF1003) ;and place tool from magazine

LF104 ;place of called tool in magazine
 =LF110 ;current magazine position (in front of spindle)

,2 ;
SH11 ;
,40 ;
SQ01 ;goto 40 phaseth

;arm manipulation: removing tool from spindle
;and from magazine
;**********************************tool out, in branch Z

 E ;if not equal
U743 ;MAGAZINE POSITION ERROR on

 Z ;end of condition current...
 Z ;end of condition M6 ...
 (F1010 ;if M20
 O(NF1010 ;or M6
 AF1002)) ;and place tool manually

C020 ;searching empty pot
 (Y736 ;if SEARCH ERROR WITH P
 OY737) ;or NO EMPTY POT
 E ;else

UF1014 ;rotate magazine to returning tool
UQ01 ;

;*******************************tool out branch
 Z ;end of condition SEARCH ERROR ... feltétel vége
 Z ;end of condition M20...
 Z ;end of condition magazine not rotating ...
 E ;magazine error

U742 ;MAGAZINE ERROR on
 Z ;end of condition no magazine error

,20 ;20 to OP
 Z ;end of condition 20 phaseth

 =21 ;if 21 phasest

 NF1015 ;if no magazine error
 (NF1007 ;if magazine not rotating
 ANF1014) ;and rotate magazine to returning tool

;command received
LF108 ;pot of returning tool in magazine

 =LF110 ;current magazine position (in front of spindle)
,2 ;

6.9 The Axrandom.plc Sample Program

318

SH11 ;
UQ01 ;arm manipulation starts for placing tool back

 E
U743 ;MAGAZINE POSITION ERROR on

 Z ;
 Z ;end of condition magazine not rotating ...
 E ;magazine error

U742 ;MAGAZINE ERROR on
 Z ;end of condition no magazine error
 ,21 ;
 Z ;end of condition 21 phasest

 =22 ;if 22 statend

 H11 ;if timer not terminated
 E ;terminated

;end of arm manipulation tool placed back
 NF1011 ;if spindle not empty

LF500 ;loading tool code in spindle to OP
SFI134 ;writing in tool table

 Z ;end of condition spindle not empty
 (F0080 ;if syntax error,
 OF0082) ;or not decimal number

U732 ;WRITE ERROR
 E ;if OK

,0 ;0 to OP
SRH064 ;T in spindle
SF500 ;note in tool table
UF1011 ;empty spindle
DF1012 ;tool in spindle not placed manually
DF1013 ;tool in spindle not placed from magazine

 (NF1010 ;if M6
 AF1002) ;and place tool manually

UF0112 ;requesting STOP state
,60 ;
SQ01 ;goto 60 phaseth

;*********************************goto manual replacement
 Z ;end of condition M6 ...
 F1010 ;if M20

,0 ;empty spindle
C023 ;exit tool replacement

;*********************************exit
 Z ;end of condition M20
 Z ;end of condition syntax error ...
 Z ;end of condition timer terminated

,22 ;
 Z ;end of condition 22 phasend

 =40 ;if 40 phaseth

 H11 ;if timer not terminated
 E ;terminated

;end of arm manipulation:
;tool removed from spindle and from magazine

 F1011 ;if empty spindle
,2 ;
SH11 ;
,42 ;
SQ01 ;arm manipulation starts for placing tool back

;********************************
 E ;if not empty

LF102 ;code of called tool
A.C000 ;keeping width code, cutting tool number
SFI128 ;clearing called tool from table

6.9 The Axrandom.plc Sample Program

319

 (F0080 ;if syntax error,
 OF0082) ;or not decimal number

U732 ;WRITE ERROR
 E ;if OK

C020 ;searching empty pot
 (Y736 ;if SEARCH ERROR WITH P
 OY737) ;or NO EMPTY POT
 E ;else

LF108 ;pot of returning tool in magazine
 =LF110 ;if equal to current magazine position

;goto arm manipulation
,2 ;
SH11 ;
,42 ;
SQ01 ;arm manipulation starts for placing tool back

;********************************
 E ;if not, magazine must be rotated

UF1014 ;rotate magazine to returning tool
UQ01 ;

 Z ;end of condition if equal ...
 Z ;end of condition SEARCH ERROR
 Z ;end of condition syntax error
 Z ;end of condition empty spindle
 Z ;end of condition timer terminated

,40 ;
 Z ;end of condition 40 phaseth

 =41 ;if 41 phasest

 NF1015 ;if no magazine error
 (NF1007 ;if magazine not rotating
 ANF1014) ;and rotate magazine to returning tool

;command received
LF108 ;place of returning tool in magazine

 =LF110 ;current magazine position (in front of spindle)

,2 ;
SH11 ;
UQ01 ;arm manipulation starts for placing tool back

 E
U743 ;MAGAZINE POSITION ERROR on

 Z
 Z ;end of condition magazine not rotating ...
 E ;magazine error

U742 ;MAGAZINE ERROR on
 Z ;end of condition no magazine error
 ,41 ;
 Z ;end of condition 41 phasest

 =42 ;if 42 phasend

 H11 ;if timer not terminated
 E ;terminated

;end of arm manipulation tool replaced
LF102 ;code of called tool
A.C000 ;keeping width code, cutting tool number
SFI128 ;clearing called tool from table

 (F0080 ;if syntax error,
 OF0082) ;or not decimal number

U732 ;WRITE ERROR
 E ;if OK
 NF1011 ;if spindle not empty

LF500 ;loading tool code in spindle to OP
SFI134 ;writing in tool table

 Z ;end of condition spindle not empty

6.9 The Axrandom.plc Sample Program

320

 (F0080 ;if syntax error
 OF0082) ;or not decimal number

U732 ;WRITE ERROR
 E ;if OK

LF102 ;code of called tool
 SF500 ;note in tool table

A.3FFF ;cutting width code
SRH064 ;displaying T code in spindle
,2 ;in spindle from magazine
C023 ;exit tool replacement

;*********************************exit
 Z ;end of condition syntax error ...

 Z ;end of condition syntax error ...
 Z ;end of condition timer terminated

,42 ;
 Z ;end of condition 42 phasend

 =60 ;if 60 phase: testth

 Y471 ;if STOP state
LF102 ;code of called tool
BCD ;binary BCD conversion
SRH093 ;into tool in message register in decimal form
U703 ;requesting T-indexed message TOOL IN
UQ01 ;goto 62 phasend

 Z ;end of condition STOP state
,61 ;60 to OP

 Z ;end of condition 60 phaseth

 =61 ;if 61 phasest

 (I703 ;if TOOL IN T on screen
 AY470) ;and START

LF102 ;code of called tool to OP
 SF500 ;note in tool table

A.3FFF ;cutting width code
SRH064 ;displaying T in spindle
D703 ;1 indexed message offst

,1 ;tool in spindle placed manually
C023 ;exit tool replacement

;**exit
 Z ;end of condition TOOL IN T on screen

;and START
,61 ;61 to OP

 Z ;end of condition 61 phasest

Z ;end of condition
;M6 execution enabled

/* executing T */

F0132 ;if T execution enabled

LQ02 ;loading Q02 to OP
 =0 ;if no T

DF0132 ;T execution disabled
UF0133 ;enabling

;gear range change execution
 Z ;end of condition no T

 =1 ;if 1 phase: testst

DF0102 ;disabling interrupt

6.9 The Axrandom.plc Sample Program

321

UF1000 ;incoming T ocde
LF024 ;code of called tool
HF120 ;search

 F0080 ;if search error
U735 ;SEARCH ERROR WITH H,

 E ;else search OK
 F0081 ;if data not found: MANUAL REPLACEMENT

DF1001 ;new T not =T in spindle
UF1002 ;place tool manually
DF1003 ;clearing place tool from magazine
LF024 ;code of called tool

 SF102 ;saving code of called tool
,0 ;
SF104 ;pot of called tool in magazine

 E ;if data found
LF128 ;data adress

 =.0500 ;if tool in spindle
UF1001 ;new T=T in spindle
DF1002 ;clearing place tool manually
DF1003 ;clearing place tool from magazine
LFI128 ;loading code and width of called tool

 (F0080 ;if syntax error
 OF0082) ;or not decimal number

U733 ;READ ERROR,
 E ;if OK
 SF102 ;saving code of called tool

,0 ;
SF104 ;pot of called tool in magazine

 Z ;end of condition syntax error
 E ;if tool in magazine

DF1001 ;new T not =T in spindle
DF1002 ;clearing place tool manually
UF1003 ;place tool from magazine
DF1006 ;magazine not rotated to new tool
LFI128 ;loading code and width of called tool

 (F0080 ;if syntax error
 OF0082) ;or not decimal number

U733 ;READ ERROR,
 E ;if OK
 SF102 ;saving code of called tool

LF128 ;tool address
BIN ;binary conversion
-500 ;by subtracting magazine start address
/2 ;generating line number
SF104 ;pot of called tool in magazine
UF1004 ;rotate magazine to called tool

;**************************************
 Z ;end of condition syntax error
 Z ;end of condition tool in spindle
 Z ;end of condition data not found

DQ00 ;decrementing FIN counter
UF0102 ;enabling interrupt
,0 ;0 to OP
SQ02 ;clearing T phase counter

 Z ;end of condition search error
,1 ;1 to OP

 Z ;end of condition 1 phasest

Z ;end of condition
;T execution enabled

**

J0 ;end of module :000

6.9 The Axrandom.plc Sample Program

322

/* searching empty pot */

:020 ;module 20
LF110 ;current magazine position (in front of spindle)
*2 ;byte conversion
+500 ;generating address
BCD ;BCD form for search
SF132 ;search for empty pot starts from this address
LF500 ;code and width of tool in spindle
PF130 ;searching empty pot for tool of above width

 F0080 ;if search error
U736 ;SEARCH ERRO WITH F

 E ;else search OK
 F0081 ;if data not found

U737 ;error message NO EMPTY POT
 E ;data found

LF134 ;number of found pot to OP
BIN ;binary conversion
-500 ;by subtracting magazine start address
/2 ;generating line number
SF108 ;pot of returning tool in magazine

 Z ;end of condition data not found
 Z ;end of condition search error
R ;end

/* setting states before replacement cycle */

:021
LFI140 ;reading 1 line of PLC tablest

(F0080 ;if syntax error
OF0082) ;or not decimal number

U733 ;READ ERROR
E ;if OK
 =0 ;if empty spindle

UF1011 ;empty spindle
DF1012 ;tool in spindle not placed manually
DF1013 ;tool in spindle not placed from magazine

 E ;not empty
 =1 ;if tool in spindle placed manually

DF1011 ;spindle not empty
UF1012 ;tool in spindle placed manually
DF1013 ;tool in spindle not placed from magazine

 E ;if tool in spindle not placed manually
 =2 ;if tool in spindle placed from magazine

DF1011 ;spindle not empty
DF1012 ;tool in spindle not placed manually
UF1013 ;tool in spindle placed from magazine

 E ;else interrupted replacement cycle
U740 ;REPLACEMENT CYCLE NOT CLOSED

 Z ;end of condition tool in spindle placed from magazine
 Z ;end of condition tool in spindle placed manually
 Z ;end of condition empty spindle

,4 ;replacement cycle in progress
SFI140 ;writing 1 line of PLC tablest

 (F0080 ;if syntax error
 OF0082) ;or not decimal number

U732 ;WRITE ERROR
 Z ;end of condition syntax error ...

6.9 The Axrandom.plc Sample Program

323

Z ;end of condition syntax error ...

R

/* decoding flags and exit */

:022
F1011 ;if empty spindle

,0 ;
E ;if not empty
 F1012 ;if tool in spindle placed manually

,1 ;
 E ;if not placed manually
 F1013 ;if tool in spindle placed from magazine

,2 ;
 E ;if not placed from magazine

U741 ;RECORDING ERROR
 Z ;tool in spindle placed from magazine
 Z ;tool in spindle placed manually
Z ;end of condition empty spindle
NY741 ;if recording OK

C023 ;
Z ;end of condition recording OK
R

/* exit tool replacement */

:023
SFI140 ;writing 1 line of PLC tablest

(F0080 ;if syntax error,
OF0082) ;or not decimal number

U732 ;WRITE ERROR
E ;if no error

DF1000 ;no incoming T
DF1001 ;new T not =T in spindle
DF1002 ;clearing place tool manually
DF1003 ;clearing place tool from magazine
,0 ;0 to OP
SQ01 ;cleaing T phase counter (no action)
DQ00 ;decrementing FIN counter
UF0102 ;enabling interrupt

Z ;end of condition syntax error ...
R

/* PLC softkey labels */

:197
SPINDLE JOG, ;Y500
X LOCK, ;Y501
Y LOCK, ;Y502
Z LOCK, ;Y503
FUNKC LOCK, ;Y504
MAGZN REST, ;Y505
MON, ;Y506
FSBS, ;Y507

6.9 The Axrandom.plc Sample Program

324

$

/* end of PLC softkey labels */

/* PLC messages */

:198TOOL REPLACEMENT T, ;Y700
RANGE, ;Y701
TOOL OUT T, ;Y702
TOOL IN T, ;Y703
, ;Y704
, ;Y705
, ;Y706
, ;Y707
$

/* end of PLC messages */

/* PLC error messages */
:199
SPINDLE REVOLUTION ERROR, ;Y710
SPINDLE RISE/FALL ERROR, ;Y711
SPINDLE ORIENTATION ERROR, ;Y712
SPINDLE ROTATION REQUEST, ;Y713
, ;Y714
, ;Y715
, ;Y716
, ;Y717
MACRO READ ERROR, ;Y720
MACRO WRITE ERROR, ;Y721
ADD ERROR, ;Y722
SUBTRACT ERROR, ;Y723
MULTIPLY ERROR, ;Y724
DIVIDE ERROR, ;Y725
COMPARE ERROR, ;Y726
EQUAL, ;Y727
LESS, ;Y730
GREATER, ;Y731
WRITE ERROR, ;Y732
READ ERROR, ;Y733
WRITE/READ ERROR, ;Y734
SEARCH ERROR WITH H, ;Y735
SEARCH ERROR WTIH P, ;Y736
NO EMPTY POT, ;Y737
CHANGE CYCLE NOT TERMINATED, ;Y740
RECORDING ERROR, ;Y741
MAGAZINE ERROR, ;Y742
MAGAZINE POSITION ERROR, ;Y743
, ;Y744
, ;Y745
, ;Y746
, ;Y747
LUBRICATION X, ;Y750
LUBRICATION Y, ;Y751
LUBRICATION Z, ;Y752
, ;Y753
, ;Y754
, ;Y755
, ;Y756
, ;Y757

6.9 The Axrandom.plc Sample Program

325

$

/* end of PLC error messages */

/* PLC program identifier */

:200 RANDOM MAGAZINE HANDLE AND INCREMENTAL AXIS MOVEMENT FROM PLC
ON THE BASIS OF EXAMPLE.PLC PROGRAM$

/* END OF PLC program identifier */

Alphabetical Index

326

ALPHABETICAL INDEX

 /. 184
 LPpq. 176
 LVpq. 176
 .nnnn. 174
 :nnn. 197
 (..). 173
 <=. 195
 =. 194
 >=. 196
 4th analog input on 1st INT board. . . 126
 Chopping Override Register. 146
 DIVnnn. 212
 Gnnn. 197
 Hnn. 199
 Ipqr. 171
 LFpqr.. 177
 LIpqr. 174
 LRP0nn. 177
 LTnn. 177
 Qnn. 198
 R. 198
 Ypqr. 171
 [...].. 186, 191
,nnnnn.. 174
:000. 197
:001. 197
:002. 197
:197. 197
:198. 197
:199. 197
$. 197
+. 181
-. 182
*. 183
<. 192
<<nn. 185
>. 193
>>nn. 186
1 increment lamp. 72
1 increment push-button. 23
10 increment lamp. 72
10 increment push-button. 23
100 increment lamp. 72
100 increment push-button. 23

1000 increment lamp. 72
1000 increment push-button. 23
1st ,..., 8th axis encoder check off. . . . 102
1st analog input on 1st INT board. . . . 126
1st analog output % (override) value. . 145
1st analog output binary command signal

. 145
1st analog output scaled command signal

. 144
1st axis current position lower word. . 129
1st axis current position upper word. . 129
1st axis drive current. 129
1st axis feedrate command lower word

. 149
1st axis feedrate command upper word

. 149
1st axis lag lower word. 129
1st axis lag upper word. 129
1st axis position command lower word

. 149
1st axis position command upper word

. 149
1st M function code (belonging to flag

I520). 119
1st M group display. 142
1st main drive ready. 66
1st spindle binary command register. . 138
1st spindle binary command signal output

(spindle JOG). 103
1st spindle command signal enable. . . 103
1st spindle command signal ramping ready

. 52
1st spindle command signal with + polarity

. 103
1st spindle current revolution 120
1st spindle drive current.. 134
1st spindle in position. 52
1st spindle modified programmed

revolution. 120
1st spindle n=0. 53
1st spindle n=nS.. 53
1st spindle orientation in the shorter

direction. 104
1st spindle orientation ready. 52

Alphabetical Index

327

1st spindle orientation request. 103
1st spindle programmed S register. . . . 137
1st spindle range code (M11, ..., M18)

. 139
1st spindle rotation code (M3, M4, M5,

M19). 138
1st spindle synchronization in counter

direction. 104
1st spindle synchronized to the 2nd one

. 54
1st, ..., 152nd message on the screen. . . 61
1st, ..., 152nd message request. 112
1st, ..., 16th user’s push-button. 28
1st, ..., 5th M function strobe. 36
1st, ..., 8th axis in position. 42
1st, ..., 8th axis lock selected. 78
1st, ..., 8th axis loop open. 100
1st, ..., 8th axis motion by PLC. 101
1st, ..., 8th axis motion disable. 99
1st, ..., 8th axis motion request. 48
1st, ..., 8th axis on + limit switch. 92
1st, ..., 8th axis on reference switch. . . . 91
1st, ..., 8th axis on – limit switch. 93
1st, ..., 8th axis rapid traverse request. . 49
1st, ..., 8th axis selected lamp. 71
1st, ..., 8th axis selector push-button. . . 22
1st, ..., 8th indexed message on the screen

. 59
1st, ..., 8th indexed message request.. . 110
1st, ..., 8th user’s push-button of machine

control board 2. 32
1st, ..., 8th user’s push-button's lamp of

machine control b. 81
1st, 2nd analog command signal output

binary. 107
1st, 2nd analog command signal output

enable. 107
1st, 2nd analog command signal ramping

ready 56
1st, 2nd analog command signal with +

polarity. 107
1st, 2nd, ..., 8th axis drive ready.. 65
1st, 2nd, ..., 8th axis go to reference point

. 116
1st, 2nd, ..., 8th axis incremental

movement. 116
1st, 2nd, ..., 8th axis interpolator empty

(terminated). 64
1st, 2nd, ..., 8th axis interpolator RESET

. 116
1st, 2nd, ..., 8th axis interpolator START

. 115
1st, 2nd, ..., 8th axis interpolator stopped

. 64
1st, 2nd, ..., 8th axis interpolator strobe

signal.. 115
1st, 2nd, ..., 8th axis movement with feed

. 116
1st, 2nd, ..., 8th axis reference point ready

. 65
1st,...,8th axis lubrication request. 43
20-msec Timers. 165
2nd analog input on 1st INT board. . . . 126
2nd analog output % (override) value

. 146
2nd analog output binary command signal

. 146
2nd analog output scaled command signal

. 145
2nd axis current position lower word

. 130
2nd axis current position upper word

. 130
2nd axis drive current. 130
2nd axis feedrate command lower word

. 150
2nd axis feedrate command upper word

. 150
2nd axis lag lower word. 130
2nd axis lag upper word. 130
2nd axis position command lower word

. 149
2nd axis position command upper word

. 149
2nd M function code (belonging to flag

I521). 119
2nd M group display.. 142
2nd main drive ready. 67
2nd spindle binary command register

. 140
2nd spindle binary command signal output

(spindle JOG). 106
2nd spindle command signal enable.. . 105
2nd spindle command signal ramping

Alphabetical Index

328

ready.. 54
2nd spindle command signal with +

polarity. 105
2nd spindle current revolution. 121
2nd spindle drive current. 135
2nd spindle is active.. 105
2nd spindle modified programmed

revolution. 121
2nd spindle n=0. 55
2nd spindle n=nS. 54
2nd spindle orientation in the shorter

direction. 106
2nd spindle orientation request. 105
2nd spindle programmed S register. . . 139
2nd spindle range code (M11, ..., M18)

. 141
2nd spindle rotation code (M3, M4, M5,

M19).. 140, 227
2nd spindle synchronization in counter

direction. 106
2nd spindle synchronized to the 1st one

. 54
3rd analog input on 1st INT board. . . . 126
3rd axis current position lower word. . 130
3rd axis current position upper word. . 130
3rd axis drive current. 131
3rd axis feedrate command lower word

. 150
3rd axis feedrate command upper word

. 150
3rd axis lag lower word. 130
3rd axis lag upper word. 130
3rd axis position command upper word

. 150
3rd axis position command lower word

. 150
3rd M function code (belonging to flag

I522). 119
3rd M group display. 142
4th axis current position lower word. . 131
4th axis current position upper word. . 131
4th axis drive current. 131
4th axis feedrate command lower word

. 151
4th axis feedrate command upper word

. 151
4th axis lag lower word. 131

4th axis lag upper word. 131
4th axis position command lower word

. 151
4th axis position command upper word

. 151
4th M function code (belonging to flag

I523). 119
4th M group display. 142
5th axis current position lower word. . 131
5th axis current position upper word. . 131
5th axis drive current. 132
5th axis feedrate command lower word

. 152
5th axis feedrate command upper word

. 152
5th axis lag lower word. 132
5th axis lag upper word. 132
5th axis position command lower word

. 151
5th axis position command upper word

. 151
5th M function code (belonging to flag

I524). 119
5th M group display. 142
6th axis current position lower word. . 132
6th axis current position upper word. . 132
6th axis drive current. 132
6th axis feedrate command lower word

. 152
6th axis feedrate command upper word

. 152
6th axis lag lower word. 132
6th axis lag upper word. 132
6th axis position command lower word

. 152
6th axis position command upper word

. 152
6th M group display. 142
7th axis current position lower word. . 133
7th axis current position upper word. . 133
7th axis drive current. 133
7th axis feedrate command lower word

. 153
7th axis feedrate command upper word

. 153
7th axis lag lower word. 133
7th axis lag upper word. 133

Alphabetical Index

329

7th axis position command lower word
. 153

7th axis position command upper word
. 153

7th M group display. 142
8th axis current position lower word. . 133
8th axis current position upper word. . 133
8th axis drive current. 133
8th axis feedrate command lower word

. 154
8th axis feedrate command upper word

. 154
8th axis lag lower word. 133
8th axis lag upper word. 133
8th axis position command lower word

. 153
8th axis position command upper word

. 153
8th M group display. 142
A. 173, 187-189
Active message code. 122
Active spindle rotates. 103
Active tool code (T). 139, 227
Actual feed higher word. 128
Actual feed lower word. 128
ADDnnn. 207
analóg kimenet + polaritású. 107
Automatic mode lamp 69
Automatic mode push-button. 21
Automatic operation interrupted.. 35
Automatic tool length measure softkey

lamp. 72
Automatic tool length measurement

softkey. 24
Auxiliary register OP. 159
AXIS.. 101
Axis 1, ..., 8 synchron slave on.. 95
Axis selection with softkeys. 85
Barrellity higher word.. 155
Barrellity lower word. 155
BCD. 186
BIN. 186
Block restart lamp.. 75
Block restart push-button. 26
Block return lamp. 75
Block return push-button. 27
Carry. 160

CFnnn. 198
CHOPAXF. 107
Chopping Axis on Point R. 56
Chopping in Feedrate Section.. 56
Chopping On. 107
Chopping Request. 56
CHOPPOS. 107
CHOPRATE. 146
CMPnnn. 213
Cnnn. 198
Code of receiver periphery. 137
Code of transmitter periphery.. 136
Code of valid push-button. 129
Conditional block 1 lamp. 75
Conditional block 2, ..., 9 skip. 84
Conditional block push-button. 27
Conditional stop lamp. 75
Conditional STOP push-button. 27
Data input from PLC. 88
Data not found. 160
Data received in memory. 47
Data transmitted from memory.. 46
DFnnni. 169
DOpqr. 170
Dpqr. 169
DQnn. 198
Dry run lamp.. 75
Dry run push-button. 26
E. 170
Edit mode lamp.. 69
Edit mode push-button. 21
Enable of opening general security gate

. 89
Executable block in buffer. 38
F% (feed override) output register. . . . 143
F% (feed override) with softkeys. 86
F% (feedrate override) input register. . 124
F000, F001. 159
F004, F005. 159
F0040. 160
F0046. 160
F0047. 160
F0053. 160
F008, F009. 160
F0080. 160
F0081. 160
F0082. 160

Alphabetical Index

330

F0083. 161
F0087. 161
F500, ..., F[501+2*MAGAZINE]. . . . 162
Feed hold. 89
FIN: functions executed (FINished) by

PLC. 90
First call of module :001. 35
Fnnni. 172
Free purpose user’s timer enable. 90
Function lock lamp. 79
Function lock push-button. 30
G51.2 polygonal turning data P. 128
G51.2 polygonal turning data Q.. 128
G51.2: polygonal turning. 51
G96 revolution on the active spindle. . 121
GFnnn. 197
HFnnn. 199
Hour, Minute. 122
I400. 20
I401. 20
I402. 20
I403. 20
I405. 21
I406. 21
I407. 21
I410, ..., I417. 22
I420. 23
I422. 23, 72
I423. 23, 72
I426. 24
I427. 24
I430, ..., I437. 25
I433, I437. 25
I440. 26
I441. 26
I442. 26
I443. 26
I444. 27
I445. 27
I446. 27
I447. 27
I450, ..., I467. 28
I470. 30
I471. 30
I472. 30
I474. 30
I475. 30

I476. 31
I477. 31
I480, ..., I487. 32
I500, ..., I507. 34
I510. 35
I511. 35
I517. 35
I520, ..., I524. 36
I525. 36
I526. 36
I527. 36
I530. 37
I531. 37
I532. 37
I536. 37
I537. 37
I540. 38
I541. 38
I542. 38
I543. 38
I545. 38
I546. 38
I547. 39
I550. 40
I551. 40
I552. 40
I553. 40
I554. 41
I555. 41
I560, ..., I567. 42
I570,...,I577. 43
I602. 46
I603. 46
I604. 46
I605. 46
I606. 46
I607. 47
I610,...,I617. 48
I620,...,I627. 49
I640. 51
I641. 51
I650. 52
I651. 52
I652. 52
I653. 52
I654. 52
I655. 53

Alphabetical Index

331

I656.. 53
I657.. 53
I660.. 54
I661.. 54
I662.. 54

2nd spindle in position. 54
I663.. 54
I664.. 54
I666.. 54
I667.. 55
I670, I672. 56
I675.. 56
I676.. 56
I677.. 56
I700, ..., I707.. 59
I710, ..., I777.. 61, 112
I900, I910, ..., I970. 64
I901, I911, ..., I971. 64
I903, I913, ..., I973. 65
I907, I917, ..., I977. 65
I987.. 66
I997.. 67
Increment selection with softkeys. 85
Incremental jog mode lamp. 69
Incremental jog mode push-button. 20
Interpolator empty (terminated). 40
Interpolator stopped. 40
Interrupt macro call enable. 90
J0, J1, J2. 197
JOG +/! direction selected. 74
JOG 1, ..., 8 push-buttons. 25
JOG 1, ..., JOG 8 push-button lamp. . . . 77
Jog buttons from NC keyboard.. 87
Jog mode lamp. 69
Jog mode push-button.. 20
JOG rapid traverse lamp.. 73
JOG rapid traverse push-button. 24
JOG X, Y, Z axis +/! direction selected

. 74
Key code from PLC. 148
Lengetési parancs az I675 jelzõn. 37
LFInnn. 177
LFpqri. 177
LHnn.. 177
LIpq. 175
LMnn. 177
LPpqr. 176

LQnn.. 177
LRHinn. 177
LVpqr. 176
LYpqr. 175
M3 lamp of machine control board 2. . . 80
M3 push-button. 30
M4 lamp of machine control board 2. . . 80
M4 push-button. 30
M5 lamp of machine control board 2. . . 80
M5 push-button. 31
Machine lock lamp. 75
Machine lock push-button. 26
Machine on output disabled. 38
Machine on request.. 89
Manual data input mode lamp. 69
Manual data input mode push-button. . . 21
Manual handle feed. 79
Manual handle mode lamp. 69
Manual handle mode push-button. 20
Meanings of softkeys. 123
Message acknowledged. 46
Message on screen. 37
Message register of statements. 160
Message strobe. 97
Minute Timers. 165
Mn.. 199
Mode selection with softkeys. 85
Module :000. 166
module :000 start from beginning. 38
Module :001. 166
Module :002. 166
Module :002 call enabled. 90
Module :197. 167
Module :198. 167
Module :199. 168
Module :200. 168
Month, Day.. 122
MRnnn. 203
MULnnn. 210
MWnnn.. 205
N<condition>. 172
NL.. 178
No input synchronization in module :000

. 89
Not BCD number. 160
NS. 181
Number of axis doing ovality. 154

Alphabetical Index

332

Number of bytes to be transmitted. . . . 136
Number of program selected for automatic

execution. 125
Number of program selected for automatic

mode in RH050. 97
Number of program selected for execution

in manual data input mo
. 126

Number of program selected for manual
data input mode in RH050
. 97

Number of program to be executed. . . 136
Number of program under execution. . 125
Number of received bytes. 137
O.. 173, 188
Open input channel. 97
Ovality higher word. 154
Ovality lower word. 154
Overflow. 160
Overflow in case of statement *.. 161
Override disabled. 40
Parts required = Parts count. 35
PFnnn. 201
Piston turning. 107
PLC Constants. 165
PLC defined buttons with softkeys. . . . 85
PLC defined softkey 1, ..., 8.. 34
PLC defined softkey 1, ..., 8 lamp. 83
PLC received data from memory 98
PLC TIMEOUT1. 166
PLC TIMEOUT2. 166
Polygonal turning, reverse direction (Q<0)

. 51
Position of longer diameter. 154
Ppqr. 172
Program execution in DNC. 46
Program execution in NCT DNC.. 46
Program run in DNC. 97
Program run in NCT DNC.. 97
Programmed maximum revolution on the

active spindle. 121
Programmed reference point return (G28)

. 38
R% (rapid traverse override) input register

. 127
R% (rapid traverse override) output

register. 147

R% (rapid traverse override) with softkeys
. 85

Reference point return mode lamp.. . . . 69
Reference point return mode push-button

. 20
RESET from PLC. 80
RESET push-button. 31
Result of statement: zero. 160
Revolution fluctuated on active spindle

. 53
RH000. 119
RH001. 119
RH002. 119
RH003. 119
RH004. 119
RH005. 119
RH006. 119
RH007. 120
RH008. 120
RH009. 120
RH010. 120
RH011. 120
RH012. 121
RH013. 121
RH015. 121
RH016. 121
RH020. 122
RH021. 122
RH022. 122
RH023. 122
RH024. 123
RH026. 123
RH027. 123
RH028. 124
RH029. 125
RH030. 125
RH031. 125
RH032. 126
RH035. 126
RH036. 126
RH037. 126
RH038. 126
RH039. 127
RH040. 128
RH041. 128
RH042. 128
RH043. 128

Alphabetical Index

333

RH049.. 129
RH050.. 136
RH051.. 136
RH052.. 136
RH053.. 136
RH054.. 137
RH055.. 137
RH056.. 137
RH057.. 137
RH058.. 137
RH059.. 137
RH060.. 137
RH061.. 138
RH062.. 138
RH063.. 139
RH064.. 139
RH065.. 139
RH066.. 140
RH068.. 141
RH070.. 142
RH071.. 142
RH072.. 142
RH073.. 142
RH074.. 142
RH075.. 142
RH076.. 142
RH077.. 142
RH078.. 143
RH079.. 144
RH080.. 144
RH081.. 145
RH082.. 145
RH085.. 145
RH086.. 146
RH087.. 146
RH088.. 146
RH089.. 147
RH090.. 148
RH091.. 148
RH092.. 148
RH093.. 148
RH094.. 148
RH095.. 148
RH096.. 148
RH097.. 148
RH099.. 148
RH100.. 129

RH101.. 129
RH102.. 129
RH103.. 129
RH104.. 129
RH105.. 130
RH106.. 130
RH107.. 130
RH108.. 130
RH109.. 130
RH110.. 130
RH111.. 130
RH112.. 130
RH113.. 130
RH114.. 131
RH115.. 131
RH116.. 131
RH117.. 131
RH118.. 131
RH119.. 131
RH120.. 131
RH121.. 131
RH122.. 132
RH123.. 132
RH124.. 132
RH125.. 132
RH126.. 132
RH127.. 132
RH128.. 132
RH129.. 132
RH130.. 133
RH131.. 133
RH132.. 133
RH133.. 133
RH134.. 133
RH135.. 133
RH136.. 133
RH137.. 133
RH138.. 133
RH139.. 133
RH144.. 134
RH149.. 135
RH150.. 149
RH151.. 149
RH152.. 149
RH153.. 149
RH155.. 149
RH156.. 149

Alphabetical Index

334

RH157. 150
RH158. 150
RH160. 150
RH161. 150
RH162. 150
RH163. 150
RH165. 151
RH166. 151
RH167. 151
RH168. 151
RH170. 151
RH171. 151
RH172. 152
RH173. 152
RH175. 152
RH176. 152
RH177. 152
RH178. 152
RH180. 153
RH181. 153
RH182. 153
RH183. 153
RH185. 153
RH186. 153
RH187. 154
RH188. 154
RH190. 154
RH191. 154
RH192. 154
RH193. 154
RH194. 155
RH195. 155
S function code (belonging to flag I525)

. 119
S function strobe. 36
S% (spindle override) with softkeys. . . 86
S% (spindle speed override) input register

. 125
S% spindle speed override output register

. 144
Screen code . 123
Second. 123
Second Timers. 165
Selection of machine control board 1. . 87
Selection of machine control board 2. . 88
SFInnn. 180
SFpqr. 179

SFpqri.. 179
SHnn. 180
Sign. 160
Sign of BCD number. 161
Single block mode lamp.. 76
Single block mode push-button. 27
SMnn. 180
SOpq. 179
SOpqr. 179
Spindle rotation request. 40
SQnn. 180
SRHinn.. 180
Start address of data to be transmitted

. 136
Start address of received data.. 137
Start push-button. 30
Start state lamp.. 79
State G25 on active spindle. 52
State G96 on active spindle. 52
State selection with softkeys. 85
Status of Machine on output. 38
Status of NC Ready signal. 38
Status register.. 159
STnn.. 180
Stop push-button. 30
STOP request from NC. 39
Stop state lamp.. 79
SUBnnn. 208
Synchronize 1st spindle to the 2nd. . . 104
Synchronize 2nd spindle to the 1st. . . 106
Syntax error. 160
SYpq. 179
SYpqr. 178
T function code (belonging to flag I526)

. 119
T function strobe. 36
Test lamp. 75
Test push-button.. 26
Thread cutting (G33). 41
Thread cutting cycle (G76, G78). 41
Tnn. 199
Tool offset sensor direction X+ pressed

. 94
Tool offset sensor direction X– pressed

. 94
Tool offset sensor direction Z+ pressed

. 94

Alphabetical Index

335

Tool offset sensor direction Z– pressed
. 94

Tool pot table. 162
Transmission error. 46
Transmittable data in memory. 97
UFnnni. 169
UOpqr. 170
Up/Down Counters. 165
Upqr. 169
UQnn. 198
Valid push-button code in register RH049

. 37, 219
Valid push-button code in register RH099

. 88
Vpqr. 172
X. 101, 173, 190, 191
Y400. 69
Y401. 69
Y402. 69
Y403. 69
Y405. 69
Y406:. 69
Y407. 69
Y410, ..., Y417. 71
Y420. 72
Y421. 72
Y426. 72
Y427. 73
Y430, Y431, Y432, Y434, Y435, Y436

. 74
Y433, Y437. 74
Y440. 75
Y441. 75
Y442. 75
Y443. 75
Y444. 75
Y445. 75
Y446. 75
Y447. 76
Y450, ..., Y457. 77
Y460, ..., Y467. 78
Y470. 79
Y471. 79
Y472. 79
Y474. 80
Y475. 80
Y476. 80

Y477. 80
Y480, ..., Y487. 81
Y500, ..., Y507. 83
Y510, ..., Y517. 84
Y520. 85
Y521. 85
Y522. 85
Y523. 85
Y524. 85
Y525. 85
Y526. 86
Y527. 86
Y530. 87
Y531. 87
Y532. 88
Y536. 88
Y537. 88
Y540. 89
Y541. 89
Y542. 89
Y543. 89
Y544. 90
Y545. 90
Y546. 90
Y547. 90
Y550, ..., Y557. 91
Y560, ..., Y567. 92
Y570, ..., Y577. 93
Y574. 107
Y580. 94
Y581. 94
Y582. 94
Y583. 94
Y590, ..., Y597. 95
Y600. 97
Y601. 97
Y602. 97
Y603. 97
Y604. 97
Y605. 97
Y606. 97
Y607. 98
Y610, ..., Y617. 99
Y620, ..., Y627. 100
Y630, ..., Y637. 101
Y640, ..., Y647. 102
Y650. 103

Alphabetical Index

336

Y651.. 103
Y652.. 103
Y653.. 103
Y654.. 103
Y655.. 104
Y656.. 104
Y657.. 104
Y660.. 105
Y661.. 105
Y662.. 105
Y663.. 105
Y664.. 106
Y665.. 106
Y666.. 106
Y667.. 106
Y670, Y672. 107
Y671, Y673. 107
Y675.. 107
Y676, Y677. 107
Y700 message variable 148
Y700, ..., Y707.. 110
Y701 message variable 148
Y702 message variable 148
Y703 message variable 148
Y704 message variable 148
Y705 message variable 148
Y706 message variable 148
Y707 message variable 148
Y710, ..., Y777.. 112
Y900, Y910, ..., Y970. 115, 149, 151-

153
Y901, Y911, ..., Y971. 115
Y902, Y912, ..., Y972. 116
Y903, Y913, ..., Y973. 116
Y904, Y914, ..., Y974. 116
Y905, Y915, ..., Y975. 116
Year. 122
Z. 170
–. 183
“A” function code (belonging to flag I527)

. 120
“A” function current value.. 137
“A” function strobe. 36
“B” function code (belonging to flag I530)

. 120
“B” function current value. 137
“B” function strobe. 37

“C” function code (belonging to flag I531)
. 120

“C” function current value. 137
“C” function strobe. 37

Alphabetical Index

337

	1 General Description
	1.1 Fundamental Terms
	1.2 Structure and function of PLC program
	1.3 Processing of PLC Input and Output Signals
	1.4 Synchronizing Functions with Interpolation

	2 PLC Program Variables
	2.1 Variables of Connection between PLC and Machine Tool
	2.1.1 Signal from Machine to PLC (Interface Input Lines)
	2.1.2 Signals from PLC to Machine (Interface Output Lines)

	2.2 Variables of Connection between PLC and NC
	2.2.1 Flags from NC to PLC (Input Flags)
	2.2.2 Flags from PLC to NC (Output Flags)
	2.2.3 Registers from NC to PLC (Input Registers)
	2.2.4 Registers from PLC to NC (Output Registers)

	2.3 Local Variables of PLC Program
	2.3.1 Auxiliary Register OP and Status Register
	2.3.2 Tool Pot Table
	2.3.3 Freely available Table of PLC Program

	2.4 Local Registers of PLC Program
	2.4.1 Up/Down Counters
	2.4.2 20-msec Timers
	2.4.3 Second Timers
	2.4.4 Minute Timers
	2.4.5 PLC Constants

	3 Standard Modules of PLC Program
	3.1 Module :000
	3.2 Module :001
	3.3 Module :002
	3.4 Module :197
	3.5 Module :198
	3.6 Module :199
	3.7 Module :200

	4 Instruction Set of PLC Program Language
	4.1 Switch Statements
	4.2 Condition Testing Statements
	4.3 Creating Conditions with Flags
	4.4 Combination of Conditions
	4.5 Loading constant into register OP
	4.6 Loading value of variable into register OP
	4.7 Storing Value from Register OP into Variable
	4.8 Arithmetic Statements with Register OP
	4.9 Logic Statements with Register OP
	4.10 Relational Expressions with Register OP
	4.11 Goto Statements
	4.12 Use of Up/Down Counters
	4.13 Condition Test on Timers
	4.14 Search Statements
	4.15 Reading and writing the memory of NC
	4.16 Arithmetic Operations

	5 Compiling and Loading PLC Program into NC Control
	6 APPENDIX
	6.1 Summary of the Variables of the Connection between PLC and NC
	6.2 The Bit Map of Machine Control Board 2
	6.3 Error Messages of the PLC Compiler
	6.4 Listing of Global Messages
	6.5 Listing of Push-button Codes
	6.6 Codes of Screen Menu and Action Menu
	6.7 Timing Diagrams of PLC Variables
	6.8 The Sample. plc Program
	6.9 The Axrandom.plc Sample Program

	ALPHABETICAL INDEX

