
NCT 3xxT®

Control for Lathes

Programmer's Manual
From SW version n.16.0

Manufactured by NCT Automation kft.
H-1148 Budapest Fogarasi út 7

: Mailing address: H-1631 Bp. pf.26
F Phone: (+36 1) 467 6300
F Fax:(+36 1) 467 6309

E-mail: nct@nct.hu
Home page: www.nct.hu

mailto:nct@nct.hu

ATTENTION!

LNote: Please read the changes carefully before using new software!

New features and differences of software version 16 compared to version 15

10.2.3 Compensating the Angular Position of the Workpiece: on page 87
The misalignment compensation can now be specified along all three rotary axes at the
same time, and is not limited to just one axis.

18.2.1 Roughing Cycle (G71): on page 197
The type 3 roughing has been introduced in the roughing cycle (see on page 206).

18.2.2 Face Roughing Cycle (G72): on page 208
The type 3 face roughing has been introduced in the face roughing cycle (see on page
211).

20.7 Managing Non-perpendicular Axes: on page 271
If the movement of one axis on a machine is not perpendicular to the other one, but makes
an angle with respect to the right angle, this function should be used.

15.1 Compensation Memory. Referring to Tool Compensation (T or D): on page 123
The separate lathe and mill compensation memory in the controller has been eliminated.
There is now one common memory. If one channel is set to lathe and the other to mill,
they have a common compensation memory.

23.1.16 Value of the Actual Length Compensation: on page 309
23.1.18 Values of the Tool Compensation Memory: on page 310

3

Contents

1 Introduction.. 11
1.1 Part Program.. 11
1.2 Channel.. 12
1.3 Fundamental Terms. 13

2 Controlled Axes. 17
2.1 Naming and Numbering the Axes. 17
2.2 Extended Axis Names. 18
2.3 Assigning Axes to Channels. 18
2.4 Unit System of Axes and Accuracy of Position Display. 19

3 Preparatory Functions (Codes G). 20

4 Interpolation. 25
4.1 Positioning (G0). 25

4.1.1 Positioning by Linear Interpolation. 25
4.1.2 Positioning by Overlapping the Rapid Traverse Motions. 26

4.2 Linear Interpolation (G1). 27
4.3 Circular Interpolation (G2, G3). 29

4.3.1 Planar Spiral Interpolation (G2, G3). 34
4.3.2 Helical Spiral Interpolation (G2, G3). 36
4.3.3 Conical Spiral Interpolation (G2, G3). 39

4.4 Equal Lead Thread Cutting (G33). 41
4.5 Polar Coordinate Interpolation (G12.1, G13.1). 43
4.6 Cylindrical Interpolation (G7.1). 48

5 Coordinate Data. 51
5.1 Absolute and Incremental Programming (G90, G91). 51
5.2 Inch/Metric Conversion (G20, G21). 52
5.3 Programming in Diameter or Radius. 52

5.3.1 Switching between in Radius and in Diameter Programming (G10.9). 53
5.4 Data Specification in Polar Coordinates (G15, G16). 54
5.5 Specification and Accuracy of Coordinate Data. 56
5.6 Managing the Rotary Axis Roll-Over. 57

6 Feed. 63
6.1 Rapid Traverse. 63
6.2 Cutting Feed. 63

6.2.1 Feed per Minute (G94) and Feed per Revolution (G95). 64
6.3 Feed Control Functions. 64

6.3.1 Exact Stop at the End of the Block (G9). 65
6.3.2 Exact Stop Mode (G61). 65
6.3.3 Continuous Cutting Mode (G64).. 65
6.3.4 Override and Stop Inhibition Mode (G63). 65
6.3.5 Automatic Feed Override at Inner Corners (G62). 65

6.4 Automatic Feed Override in the Cases of Inner Circle Arcs. 66

4

7 Acceleration. 68
7.1 Automatic Deceleration at Corners in the State G64. 71
7.2 Limiting the Normal Direction Accelerations. 74
7.3 Limiting the Acceleration Step Change (Jerk). 76

8 Dwell (G4).. 78

9 Reference Point. 79
9.1 Automatic Reference Point Return (G28).. 80
9.2 Return to the 2nd, 3rd and 4th Reference Point (G30). 81

10 Coordinate Systems and Plane Selection.. 83
10.1 Machine Coordinate System. 83

10.1.1 Positioning in the Machine Coordinate System (G53).. 84
10.2 Workpiece Coordinate Systems. 84

10.2.1 Selecting the Workpiece Coordinate System (G54...G59).. 85
10.2.2 Selecting the Additional Workpiece Coordinate Systems (G54.1 P).. 87
10.2.3 Compensating the Angular Position of the Workpiece. 87
10.2.4 Setting the Offset of the Workpiece Coordinate Systems (G10 L2). 89
10.2.5 Setting the Offset of the Additional Workpiece Coordinate Systems (G10 L20)

. 90
10.2.6 Creating a New Work Coordinate System (G92).. 90

10.3 Local Coordinate System (G52). 91
10.4 Plane Selection (G17, G18, G19). 94

11 Spindle Functions. 96
11.1 Spindle Speed Command (Code S). 96

11.1.1 Referring to Several Spindles. Extending the Address S. 96
11.1.2 Assigning Spindles to Channels.. 97

11.2 Functions M Controlling the Spindle. 97
11.3 Managing the Speed Ranges. 98
11.4 Main Spindle. Selecting the Main Spindle. 99
11.5 Controlling the Constant Surface Speed. 100

11.5.1 Specifying the Constant Surface Speed Control (G96 S, G97 S). 100
11.5.2 Clamping the Speed during Calculation of Constant Surface Speed (G92 S)

. 101
11.5.3 Selecting an Axis for Constant Surface Speed Control (G96 P). 101

11.6 Spindle Speed Fluctuation Detection. 102
11.7 Positioning the Spindles. 102

11.7.1 Spindle Orientation. 102
11.7.2 Stopping the Spindles and Closing the Position Control Loop. 103
11.7.3 Programming of the Positioning the Spindles. 103
11.7.4 Position-correct Synchronization of Two Spindles. 105
11.7.5 Turning the Position-controlled Operating Mode off. 106

11.8 Converting Spindle into Axis and Axis into Spindle. 107

12 Function T. 109
12.1 Programming the Tool Change.. 109

5

13 Miscellaneous and Auxiliary Functions. 111
13.1 Miscellaneous Functions (Codes M). 111
13.2 Auxiliary Functions (A, B, C, U, V or W). 113
13.3 Buffer Emptying Functions. 114

14 Part Program Configuration. 115
14.1 Block Number (Address N). 115
14.2 Conditional Block Skip (/ address). 115
14.3 Writing Comments into the Part Program: (comment). 116
14.4 Main Program and Subprogram. 116

14.4.1 Identification of Programs in Memory. The Program Number (O). 117
14.4.2 Calling a Subprogram (M98).. 117
14.4.3 Return from a Subprogram (M99). 119
14.4.4 Jump within the Main Program. 121

14.5 Functions M of Channel Synchronization. 121

15 Tool Compensation. 123
15.1 The Compensation Memory. Referring to Tool Compensation (T or D).. 123
15.2 The Second Geometry Compensation Memory. 126
15.3 Modifying the Tool Compensation Values from the Program (G10). 128
15.4 Tool Length Compensation by Code T. 128
15.5 Tool Length Compensation by Code G (G43.7, G49). 131
15.6 Tool Nose Radius Compensation (G40, G41, G42).. 133

15.6.1 Start up of the Tool Nose Radius Compensation. Moving to the Contour. . . 136
15.6.2 Calculation of Tool Nose Radius Compensation in Offset Mode. 143
15.6.3 Cancelling the Tool Nose Radius Compensation. Leaving the Contour. 150
15.6.4 Reversal in Calculation of Tool Nose Radius Compensation. 155
15.6.5 Programming Vector Preservation (G38). 158
15.6.6 Programming Corner Arc (G39). 159
15.6.7 Troubles in Tracking the Contour. Interference Check. 161

16 Special Transformations. 169
16.1 Rotating a Shape Around a Given Point (G68, G69). 169
16.2 Scaling a Shape in Relation to a Given Point (G50, G51). 171
16.3 Mirroring a Shape through One or More Straight Lines (G50.1, G51.1).. 174
16.4 Programming Rules for Specific Transformations.. 176

17 Automatic Geometric Calculations. 178
17.1 Programming Chamfer and Corner Rounding. 178
17.2 Specification of a Straight Line Using its Angle of Inclination. 179
17.3 Calculations of Intersection Point in the Plane. 181

17.3.1 Linear-Linear Intersection. 181
17.3.2 Linear-Circular Intersection.. 183
17.3.3 Circular-Linear Intersection.. 185
17.3.4 Circular-Circular Intersection. 187
17.3.5 Chaining the Intersection Calculations. 189

18 Canned Cycles for Turning. 190

6

18.1 Single Cycles. 190
18.1.1 Longitudinal Turning Cycle (G77).. 190
18.1.2 Simple Thread Turning Cycle (G78).. 192
18.1.3 Face Turning Cycle (G79). 194
18.1.4 Application of Single Cycles. 196

18.2 Multiple Repetitive Cycles. 197
18.2.1 Roughing Cycle (G71). 197
18.2.2 Face Roughing Cycle (G72).. 208
18.2.3 Pattern Repeating Cycle (G73).. 214
18.2.4 Finishing Cycle (G70). 217
18.2.5 Face Grooving Cycle (G74). 218
18.2.6 Grooving Cycle (G75). 220
18.2.7 Multiple Threading Cycle (G76). 222

19 Canned Cycles for Drilling. 228
19.1 Detailed Description of the Drilling Cycles. 235

19.1.1 High-speed Peck Drilling Cycle (G83.1). 235
19.1.2 Left-Handed Tapping Cycle Using Spring Tap (G84.1). 236
19.1.3 Boring Cycle with Automatic Tool Shift (G86.1). 237
19.1.4 Cancelling the Cycle State (G80). 238
19.1.5 Drilling Cycle with Retraction at Rapid Traverse Rate (G81). 238
19.1.6 Drilling Cycle with Dwell and with Retraction at Rapid Traverse (G82). . . . 239
19.1.7 Peck Drilling Cycle (G83). 240
19.1.8 Right-Handed Tapping Cycle Using Spring Tap (G84).. 241
19.1.9 Rigid Tapping Cycle (G84.2, G84.3). 242
19.1.10 Peck Rigid Tapping Cycle (G84.2, G84.3). 244
19.1.11 Boring Cycle with Retraction at Feed Rate (G85). 247
19.1.12 Boring Cycle with Retraction with Spindle in Standstill (G86).. 248
19.1.13 Manual Control/Back Boring Cycle (G87). 249
19.1.14 Boring Cycle with Dwell and Manual Operation at the Bottom (G88). 251
19.1.15 Boring Cycle with Dwell and with Retraction at Feed Rate (G89). 252

19.2 Remarks on the Use of the Drilling Cycles.. 253

20 Functions to Control Axes. 254
20.1 Polygonal Turning.. 254

20.1.1 Principle of Poligonal Turning.. 254
20.1.2 Programming the Polygonal Turning (G51.2, G50.2). 256

20.2 Gear Hobbing (G81.8). 259
20.3 Synchronous Control of Axes. 259
20.4 Interchanging of Axes. 262
20.5 Superimposed Control of Axes.. 267
20.6 Changing the Axis Direction. 269
20.7 Managing Non-perpendicular Axes. 271

21 Measurement Functions. 277
21.1 Skip Function (G31). 277
21.2 Torque Limit Skip (G31). 278
21.3 Automatic Tool Length Measurement (G36, G37).. 280

7

22 Safety Functions. 282
22.1 Stroke End. 282
22.2 Working Area Limitation from Parameter/Program (G22, G23). 283
22.3 The Area Forbidden Internally. 286
22.4 Monitoring the Forbidden Area Prior to Motion Start. 286

23 Custom Macro. 289
23.1 Variables of the Programming Language.. 290

23.1.1 Referring to Variables. 290
23.1.2 Number Representation of Macro Variables. 291
23.1.3 Local Variables: #1 – #33. 291
23.1.4 Common Variables. 292
23.1.5 Notation Used in Description of System Variables. 292
23.1.6 Vacant Variable. Constants. 293
23.1.7 Variables Between the Part Program and the PLC Program. 294
23.1.8 Messages of the Part Program. 295
23.1.9 Clock, Timers and Part Counters.. 297
23.1.10 Variables Influencing the Operation of the Automatic Mode. 299
23.1.11 Querying the Block Search and Test Statuses. 300
23.1.12 Status of Mirror Image.. 301
23.1.13 Number of the Main Program. 301
23.1.14 Modal Information.. 302
23.1.15 Position Information. 307
23.1.16 Value of the Actual Length Compensation. 309
23.1.17 Other Position Information. 309
23.1.18 Values of the Tool Compensation Memory.. 310
23.1.19 Workpiece Zero Point Offsets. 311
23.1.20 Reading Data of Tools Being in Spindle and in Stand-by Magazines.. 315
23.1.21 Reading the Data of the Pallet Being in the Working Space and in the Loading-

Unloading Point. 317
23.2 Instructions of the Program Language. 318

23.2.1 Definition or Replacement.. 318
23.2.2 Arithmetic Operations. 318
23.2.3 Logic Operations. 319
23.2.4 Functions. 321
23.2.5 Conversion Instruction.. 322
23.2.6 Execution Sequence of Complex Arithmetic Operations. 323
23.2.7 Conditional Expressions. 324
23.2.8 Unconditional Branch: . 324
23.2.9 Conditional Branch. 324
23.2.10 Conditional Instruction. 325
23.2.11 Iteration. 325
23.2.12 Indirect Axis Address Specification. 329
23.2.13 Data Output Commands. 329

23.3 Calling the Macros, System Macros and System Subprograms. 336
23.3.1 Simple Macro Call (G65). 339
23.3.2 Macro Modal Call after Each Motion Command (G66). 341
23.3.3 Macro Modal Call from Each Block (G66.1). 342
23.3.4 System Macro Call by Codes G Given in Parameter.. 344

8

23.3.5 System Macro Call by Codes M Given in Parameter.. 346
23.3.6 System Subprogram Call by the Code M Given in Parameter. 348
23.3.7 System Subprogram Call by Codes A, B, C, S, T Enabled in Parameter.. . . . 350
23.3.8 System Subprogram Call by Codes ASCII Given in Parameter. 351
23.3.9 Displaying the Blocks of Macros and Subprograms in Automatic Mode. . . . 352

23.4 Interruption-type Macro. 353
23.5 NC and Macro Instructions. Execution of Macro Blocks.. 357
23.6 Pocket Milling Macro Cycle. 359

24 Writing and Reading the Parameters. 363
24.1 Writing the Parameters from Part Program (G10 L52).. 364
24.2 Reading the Parameters from Part Program (PRM).. 365

Notes.. 367

January 31, 2024

9

 © Copyright NCT January 31, 2024

The Publisher reserves all rights for contents
of this Manual. No reprinting, even in ex-
tracts, is permissible unless our written con-
sent is obtained.
The text of this Manual has been compiled
and checked with utmost care, yet we as-
sume no liability for possible errors or spu-
rious data and for consequential losses or
damages.

10

1 Introduction

1 Introduction

1.1 Part Program

The Part Program is a set of instructions that can be interpreted by the control system in order to
control the operation of the machine.
The Part Program consists of blocks which, in turn, comprise words.

Word: Address and Data
Each word is made up of two parts - an address and a data. The address has one or more charac-
ters, the data is a numerical value (an integer or decimal value). Some addresses may be given a
sign or operator I. In the program, addresses can be given using small letter or capital letter too,
the control accepts both variants.

Address Chain:

Address Meaning Value limits

O program number 0001 - 9999

/ optional block 1 - 9

N block number 1 - 99999999

G preparatory function *

X, Y, Z, U, V ,W length coordinates I, !, *

A, B, C, angular coordinates I, !, *

R circle radius, auxiliary data I, !, *

I, J, K circle center coordinate, auxiliary coordinate !, *

E auxiliary coordinate !, *

F feed rate *

S spindle speed *

M miscellaneous function 1 - 99999999

T tool number/compensation number 1 - 99999999

D compensation number 1 - 999

L repetition number 1 - 99999999

P auxiliary data, dwell time 0

Q auxiliary data 0

,C distance of chamfer !, *

,R radius of fillet !, *

,A angle of straight line !, *

At an address marked with a * in the Value Limits column, the data may have a decimal value
as well.
At an address marked with I and –, an incremental operator or a sign can be assigned, respectiv-

11

1 Introduction

ely.
The positive sign + is not indicated and not stored.

Block
A block is made up of words.
The blocks are separated by characters s (Line Feed) in the memory. The use of a block number
is not mandatory in the blocks.

Main Program and Subprogram
The part programs may be divided into two main groups:

main programs, and
subprograms.

The procedure of machining a part is described in the main program. If, in the course of machi-
ning repeated patterns should be machined at different places, it will not be necessary to write
those program-sections over and over again in the main program, instead, a subprogram will have
to be organized, which can be called from any place (even from another subprogram). The user
can return from the subprogram to the calling program.

Program Format in the Memory
The part programs stored in the memory are ASCII code text files.

1.2 Channel

In general, at one time on one machine one tool is working motion of which is controlled by the
part program through the control.
We speak about multi-channel operation, when the same control simultaneously directs the
path of two or more tools independent of the other’s motion, executing two or more part .
For each channel it can be assigned a part program to execute.
Multi-channel operation is required too, when at a time only one tool is working, but on the
machine there is a workpiece feeder for which motions of the workpiece should be programmed
while the tool is cutting.
Synchronization points can be programmed for those points of the programs, where tool path
motions should wait for each other.
Each channel has its own workpiece zero point table, tool compensation table and macro
variables. The part of tool compensation table and the macro variables assignable on one
parameter can be made common for each channel.
In standard version, the NCT2xx controls are single-channel ones, however, optionally, they are
able to function as multi-channel ones. As a maximum, 8 channels can be built in a control.
In the control, for each channel, the mode of channel operation can be specified in parameter. In
case of the NCT200 controls there could be two ones: lathe channel or milling machine
channel. Within a control, the channels can be mixed. For example:

Channel 1: lathe
Channel 2: lathe
Channel 3: milling machine

Hereafter, this manual describes programming the lathe channel.
If milling machine channel is also built in the given control, description of programming for it
can be found in the NCT2xxM Control for Milling Machines and Machining Centers
Programmer's Manual.

12

1 Introduction

Fig. 1.3-1

Fig. 1.3-2

1.3 Fundamental Terms

Interpolation
The control system can move the tool along straight lines
and arcs in the course of machining. These activities will
be hereafter referred to as "interpolation".
Tool movement along a straight line:

program:
G01 X__ Z__

Tool movement along an arc:

program:
G02 X__ Z__ R__

Preparatory Functions (codes G)
The type of activity to be performed by a given block is described with the use of preparatory
functions (also referred to as codes G). E.g., code G01 introduces a linear interpolation.

13

1 Introduction

Fig. 1.3-3

Fig. 1.3-4

Fig. 1.3-5

Feed
The term "feed" refers to the speed of the tool relative to
the workpiece during the process of cutting. The desired
feed can be specified in the program at address F and with
a numerical value. For example F2 means 2 mm/rev.

Reference Point
The reference point is a fixed point on the machine tool. After power-on of the machine, the
slides have to be moved to the reference point. Afterwards the control system will be able to inter-
pret data of absolute coordinates as well.

Coordinate System
The dimensions indicated in the part drawing are
measured from a given point of the part. That point is the
origin of the workpiece coordinate system. Those
dimensional data must be written at the coordinate address
in the part program. For example, X150 Z–100 means a
coordinate point of 150 and –100 mm in the coordinate
system of the workpiece in the direction X and Z,
respectively.
In order that the control can interpret programmed
coordinate data, the distance between the machine zero
point and the workpiece zero point must be given. This
has to be done by measuring the workpiece zero point.

Absolute Coordinate Specification
When absolute coordinates are specified, the tool travels
a distance measured from the origin of the coordinate sys-
tem, i.e. to a point whose position has been specified by
the coordinates.
The code of absolute data specification is G90.
The instruction line

G90 X150 Z2

will move the tool to a point of the above position, irres-
pective of its position before the command has been
issued .

14

1 Introduction

Fig. 1.3-6

Incremental Coordinate Specification
In the case of an incremental data specification, the
control system will interpret the coordinate data in such a
way that the tool will travel a distance measured from its
instantaneous position.
The code of incremental data specification is G91. Code
G91 refers to all the coordinate values.
The instruction line

G91 X–50 Z-125

will move the tool over the above distance from its
preceding position.

 Diameter Programming
The dimension of the X axis can be programmed in diameter too, on the basis of setting
parameter.

Modal Functions
In the programming language, some instructions stays in effect or their value is valid until a
command of contrary meaning is issued or different value is given to the adequate function. For
example: In the program detail

N15 G90 G1 X20 Z30 F0.2
N16 X30
N17 Z100

the state of G90 (absolute data specification) and G1 (linear interpolation) and the value of F
specified in the block N15 will be modal ones in the blocks N16 and N17. Thus, it is not
necessary to specify these codes block by block.

Non-modal (One-shot) Functions
The effect of some functions or the values of data are valid in a given block. These functions are
non-modal or one-shot ones.

Spindle Speed Command
The spindle speed can be specified at address S. It is also named S function. Instruction S1500
tells the spindle to rotate at a speed of 1500 rpm.

Constant Surface Speed Control
The control changes the spindle speed automatically depending on the diameter so that the speed
of the tool tip relative to the surface of the workpiece will be constant. This function is the
constant surface speed control.

Tool Function
In the course of machining, different tools have to be used for various cutting operations.
Numbers are used to differentiate tools from each other. Tools can be referred by code T. The first
two digits of the code T means the code of the tool (i.e. the number of position in which it can
be found), and the last two digits represent the number of the compensation group belonging to
the selected tool. The instruction

15

1 Introduction

Fig. 1.3-7

Fig. 1.3-8

T0212
in the program means that the tool No.2 has been selected and the compensation group No.12 has
been assigned to it.

Miscellaneous Functions
A number of switching operations, e.g. starting the spindle, turning on the coolant have to be
carried out in the course of machining. These operations can be executed by M (miscellaneous)
functions. For example: In the series of instructions

M3 M8

M3 means rotation of the spindle clockwise, M8 means turning on the coolant.

Tool Length Compensation
In the course of machining, tools of different
length are used for the various operations. On
the other hand, in production of a bigger
series the same operation also has to be
performed with tools of different lengths (e.g.
when the tool breaks). In order to make the
motions described in the part program
independent of the length of the tool, i.e. of its
offset, the various tool lengths must be set in
the control system. For this, the length of the
tools have to be measured. If the program is
intended to move the tip of the tool to the spe-
cified point, the value of the particular length
data gained and given by measurement will
have to be called. This is feasible at the second two digits of the code T . Henceforth the control
will move the tip of the tool to the specified point.

Tool Nose Radius Compensation
In the case of turning a contour, and when the motion of
the tool is not parallel with the axes, exact size can be
achieved guiding not the tip of the tool along the contour,
but the center of the tool nose along the path perpendicular
distance of which is equal to the radius (r). In order to
write in the program not the path of the tool nose center
taking the tool radius into account, but the real contour
data of the workpiece, introduction of radius
compensation is necessary. In the program, the tool radius
must be set in the compensation group called at the
address T.

16

2 Controlled Axes

Fig. 2.1-1

2 Controlled Axes

Number of axes in basic configuration 2 axes

Number of expansion axes Maximum 14 additional axes in the same channel

Maximum number of axes 32 axes altogether in several channels

2.1 Naming and Numbering the Axes

The names of the controlled axes can be defined in the parameter memory. It can be assigned
here, which physical axis has to move to which address.
In the basic configuration, the names of
axes in the lathe control are: X and Z.
These axes will be set in the parameter
N0103 Axis to Plane as main axes.
The names of the expansion axes depends
on type of the given axis.
If on the lathe the axis Y is also built in as
an expansion axis, the axis Y will have to
be set as a main axis too in the parameter
N0103 Axis to Plane.
Possible names of additional expansion
axes performing linear motions are: U, V
and W. If these axes are parallel with one
of the main directions, the names of the
expansion axes parallel with the axes X,
Y and Z will be U, V and W, respectively.

Whether a linear expansion axis is parallel
with a basic axis or not, it can be set in the
parameter N0103 Axis to Plane.
The names of the axes performing
rotational motions are: A, B and C. The
names of the rotary axes parallel with the directions X, Y and Z will be A, B and C, respectively.
Whether an axis is a rotary one or not, it can be set by ROT=1 in the parameter N0106 Axis
Properties.

The axes are registered by the control on the basis of their numbers. The names of the axes
must be assigned to the numbers of the axes. Usually, the axis X is set as the axis 1, the axis Y
is set as the axis 2, the axis Z is set as the axis 3.
In certain program instructions, for example in case of referring to the macro variable querying
the axis position, not the name of the axis, but the number of the axis must be given.
For numbering please ask the machine tool builder.

17

2 Controlled Axes

2.2 Extended Axis Names

In the case of complex multi-axis machines, the abovementioned 9 letters are not enough to name
all the axes. For this reason, extended axis names have been introduced to name an axis using
not one letter but up to three characters.
The first character must be X, Y, Z, U, V, W, A, B, or C necessarily, and it can be specified in
the parameter N0100 Axis Name1. This parameter will have to be filled in even if one-character
axis names are used only.
The second and the third character names can be specified in the parameter N0101 Axis Name2
and in the parameter N0102 Axis Name3, respectively. They could be the letters of the English
alphabet: A, B, C, D, ... Y, Z, or numbers: 0, 1, 2, ..., 9. If the second or third axis name is not
used, the value of the parameter will be 0.
Thus, the name of an axis could be XDE, but Z1 and Z2 could also be used.
If the name of the axis ends in a letter, its inherent value could be written next to it. The meaning
of

XDE127.81
is: the axis XDE has to go to the position 127.8.
If the name of the axis ends in a number, equality symbol = will have to be written after the
axis. The meaning of

Z1=87.257
is: the axis Z1 has to go to the position 87.257.
Certainly, even if using extended axis names, it will have to be specified in the parameter N0103
Axis to Plane which ones are main or basic axes, and which ones are parallel axes.
Hereafter in this manual, one-character axis names will be used, in general.

2.3 Assigning Axes to Channels

Using parameters, the builder of the machine tool assigns each axis to different channels. These
parameter settings mean the state after the turning on.
The axes are always assigned to the channels in accordance with their number. So, axis number
in the control is global, while axis names are local, they are assigned to channels. Certainly, axes
with the same name are not allowed within one channel, on the other hand they could be in
different channels. The control is capable of managing maximum 16 axes being within one
channel.
For example:

Channel 1:
Axis1: X
Axis 2: Y
Axis 3: Z
Axis 4: C

Channel 2:
Axis 5: X
Axis 6: Y
Axis 7: Z
Axis 8: C

In the course of the machining, it could be necessary to use one or more axes in another channel.
In this case, it is allowed to interchange two axes between two channels, or to transfer one axis
to another channel. The interchange is executed in accordance with the axis number. After
change, the axis name may remain, or may change too.
The interchange of axes is realized by the builder of the machine tool through the PLC program,
for example using M function. Description of them is always contained in the manual of the given
machine tool.

18

2 Controlled Axes

2.4 Unit System of Axes and Accuracy of Position Display

Coordinate data can be given with an accuracy of 15 digit as maximum. The decimal point must
be put in the only case, when positioning to a point of non-integer coordinate has to be performed.
Coordinate data could also have sign. The sign + is omitted.
In the program, data of length coordinates can be given either in mm or in inch. This is the input
unit system. The input unit system can be selected from the program, using code G (G21/G20).
The path-measuring device mounted on the machine tool can measure position either in mm or
in inch. The path-measuring device determines the output unit system which must be given at
the bit IND of the parameter N0104 Unit of Measure of the control. On a given machine tool, it
is not possible to mix output unit systems among the axes.
If the input and output unit systems are different ones, conversion will be performed by the
control automatically.
The rotational axes are always provided with degrees as units of measure. The rotary axes can
be designated by ROT=1 in the parameter N0106 Axis Properties. Correct setting of this
parameter is important because the control does not execute inch/mm conversion for the axes
designated in this way.
The position display accuracy (i.e. number of decimal places) can be set in the parameter N0105
Increment System.
The inner position representation of the system is independent of the value of the Increment
System parameter. The accuracy is as follows:

In case of linear axes and measurement in mm: 10 mm;-6

In case of linear axes and measurement in inch: 10 inch;-7

In case of circular axes: 10 degree. -6

System
name

Axis Display accuracy in metric and inch systems

G21 metric G20 inch

ISA
linear 0.01 mm 0.001 in

rotary 0.01 deg 0.01 deg

ISB
linear 0.001 mm 0.0001 in

rotary 0.001 deg 0.001 deg

ISC
linear 0.0001 mm 0.00001 in

rotary 0.0001 deg 0.0001 deg

ISD
linear 0.00001 mm 0.000001 in

rotary 0.00001 deg 0.00001 deg

ISE
linear 0.000001 mm 0.0000001 in

rotary 0.000001 deg 0.000001 deg

Any axis can be designated for data input and position display in diameter by setting DIA=1 in
the parameter N0106 Axis Properties.

19

3 Preparatory Functions (Codes G)

3 Preparatory Functions (Codes G)

The nature of an instruction in a given block is determined by the address G and the number
following it.
There are so-called one-shot codes G effect of which is valid in the given block, and there are so-
called modal functions G effect of which is valid until this effect is switched off or changed by
another code G.
The one-shot codes G belong to the group numbered with 0 (zero). Those ones from the modal
codes G which influence each other have group number different from 0 (zero).
More than one code G may be written into one block provided that only one of the functions
belonging to the same group has to be per group.
The leading zero has not to be written in the code but the control accepts it. For example: Either
G01 or G1 may be written in the program.
The table below contains codes G interpreted by the control, their group numbers and functions.

Code
G

Group Function Page

G0*

1

Positioning 25

G1* Linear Interpolation 27

G2 Circular and spiral (planar, helical and conical) interpolation,
clockwise (CW)

29, 34,
36, 39

G3 Circular and helical (planar, cylindrical and conical)
interpolation, counter-clockwise (CCW)

29, 34,
36, 39

G4

0

Dwell 78

G9 Exact stop in the given block 65

G7.1 Cylindrical interpolation 48

G10 Programmed data input 89, 90,
128,

G11 Programmed data input cancel

G10.9 Interchange radius/diameter programming from program 53

G12.1
21

Polar coordinate interpolation on 43

G13.1* Polar coordinate interpolation off 43

G15*

17
Data specification in polar coordinates off 54

G16 Data specification in polar coordinates on 54

20

3 Preparatory Functions (Codes G)

Code
G

Group Function Page

G17*

02

p pSelection of the plane X Y 94

G18*
p pSelection of the plane Z X 94

G19*
p pSelection of the plane Y Z 94

G20*

6
Data input in inch 52

G21* Data input in mm 52

G22*

04
Programable stroke check function on 283

G23* Programable stroke check function off 283

G28

0

Programmed return to the reference point 80

G30 Return to the second, third and fourth reference point 81

G31 Skip function 277

G33 01 Thread cutting 41

G36

0

Automatic tool length measurement in the direction X 280

G37 Automatic tool length measurement in the direction Z 280

G38 Holding the tool nose radius compensation vector 158

G39 Corner rounding with tool nose radius compensation 159

G40*

07

Calculation of tool nose radius compensation cancel 133

G41 Calculation of tool nose radius compensation from the left 133

G42 Calculation of tool nose radius compensation from the right 133

G43.7 08 Tool Length Compensation by Code G* 131

G49* Tool length compensation off 131

G50*

11
Scaling off 171

G51 Scaling on 171

G50.1*

22
Mirroring off 174

G51.1 Mirroring on 174

G51.2
31

Polygonal turning on 256

G50.2* Polygonal turning off 256

G52
0

Coordinate offset 91

G53 Positioning in the machine coordinate system 84

21

3 Preparatory Functions (Codes G)

Code
G

Group Function Page

G54*

14

Selection of the workpiece coordinate system 1 86

G55 Selection of the workpiece coordinate system 2 86

G56 Selection of the workpiece coordinate system 3 86

G57 Selection of the workpiece coordinate system 4 86

G58 Selection of the workpiece coordinate system 5 86

G59 Selection of the workpiece coordinate system 6 86

G54.1 Selection of additional workpiece coordinate system 87

G61

15

Exact stop mode 65

G62 Automatic corner override mode 65

G63 Override inhibition 65

G64* Continuous cutting mode 65

G65 0 Simple macro call 339

G66

12

Modal macro call after each motion command 341

G66.1 Modal macro call from each block 342

G67* Modal macro call cancel 341,
343

G68
16

In-plane rotation of an object about a given point 169

G69* In-plane rotation off 169

G70

0

Finishing cycle 217

G71 Stock removal cycle in turning 197

G72 Stock removal cycle in facing 208

G73 Pattern repeating cycle 214

G74 Face grooving cycle 218

G75 Grooving cycle 220

G76 Thread cutting cycle 222

G77

1

Turning cycle 190

G78 Simple thread cutting cycle 192

G79 Facing cycle 194

22

3 Preparatory Functions (Codes G)

Code
G

Group Function Page

G83.1

09

High-speed peck drilling cycle 235

G84.1 Left-handed tapping cycle using spring tap 236

G86.1 Boring Cycle with Automatic Tool Shift 237

G80* Cycle state cancel 238

G81 Drilling cycle, rapid-traverse retraction 238

G82 Drilling cycle with dwell, rapid-traverse retraction 239

G83 Peck drilling cycle 240

G84 Right-handed tapping cycle using spring tap 241

G84.2 Right-handed rigid tapping cycle
Right-handed peck rigid tapping cycle

242
244

G84.3 Left-handed rigid tapping cycle
Left-handed peck rigid tapping cycle

242
244

G85 Boring cycle, retraction with feed 247

G86 Boring Cycle with Retraction with Spindle in Standstill 248

G87 Manual Control/Back Boring Cycle 249

G88 Boring cycle, manual operation at the bottom point 251

G89 Boring cycle, dwell at the bottom point, retraction with feed 252

G80.8
34

Electronic gear box off 259

G81.8 Electronic gear box on 259

G90*

03
Absolute dimensioning 51

G91* Incremental dimensioning 51

G92 00 Creating a new work coordinate system 90

G94*

05
Feed per minute 64

G95* Feed per revolution 64

G96
13

Calculation of constant cutting speed on 100

G97* Calculation of constant cutting speed off 100

G98*

10
Return from the drilling cycle to the initial point 218

G99 Return from the drilling cycle to the (approach) point R 218

23

3 Preparatory Functions (Codes G)

Basic State after Turning on
Codes G marked with * in a group represent state the control takes on after turning on.
Where there are several codes G marked with * in a group, on the basis of the parameters N1300
DefaultG1 and N1301 DefaultG2 can it be selected which ones have to be valid after turning on.
These codes G are as follows:

G00, G01;
G17, G18, G19;
G20, G21;
G22, G23;
G90, G91;
G94, G95.

Basic State after Pushing Reset Key or after Program End
When reset key is pushed or a program ends (M2, M30), if the bit CLR of the parameter N1301
DefaultG2
= 0: the control, without any condition, will take on state marked with * in the G code table, or
it will reset the code G values into after-turning-on basic state set in the parameters N1300
DefaultG1 and N1301 DefaultG2;
= 1: the control, on the basis of values given in the parameter CLR G Table1, 2, 3, 4, 5, will get
into basic state according to the G code groups, or it will leave the modal values unchanged.
If in the parameter CLR G Table1, 2, 3, 4, 5 the G code group’s bit Cnn (where nn is the group
number of the code G) is
= 0: the control will set the adequate G code group into basic state;
= 1: the control will leave the adequate G code group in emerged and inherited state.

24

4 Interpolation

4 Interpolation

4.1 Positioning (G0)

The positioning command G0 moves the tool along all the axes programmed in the block to the
specified point.
Motion is performed using rapid traverse. The value of rapid traverse is specified by the builder
of the machine tool in parameter for each axis, and it cannot be set from the program.
In the case of absolute dimensioning, the tool moves to the point of given coordinates in the
coordinate system of the actual workpiece.
In the case of incremental dimensioning , the tool moves the given distance from its actual
position.
The format of the block is:

G0 v
where v are the coordinates given in the block. The
designation v refers here (and hereafter) to all the
controlled axes used in the given channel.
Simultaneous positioning along all the axes of the
channel is possible.
Instead of G0, G00 can be given too.

An example:
G0 X150 Z2

Other code G and function can also be given in the
block.

An example:
G0 G90 X150 Z2 S2000 M3

The modal code G0 remains effective until it is re-written by another interpolation command.
An example:

G0 X150 Z2
X20 Z1 (positioning block, because G0 is being modal)

After turning on code G0 will be in effect if bit position of the parameter N1300 DefaultG1 is
G01=1.

4.1.1 Positioning by Linear Interpolation

In the case of moving several axes simultaneously, the
control will move the tool along a straight line connecting
the starting point and the end point while positioning if bit
position of the parameter N0421 Acc Contr is ROL=0.
The control calculates the resultant velocity vector (v) in
such a way that positioning be executed in a minimum
time, and the value of velocity along none of the axes does
not exceed the rapid traverse value set for the given axis.
After completing motion, the control will check the ‘in-
position’ signal if bit position of the parameter N1337

Fig. 4.1-1

Fig. 4.1.1-1

25

4 Interpolation

Execution Config is PCH=1.
The control waits for the ‘in-position’ signal for the time set in the parameter N1340 Inpos
Timeout ; if the signal does not received even from this time on, the control will send the error
message ‘2501 Position error’.
The maximum acceptable deviation from the position can be specified in the parameter N0516
Inpos, for each axis.
In-position check should be set when it is
reasonable, otherwise the execution time
could increase. For example, executing the
program detail

G0 X60
Z1
X56

the difference between the two time
periods will be as it is illustrated in the
figure.

The control always carries out in-position
check at the end of the block

in state G61 (exact stop mode), or
in the positioning block in which
code G9 (exact stop) has been
written, even at parameter position
PCH=0 (there is no in-position check).

4.1.2 Positioning by Overlapping the
Rapid Traverse Motions

Consecutive positionings carried out on
different axes can be accelerated further by
the use of overlapping the motion of the
positioning blocks. This means, that while
in a positioning block one of the axes
decelerates approaching the end point
position, an other axis being in the next
positioning block begins accelerate
already.
Overlapping will be switched on by the bit
position ROL=1 of the parameter N0421
Acc Contr.
The percentage of speed, after reaching
which in the deceleration period of the
previous block the next block starts, can be
set in the parameter N0422 Rapid Reduct.
Ratio, in percentage.

Using the former example, executing the
program detail

G0 X60

Fig. 4.1.1-2

Fig. 4.1.2-1

26

4 Interpolation

Z1

X56

the difference between execution times will be as it is illustrated in the figure.

In the case of positioning with overlap, tool
path is not cornered, but it is a rounded one.
Because of this, care should be taken in
retracting the tool from the workpiece; maybe
degree of retracting must be higher than usual
in the program.

In the case of positioning several axes
programmed in one block, the tool motion
path is straight approximately only, and the
different axes arrive to the position with time
difference.

The control suspends overlapping between positioning blocks and always carries out in-position
check at the end of the block

in state G61 (exact stop mode), or in the positioning block in which

code G9 (exact stop) has been written, even at parameter position PCH=0 (there is no in-
position check)

4.2 Linear Interpolation (G1)

The linear interpolation command G1 moves the tool to the specified point along straight path,
along all the axes programmed in the block.
Motion is carried out at feed F programmed in block, or being modal.
In the case of absolute data specification, the tool moves in the actual workpiece coordinate
system to the point of specified position.
In the case of incremental data specification, the tool
steps the specified distance from its actual position.

The format of the block is:
G1 v F

where v are the coordinates given in the block, and F is
the value of the feed. Motion along all the axes of the
channel at the same time is possible.
Instead of G1, G01 can be given too.

An example:
G1 X136 Z26 F0.5

In the block, other code G and function can also be
given.
Példa:

Fig. 4.1.2-2

Fig. 4.2-1

27

4 Interpolation

Fig. 4.2-2

Fig. 4.2-3

G1 G91 X5 Z10 S2000 M3
The modal code G1 remains effective until it is re-written by another interpolation command.
An example:

G1 X136 Z26 F0.5
Z0 (linear interpolation by F.5, because G1 and F are being
modal)

After turning on code G1 will be in effect if bit position of the parameter N1300 DefaultG1 is
G01=1.

The feed programmed at the address F is valid always along the path programmed. Its axial
components are as follows:

Feed along the axis X is:

Feed along the axis Z is:

.............................

The formula continues for all the axes programmed
in the block.
where: Äx, Äz, ...: displacements calculated along

the respective axes,
L: length of the programmed displacement:

The feed along a rotational axis is interpreted in unit
of degrees per minute (E/min). In the block

G1 C270 F120
F120 means: 120 deg/min.

If motion of a linear axis and a rotary axis is
combined through linear interpolation, the feed
components will be distributed according to the
above formulas.
For example, in the block:

G91 G01 Z100 C45 F120
the feed components in the Z and B directions are as
follows:

Feed along the axis Z is: mm/min

Feed along the axis C is: E/min

28

4 Interpolation

Fig. 4.3-1

4.3 Circular Interpolation (G2, G3)

The G2 or G3 command moves the tool in the selected plane to the point specified in the block,
along circular arc. Motion is carried out at feed F programmed in block, or being modal.
The format of the block is:

Circular interpolation is accomplished in the plane selected by the commands G17, G18, G19;
in the case of G2 in clockwise direction, and in the case of G3 in counter-clockwise direction:

Instead of codes G2 and G3, codes G02 and G03 can also be written in the program.
The codes G2 and G3 are modal ones, they remain effective until they are re-written by another
interpolation command.

p p pHere and hereafter, the meanings of X , Y , and Z are as follows:

pX : axis X or an axis parallel with it;

pY : axis Y or an axis parallel with it;

pZ : axis Z or an axis parallel with it.

p p pThe values of X , Y , and Z are the coordinates of the circle endpoint in the given coordinate
system, specified as absolute data, or incremental data measured from the starting point.
Further data of the circle can be specified in two different ways:

Case 1: Specifying the circle by its radius at the address R

29

4 Interpolation

Fig. 4.3-2

Fig. 4.3-3

In this case, the control automatically calculates the
coordinates of the circle center from the coordinates
of the starting point (this is the point where the
control is in the moment of reading-in the block of
the circle), from the coordinates of the end point

p p p(values defined at the addresses X , Y and Z) and
from the programmed circle radius R. In the case of
a given circulation direction (G2 or G3), two
different circles of radius R can be drawn passing the
starting and end points.
If the circle radius R is given
as a positive number, the control will interpolate an
arc smaller than 180°,
as a negative number, the control will interpolate an arc larger than 180°. For example:

Arc section 1: G2 X80 Z50 R40
Arc section 2: G2 X80 Z50 R-40
Arc section 3: G3 X80 Z50 R40
Arc section 4: G3 X80 Z50 R-40

Case 2: Specifying the circle by its center at the addresses I, J and K
The control interprets the values specified at the addresses I, J and K incrementally in such a way
that the vector defined by the values I, J and K points from the starting point to the center point
of the circle.
The values I, J and K must always be specified in radius, even if the axes adherent to them are
set to be programmed in diameter.
For example:

in the case of G17: G3 X20 Y140 I-50 J-20 (X, Y are specified in
diameter)
in the case of G18: G3 X140 Z10 I-20 K-50 (X is specified in
diameter)
in the case of G19: G3 Y20 Z70 J-50 K-20 (Y is specified in
diameter)

30

4 Interpolation

Fig. 4.3-4

At the address F, the feed along the path can be
programmed which points always in the direction of the
circle tangent and is constant along the whole path.

An example:
Programming the path shown in the figure.

Programming a circle using absolute
coordinates and specifying R:

G90 G18
G0 X0 Z130 M3 S1000
G1 X40 F500
G3 X180 Z60 R70
G2 X100 Z40 R50
G1 Z0
...

Programming a circle using absolute
coordinates and specifying the circle center I,
K:

G90 G18
G0 X0 Z130 M3 S1000
G1 X40 F500
G3 X180 Z60 K-70
G2 X100 Z40 K-50
G1 Z0
...

Programming a circle using incremental coordinates and specifying R:
G90 G18 G0 X0 Z130 M3 S1000
G91
G1 X40 F500
G3 X140 Z-70 R70
G2 X-80 Z-20 R50
G1 Z-40
...

Programming a circle using incremental coordinates and specifying the circle center I, K:
G90 G18 G0 X0 Z130 M3 S1000
G91
G1 X40 F500
G3 X140 Z-70 K-70
G2 X-80 Z-20 K-50
G1 Z-40
...

Fig. 4.3-5

31

4 Interpolation

Fig. 4.3-6

Specification of I0, J0 and K0 may be omitted. For example:
G0 X0 Z100 F500
G18 G03 X200 Z0 K-100

In the case of programming a quarter circle with radius of 100 mm and with center in the origin,
I0 has not to be written, since the distance of the circle center in the direction X from the point
X0 Z100 is 0.

p p pIf all three of X , Y and Z are omitted, then
 – if coordinates of circle center are specified at the addresses I, J and K, the control will

interpolate a full circle with the arc of 360°. For example, in the case of
G0 X400 Y0 F500
G17 G03 I-100
the control interpolates a full circle with radius 100 mm and with center point of X200
Y0;

 – if radius R is specified, for example
G0 X0 Z200 F500
G18 G03 R100
the control will not move and will not indicate error.

If the circle block contains neither radius R nor I, J and K, the control will send the error
message ‘2015 Circle definition error’.

If reference to the addresses I, J and K being outside of the selected plane is made, the control
will send the error message ‘2015 Circle definition error’.

If the difference between the starting point radius and the
end point radius of the circle specified in the G2, G3
block is greater than the value given in the parameter
N1339 Radius Diff, the control will send the error message
‘2012 Circle radius difference’.
If the difference between the radii less than the value given
in the abovementioned parameter, the control will move
the tool along a planar spiral path where the radius changes
linearly as a function of the central angle.
In the case of interpolation of an arc with variable radius,
not the tangential velocity, but the angular one will be
constant.
The value of the parameter N1339 Radius Diff must be
greater than 0, for example 0.001, otherwise the control
will send unnecessary error indications.

32

4 Interpolation

Fig. 4.3-7

Fig. 4.3-8

Radius difference error or interpolation of a circle of variable radius may be occurred in the
following cases:

When the circle center positioning specified at
the addresses I, J and K is not correct. For
example:

G18 G90 G0 X0 Z50
G3 Z-20 K-50

If the given circle radius is smaller than the
half of the straight line segment between the
starting and end points, the control will regard
the given circle radius as the starting-point-
radius, and it will interpolate such a circle of
variable radius, the center of which is on the
line linking the starting and end points at a
distance R from the starting point:

G18 G0 G90 X0 Z0
G2 X60 Z40 R10

The circle center position, i.e, I, J and K can also be given by absolute value calculated from the
workpiece zero point. For this, the set position #2 CCA=1 of the parameter N1337 Execution
Config is necessary. This case should be avoided.

33

4 Interpolation

4.3.1 Planar Spiral Interpolation (G2, G3)

By the command G2 or G3, planar spiral interpolation can be programmed in the way of giving
the number of revolutions of the spiral too, at the address L. The center and the end point of the
circle have to be specified in such a way that the starting-point-radius and the end-point-radius
be different. Motion will be executed at a feed F programmed in the block or being modal.
The format of the block is:

p p pThe values X , Y , Z are the coordinates of the spiral end point in the given coordinate system;
they are specified as absolute data, or incremental data measured from the starting point.
At the addresses I, J and K, the coordinates of the center point of the spiral are specified as
incremental data measured from the starting point in such a way that the vector defined by the
values I, J and K points from the spiral starting point to the spiral center.
The values I, J and K will have to always be given in radius, even if the axes adherent to them
are set to be programmed in diameter.
The number of revolutions of the spiral is given at the
address L. Every start will mean a new revolution even if
the next one is not a full revolution. The address L is a
positive integer number.

In the course of spiral interpolation, the control varies the

0starting-point-radius (R) with the swivel angle (n)
linearly in such a way that the end-point-radius correspond
to the programmed data, when the radius executed
revolutions specified at the address L and reached the end
point position.
It follows from the foregoing that in the course of spiral
interpolation what is indicated for the control by filling in
the address L, the starting-point-radius differs from the
end-point-radius. If the address L is filled in, the control
will never check the maximum value of the radius
difference specified in the parameter N1339 Radius Diff.
The feed F specified in the spiral interpolation remains
constant along the full length of the spiral.

Fig. 4.3.1-1

34

4 Interpolation

Fig. 4.3.1-3

An example:
Programming the spiral shown in the figure.
The starting point of the spiral is X180 Y0, its
center measured from the starting point is I-
90, J0, the radius variation per revolution is
24, and the number of revolutions is 2.5. So,
the end-point radius of the spiral is:

R=90-2*24-24/2=30
The number of revolutions entered is 3.
The program is as follows:

G17 G90 G94 M3 S1000
G0 X180 Y0 F1000
G3 X-60 I-90 L3

In the above example, the coordinates X and
Y is specified in diameter.

If we want the control not to indicate error in
the loop 2012 Circle radius difference as it is
illustrated by the example given in the
subsection 4.3 Circular interpolation (page 29
), the program will have to be modified in the
following way:

G18 G90 G0 X0 Z50
G3 Z-20 K-50 L1

Fig. 4.3.1-2

35

4 Interpolation

4.3.2 Helical Spiral Interpolation (G2, G3)

By the command G2 or G3, helical spiral interpolation can be programmed in the way of
programming motion along the axis perpendicular to the plane of the circle. The number of
revolution of the spiral can be given at the address L. Motion will be executed at a feed F
programmed in the block or being modal.
The format of the block is:

Specification of the circle is carried out according to the rules determined for circle interpolation.
Displacement along the axis perpendicular to the plane of the circle arc is proportional to
displacement along the circle arc.
In addition to the axis perpendicular to the circle, displacement can be specified for axes of
arbitrary quantity, which are marked with q in the formula above and programmable in the
channel.
The number of revolutions of the helical spiral is given at the address L. Every start will mean
a new revolution even if the next one is not a full
revolution. The address L is a positive integer number.
In the course of helical spiral interpolation, the control
varies the pitch with the swivel angle (n) linearly in such
a way that the endpoint-position on the axes which are
outside of the plane of the circle correspond to the
programmed data, when revolutions specified at the
address L have been executed and the end point position
have been reached.

Fig. 4.3.2-1

36

4 Interpolation

Fig. 4.3.2-2

Fig. 4.3.2-3

Examples:
The helical spiral interpolation shown in the
figure can be specified in the following way:

G17 G90 G0 X100 Y0 Z0
G03 X0 Y100 Z20 R50 F150

In this example, the coordinates X and Y are
specified in diameter.

In this figure, milling of a circle arc into the
mantle of an oblique cylinder is illustrated.
The axis V is parallel with the axis Y and is
moved together with the axis Z by the control:

G17 G90 G0 X100 Y0 Z0 V0
G03 X0 Y-100 Z50 V20 I-50

In this example, the coordinates X and Y are
specified in diameter.

This picture is for programming a helical
spiral with 4 revolutions.
The starting point of the spiral is X-100 Y0
and Z0, its center measured from the starting
point is I-50, J0, the pitch per revolution is 5,
and the number of full revolutions is 4.
The program is:

G54 G17 G90 ...
G0 X-100 Y0
Z0
G2 I50 Z-20 L4 F100
...

In this example, the coordinates X and Y are
specified in diameter.

Fig. 4.3.2-4

37

4 Interpolation

Basically, the feed given at the address F is
valid along circle path when the bit position
of the parameter N1337 Execution Config #3
is HEF=0. Then, the following formulas give
feed for the axis:

In the case of bit position HEF=1, feed will
be calculated by the control along spiral path.
Then, the following formulas give feed for the
axis:

qwhere L : the displacement along the axis q;

arcL : the length of the circle arc;
F: the programmed feed;

qF : the feed along the axis q;

arcF : the feed along the circle arc.

The specified tool radius compensation is always valid in the plane of the circle along the circle
path.
In that case, if the radius of the circle given in the selected plane varies, interpolation will be
executed along the mantle of the given cone.

Fig. 4.3.2-5

38

4 Interpolation

4.3.3 Conical Spiral Interpolation (G2, G3)

By the command G2 or G3, conical spiral interpolation can be programmed in the way of
programming motion along the axis perpendicular to the plane of the circle. The center point
and the end point of the circle have to be specified in such a way that the starting-point-radius
and the endpoint-radius of the circle have to be different. The number of revolution of the
conical spiral can be given at the address L. Motion will be executed at a feed F programmed
in the block or being modal.
The format of the block is:

p p pThe values X , Y , Z are the coordinates of the spiral end point in the given coordinate system;
they are specified as absolute data, or incremental data measured from the starting point.
In addition to the axis perpendicular to the circle, displacement can be specified for axes of
arbitrary quantity, which are marked with q in the formula above and programmable in the
channel.
At the addresses I, J and K, the coordinates
of the center point of the conical spiral are
specified in the selected plane as incremental
data measured from the starting point in such
a way that the vector defined by the values I,
J and K points from the spiral starting point
to the spiral center.
The values I, J and K will have to always be
given in radius, even if the axes adherent to
them are set to be programmed in diameter.
The number of revolutions of the spiral is
given at the address L. Every start will mean
a new revolution even if the next one is not a
full revolution. The address L is a positive
integer number.

In the course of conical spiral interpolation,
the control varies the pitch with the swivel
angle (n) linearly in such a way that the

Fig. 4.3.3-1

39

4 Interpolation

endpoint-position on the axes which are outside of the plane of the circle corresponds to the
programmed data, when revolutions specified at the address L have been executed and the end
point position have been reached. It will also vary linearly the circle radius with the swivel angle
(n).

An example:
This picture is for programming a 4-
revolution conical spiral whose starting-point-
radius is 50, endpoint-radius is 20, and pitch
per revolution is 5.
The program is:

G17 G90 ...
G0 X-100 Y0
Z0
G2 X-40 I50 Z-20 L4 F100
...

In this example, the coordinates X and Y are
specified in diameter. Fig. 4.3.3-2

40

4 Interpolation

Fig. 4.4-1

Fig. 4.4-2

4.4 Equal Lead Thread Cutting (G33)

By the instruction G33, cutting of straight or tapered thread of equal lead can be programmed.
The format of the block is:

G33 v F Q
or

G33 v E Q
For vector v, coordinate data of maximum two
 axes can be written. If data of two coordinates
are assigned for the vector v, the control will
cut tapered thread. Lead will be taken into
account by the control on the axis along which
the displacement is longer, i.e.
if á<45E, i.e. Z>X, the programmed lead will
be taken into account along the axis Z,
if á>45E , i.e. X>Z, the programmed lead will
be taken into account along the axis X.
The lead can be defined in the following two
ways:

Specification of the lead at address F
If the lead is specified at address F, the data will be interpreted in mm/rev or inch/rev.
Accordingly, F2.5 will has to be programmed if a thread of 2.5 mm lead is to be cut.

Specification of the lead at address E
If the lead is specified at address E, the control will cut inch thread. Interpretation of address E
is number of threads per inch. If E8 is programmed, the control will cut a thread, characterized
by the lead of 1/8"=25.4/8=3.175 mm.

The value of angle in degree by which the spindle has to rotate from the zero pulse of the
spindle encoder before starting the thread cutting can be given at the address Q. Multiple-start
thread can be cut by an adequate programming of the value of Q, i.e. the control can be
programmed here for the particular angular displacements of the spindle, at which cutting the
various starts of the thread are to be started. For example, if a double-start thread is to be cut, the
first start will has to be commenced from Q0 (no special programming is needed), while the
second start from the Q180.

G33 is a modal function. If several thread-
cutting blocks are programmed in succession,
it is possible to cut thread on an arbitrary
surface bounded by straight line segments.
The control is synchronized to the zero pulse
of the spindle encoder in the first block, no synchronization will be performed in the subsequent
blocks what results in a continuous lead in each line segment. Therefore, the programmed angular
displacement Q of the spindle will also be taken into account in the first block only.

41

4 Interpolation

Fig. 4.4-3

An example:
Cutting a thread with the lead of 2 mm:

...
G0 G90 X50 Z60
X20
G33 X30 Z12 F2
G0 X50
Z60
...

In the example above X is specified in
diameter.

 L Notes:
 – If in the thread-cutting block

both addresses F and E are also filled
in,
F0 or E0 are specified
the control will indicate the error message ‘2021 Thread programming error’.

 – In the course of execution of the command G33, the control considers the values of feed and
spindle override 100% automatically, and the key Stop is ineffective.

 – Because of following error of the servo system, run-in and run-out distances outside the
material have to be provided for the tool at the forepart and the end of the thread in order
to obtain constant lead all along the full length.

 – Before issuing command on thread cutting, the state of calculation of constant cutting speed
(G96) must be switched off.

42

4.5 Polar Coordinate Interpolation (G12.1, G13.1)

4.5 Polar Coordinate Interpolation (G12.1, G13.1)

The polar coordinate interpolation is a control
operation mode, in case of which the control
goes along the path of the workpiece contour
described in the orthogonal (Cartesian)
coordinate system moving a linear axis and a
rotary axis, i.e. the path given by orthogonal
coordinates is converted by the control into a
path represented by polar coordinate data,
moment by moment during the motion.
The instruction Polar coordinate interpolation
on

G12.1
switches the polar coordinate mode on. In the
subsequent part of the program, the path of
the milling tool in orthogonal coordinate
system can be described by programming a
linear axis and a rotary axis (a virtual linear
axis). The instruction must be issued in a separate block and no other instruction can be written
beside.
The instruction of Polar coordinate interpolation off

G13.1
switches the polar coordinate mode off. The instruction must be issued in a separate block and
no other instruction can be written beside. After switching-on or reset, the control always enters
into the state G13.1.

Selection of the Linear and the Rotary Axes
Before switching-on the polar coordinate interpolation, a linear axis and a rotary (virtual) axis
have to be selected, these ones will be the axes participating in polar coordinate interpolation.
Selection of axes is carried out using plane selection instructions G17, G18 and G19.

PG17 X _ the address of a rotary (virtual) axis_

PG18 Z _ the address of a rotary (virtual) axis_

PG19 Y _ the address of a rotary (virtual) axis_
The first axis of the selected plane will always be the linear axis. Parallel axis can be selected
too.
The rotary axis specified in the plane selection instruction will be the rotary axis of the polar
coordinate interpolation. Then, the instruction G12.1 will calculate with data given at the
addresses of linear and rotary axes specified in the abovementioned way.
For example, the instruction

G17 X_ C_
designates the axis X for the linear one, and the axis C for the rotary one.
On the other hand, the instruction

G19 Y_ C_
designates the axis Y for the linear one, and the axis C for the rotary one.

Fig. 4.5-1

43

4.5 Polar Coordinate Interpolation (G12.1, G13.1)

Position of the Workpiece Zero Point in the Course of Polar Coordinate Interpolation
Before switching-on the polar coordinate interpolation, it is necessary to select such workpiece
coordinate system, in which the center of rotation of the rotary axis coincides with the origin
of the linear axis of the polar interpolation.
For example, if C is the rotary axis and X is the linear axis, the origin of the coordinate system
will has to be chosen on the axis X in such a way that the X=0 position of the tool coincides with
the axis of rotation of the circular axis (C).

If the center of rotation of the rotary axis does not
coincide with the first axis of the selected plane
(with the linear axis), in other words, if the center of
rotation of the rotary axis does not coincide with the
axis of rotation of the tool in the direction
perpendicular to the linear axis, the machined
workpiece will become deformed. The closer the
tool moves to the origin the bigger the extent of
distortion will be.
Since there is generally no axis in this direction,
therefore this deviation cannot be compensated by
zero point offset.
This deviation can be compensated in the parameter
N0217 Polar Intp. Comp. Amount. The value of
compensation must be written always at the address
of the rotary axis in mm or in inch.

Position of the Axes at the Moment of Switching the Polar Coordinate Interpolation on
Before switching the polar coordinate interpolation (the instruction G12.1), it is necessary to
ensure being of the circular axis in the point of 0 position. Position of the linear axis can be
either negative or positive, but it cannot be 0.

Programming the Length Data in the Course of Polar Coordinate Interpolation
In the switched-on state of the polar coordinate interpolation, length coordinate data may be pro-
grammed on both axes belonging to the selected plane: the rotary axis in the selected plane func-
tions as the second (virtual) axis. For example, if the axes X and C have been selected by means
of instruction G17 X_ C_ , the address C can be programmed like the axis Y in the case of plane
selection G17 X_ Y_.
In polar coordinate interpolation, the function G16 of programming in polar coordinate can also
be applied. In this case, obviously, the polar radius is given at the first axis address of the selected
plane, and the polar angle is given on the rotary axis.

Basically, it does not influence programming the virtual axis whether the first axis is programmed
in diameter or not, the coordinate data on the virtual axis must always be given in radius. For
example, if polar coordinate interpolation is executed in the plane XC, the value written at the
address C must be given in radius independently of giving the address X in diameter or in radius.

Motion of the Axes Not Participating in Polar Coordinate Interpolation
The tool moves on these axes as it moves in normal case, independently of switched-on state of
polar coordinate interpolation.

Fig. 4.5-2

44

4.5 Polar Coordinate Interpolation (G12.1, G13.1)

Fig. 4.5-3

Programming the Circular Interpolation in the Course of Polar Coordinate Interpolation
When polar coordinate interpolation is switched on, a circle can be specified by radius in the way
known already, or by programming the circle center coordinates. Having chosen the latter case,
the addresses I, J and K have to be used in harmony with the selected plane, according to the
following:

PG17 X _ the address of a rotary (virtual) axis_ I_ J_

PG18 Z _ the address of a rotary (virtual) axis_ I_ K_

PG19 Y _ the address of a rotary (virtual) axis_ J_ K_

Use of Tool Radius Compensation in the case of Polar Coordinate Interpolation
The instructions G41, G42 can be used in the ordinary way when polar coordinate interpolation
is switched on. Be careful to it that the tool position code in the rotary tool compensation group
be Q=0. The following restrictions must be considered regarding its application:
Switch-on of polar coordinate interpolation (instruction G12.1) is possible in the state G40 only.
If G41 or G42 has been switched on in the state G12.1, G40 will have to be programmed before
switching the polar coordinate interpolation (the instruction G13.1) off.

Programming Restrictions in the Course of Polar Coordinate Interpolation
The instructions listed below cannot be used when polar coordinate interpolation is switched on:
 – plane change: G17, G18, G19;
 – coordinate transformations: G52, G92;
 – change of workpiece coordinate system: G54, ..., G59;
 – positioning in the machine coordinate system: G53;
 – G28 reference point return, G30 Pp: 2. 3. 4. return to the reference point;
 – G31 measurement with deletion of remaining travel.

Feed in the Course of Polar Coordinate Interpolation
In the switched-on state of the polar coordinate interpolation, feed is interpreted, in the way
ordinary in the case of the orthogonal interpolation, as tangential speed: it is the relative speed
of the workpiece and the tool.
In the course of polar coordinate interpolation the control goes along a path specified in
orthogonal coordinate system moving a linear
axis and a rotary axis. As the tool center point
approaches the axis of rotation of the circular
coordinate, the rotary axis should take bigger
and bigger steps in unit of time so as the
tangential speed will be constant. On the other
hand, the speed of the circular axis is limited
by the maximum permissible speed of the
rotary axis defined by parameter. For this
reason, near the origin the control decreases
the tangential feed step by step so that the
speed of the rotary axis does not increase
beyond all limits.
This figure illustrates the case of
programming straight lines (1, 2, 3 and 4)
parallel with the axis X. Äx displacement in

45

4.5 Polar Coordinate Interpolation (G12.1, G13.1)

Fig. 4.5-4

unit of time belongs to the programmed feed. In the case of different straight lines (1, 2, 3 and 4),

1 2 3 4different angular displacements (n , n , n , n) belong to the Äx displacement. Apparently, the
closer the machining gets to the origin, the larger angular displacement the rotary axis has to
make in unit of time in order to keep the programmed feed.
If, in such cases, the angular speed exceeds the value set in the parameter N0305 Max Feed for
the rotary axis, the control will decrease the tangential feed step by step.

An example:
This figure shows an
example for use of
polar coordinate
interpolation. The
axes participating in
the interpolation are
the following: axis X
(linear axis) and axis
C (rotary axis). The
a x i s X i s
p r o gr a m m e d in
diameter, while the
axis C in radius.

...
N050 T808
N060 G59 (The starting point of the

coordinate system G59 in the
direction X is the axis of
rotation of C)

N070 G17 G0 X200 C0 (Selection of the plane X, C;
positioning to the coordinate X�0,
C=0)

N080 G94 Z-3 S1000 M3
N090 G12.1 (Polar coordinate interpolation On)
N100 G42 G1 X100 F1000
N110 C30
N120 G3 X60 C50 I-20 J0
N130 G1 X-40
N140 X-100 C20
N150 C-30
N160 G3 X-60 C-50 R20
N170 G1 X40
N180 X100 C-20
N190 C0
N200 G40 G0 X150
N210 G13.1 (Polar coordinate interpolation Off)

46

4.5 Polar Coordinate Interpolation (G12.1, G13.1)

N220 G0 G18 Z100 (Tool retraction, selection of the
plane X, Z)

...

47

4.6 Cylindrical Interpolation (G7.1)

4.6 Cylindrical Interpolation (G7.1)

If a cam should be milled on the mantle of a cylinder,
cylindrical interpolation will be applied. In this case, the
center line of the cylinder and the axis of rotation of a
rotary axis must coincide.
The program is written by programming the linear axis
parallel with the center line of the cylinder and the
circular axis rotating the cylinder. In the program,
angular displacement of the rotary axis is given in degree
which will be converted by the control, along the mantle,
as a function of cylinder radius into the arc length
measured in mm or inch. The displacement resulted from
the interpolation will be reconverted by the control into
angular displacement for the rotary axis.
The feed F specified in the course of cylindrical
interpolation is always taken into account along the
mantle of the cylinder.
The instruction Cylindrical interpolation On G7.1 Qr
switches the cylindrical interpolation on, where

Q: the address of the rotary axis participating in
the cylindrical interpolation;

r: the radius of the cylinder.
For example, if the axis C is the rotary axis participating in the cylindrical interpolation and the
cylinder radius is 50 mm, the cylindrical interpolation can be switched on by the instruction G7.1
C50.
In the subsequent part of the program, the path to be milled on the cylinder mantle can be
described by specifying linear and circular interpolation. The coordinate for the linear axis must
always be given in mm or in inch, while that of the rotary axis in degree (E).
The instruction Cylindrical interpolation Off G7.1 Q0 switches the cylindrical interpolation off,
i.e. the code G is the same as it was in the case of switching on, but at the address of the rotary
axis 0 must be written.
The cylindrical interpolation switched on by the instruction G7.1 C50 in the abovementioned
example, can be switched off by the command G7.1 C0.
After the turn-on, the end of the program or reset, the control will always arrive at the state of
cylindrical interpolation Off.
The instruction G7.1 must be specified in a separate block.

Selection of the Linear and the Rotary Axes
Before switching-on the cylindrical interpolation, a linear axis and a rotary axis have to be
selected, these ones will be the axes participating in cylindrical interpolation.
Selection of axes is carried out using plane selection instructions G17, G18 and G19.

P PG17 X _, or Y _ and the address of a rotary axis_

P PG18 X _, or Z _ and the address of a rotary axis_

P PG19 Y _, or Z _ and the address of a rotary axis_
The cylindrical interpolation interprets G2 and G3 circular interpolation directions and the
direction of tool radius compensation (G41 and G42) on the basis of the plane selected and the

Fig. 4.6-1

48

4.6 Cylindrical Interpolation (G7.1)

linear axis belonging to the plane. The circular axis will be the other axis of the plane. A parallel
axis can also be selected.
For example, let the axis Z be parallel with the center line of the cylinder, and the axis C be the
axis of rotation of the cylinder. In this case, the linear axis and the rotary axis can be assigned
using either the instruction

G18 Z_ C_

or the instruction
G19 Z_ C_

before switching the cylindrical interpolation on.

Circular Interpolation
It is possible to define circular interpolation in cylindrical interpolation mode, however by
specifying the radius R only.
In the case of cylindrical interpolation, circular interpolation is not possible by giving the circle
center point (I, J, K).
The circle radius is always interpreted in mm or in inch, never in degree.
For example, circular interpolation between axes Z and C can be specified in two ways:

G18 Z_ C_
G2 Z_ C_ R_
G3 Z_ C_ R_

G19 C_ Z_
G3 C_ Z_ R_
G2 C_ Z_ R_

If the intension is to define the same path by G18 and G19 plane selection, the circle directions
will interchange compared to each other.

Application of Tool Radius Compensation in the case of Cylindrical Interpolation
The instructions G41, G42 can be used in the usual manner in the switched-on state of cylindrical
interpolation. The following restrictions are in effect regarding its application:
– Switching the cylindrical interpolation on (instruction G7.1 Qr) is possible in the state G40

only.
– If G41 or G42 has been switched on in the cylindrical interpolation mode, G40 must be

programmed before switching the cylindrical interpolation off (instruction G7.1 Q0).

Programming Restrictions in the Course of Cylindrical Interpolation
The following instructions are not available in the switched-on state of cylindrical interpolation:
– plane selection: G17, G18, G19;
– coordinate transformations: G52, G92;
– change of workpiece coordinate system: G54, ..., G59;
– positioning in the machine coordinate system: G53;
– circular interpolation by specifying the circle center point (I, J, K);
– drilling cycles.

49

4.6 Cylindrical Interpolation (G7.1)

Fig. 4.6-2

An example:
This figure illustrates a path
to be milled 3 mm deep on
the mantle of a cylinder
with radius of R=28.65
mm. The milling tool T is
parallel with the axis X.

On the mantle of the cylinder, the displacement corresponding to the 1 degree (1°) is:

Arrangement of the axes shown in the figure corresponds to the plane selection G19.

(CYLINDRICAL INTERPOLATION)
...
N030 G19 Z-20 C0 (G19: selection of the plane C–Z)
N040 G1 X51.3 F100 (3 mm depth of cut)
N050 G7.1 C28.65 (Switching the cylindrical

interpolation On, rotary axis: C,
cylinder radius: 28.65 mm)

N060 G1 G42 Z-10 F250
N070 C30
N080 G2 Z-40 C90 R30
N090 G1 Z-60
N100 G3 Z-75 C120 R15
N110 G1 C180
N120 G3 Z-57.5 C240 R35
N130 G1 Z-27.5 C275
N140 G2 Z-10 C335 R35
N150 G1 C360
N160 G40 Z-20
N170 G7.1 C0 (Switching the cylindrical

interpolation Off)
N180 G0 X100
...

50

5 Coordinate Data

Fig. 5.1-1

5 Coordinate Data

5.1 Absolute and Incremental Programming (G90, G91)

The input coordinate data can be specified as absolute and incremental values too. In the case of
absolute data specification, the coordinates of the end point must be given to the control, while
in the case of incremental data it is the distance to be travelled in the block that must be
programmed.

G90: Programming the absolute data specification
G91: Programming the incremental data specification

The G90 and G91 are modal functions. At the time of power-on, the control, according to the bit
#7 G91 of the parameter N1300 DefaultG1, decides which of the two states will apply. At the
end of the program or in case of reset, the code set in this parameter is effective too.
Motion to an absolute position is feasible after a reference point return only.

An example:
On the basis of this figure, the motion can be
programmed in the following two ways:

G90 G01 X100 Z20
G91 G01 X60 Z-40

The operator I is effective in the state G90 of
absolute data specification. It applies to the
coordinate only after the address of which it
stands. Its meaning is: incremental data.
Another way to solve the example above is:

G90 G01 XI60 ZI-40
G01 XI60 Z20
G01 X100 ZI-40

In the case of using multicharacter axis name, if the name ends with number, e.g. axis X2, the
operator I will have to be written after the sign=:

X2=I100

If the addresses U, V and W are not assigned for axes, they can be used to indicate incremental
motions in the directions X, Y and Z:

Address of absolute
command

Address of incremental
command

Motion command in the
direction X

X U

Motion command in the
direction Y

Y V

Motion command in the
direction Z

Z W

51

5 Coordinate Data

Fig. 5.3-1

Taking the abovementioned into account, the solution of the example is:
G90 G01 U60 W-40
G01 U60 Z20
G01 X100 W-40

5.2 Inch/Metric Conversion (G20, G21)

By programming appropriate code G, the input data can be specified either in inch unit system
or in metric unit system.

G20: Choosing the inch unit system
G21: Choosing the metric unit system

The unit system chosen will be in effect until a command of contrary meaning is issued, therefore
the codes G20 and G21are modal ones.
At the time of power-on, the control, according to the bit #3 G20 of the parameter N1300
DefaultG1, decides which of the two states will apply. At the end of the program or in case of
reset, the code set in this parameter is effective too.
For example:

G21 G0 G54 X200 Z50 (positioning to X=200 mm, Z=50 mm)
G20 X2 Z1 (positioning to X=2 inch, Z=1 inch)

Changing the unit system influences the following items:
 – Coordinate and compensation data, (mm/inch);
 – Feed rate (mm/min, inch/min, mm/ford, inch/ford);
 – Constant cutting speed (m/min, feet/min);
 – The values of position, compensation, zero point offset and feed rate are always displayed in

the unit system that has been chosen.
 – When macro variables (offset, position data etc.) are being read, data will be read out in the

unit system chosen.
 – Incremental jog and handwheel motion step;
 – Feed rate of the manual move (jog).

 5.3 Programming in Diameter or Radius

Since the cross-section of the workpiece
machined on lathes is usually a circle and the
workpiece can be controlled by diameter
measuring, it is practical to specify the
dimensions in direction of the axis X in
diameter. If there is axis Y on the machine, it
will be generally practical to manage the
dimension in direction of the axis Y in
diameter too. For each axis, it can be specified
in the bit #0 DIA of the parameter N0106
Axis Properties whether the control interprets
the dimension in diameter or in radius:
in the case of programming in radius:

#0 DIA=0
in the case of programming in diameter:

#0 DIA=1

52

5 Coordinate Data

If the parameter is set for programming in diameter, the following will have to be taken into
account:

Case Note

Absolute motion command Specified with diameter value

Incremental motion command Specified with diameter value (on the basis of the

2 1figure D –D)

Coordinate offset and zero point offset Specified with diameter value

Tool length compensation Specified with diameter value

In canned cycles, parameters concerning axes
managed in diameter, such as cutting depth

Always specified with radius value

The value of R and I, J and K in case of specifying
circular interpolation

Always specified with radius value

Displaying the axis position As diameter value

Feed rate in direction of the axis managed in
diameter

Always in radius/rev or radius/min

Step value in jog or handwheel mode Step of 1ìm will be taken in diameter if one
increment is chosen

5.3.1 Switching between in Radius and in Diameter Programming (G10.9)

It is specified by the value of
the bit #0 DIA of the parameter N0106 Axis Properties

whether the programming on a given axis will be done in radius or in diameter. If the value of the
bit

=0: the axis will be programmed in radius;
=1: the axis will be programmed in diameter.

The mode of programming can be switched anywhere in the part program. It is specified by the
value of
the bit #5 MGD of the parameter N0106 Axis Properties
whether the switching will be executed from PLC or by code G. If the value of the bit

=0: the switching will be executed through PLC signal;
=1: the switching will be executed by the code G10.9.

The manner of the switching from PLC is defined by the machine builder.
Hereunder, the switching by the code G10.9 will be described.
The instruction

G10.9 v
switches between programming in radius and programming in diameter, where

v: address of arbitrary linear axes, e.g. X, Y ... etc.
If the value written at the axis address:

=0: the axis will be programmed in radius;
=1: the axis will be programmed in diameter.

53

5 Coordinate Data

For example, in basic case, the axes X and Y on a milling machine are programmed in radius.
If, on a given section of the part program, it is practical to specify the value of X and Y in
diameter, the following will have to be written in the part program:

... (X, Y are specified in radius)

...
G10.9 X1 Y1 (programming the diameter)
... (X, Y are specified in diameter)
...
G10.9 X0 Y0(programming the radius)
... (X, Y are specified in radius)
...

If, on a lathe, the axis is programmed in diameter, but in the case of milling to be performed using
polar interpolation and axes X and C, the intension is to program the X in radius, then:

... (X is specified in diameter, turning)

...
G10.9 X0 (programming the radius)
G12.1 (polar interpolation On)
... (X, is specified in radius, milling)
...
G13.1 (polar interpolation Off)
G10.9 X1 programming the diameter)
... (X is specified in diameter, turning)
...

The code G10.9 must be given always in a separate block!
When the program ends or reset is done, the programming mode set by the code G10.9 will be
deleted, and the control returns to the basic state set in the bit #0 DIA of the parameter N0106
Axis Properties.

5.4 Data Specification in Polar Coordinates (G15, G16)

The values of the programmed coordinates can also be input as radius given in mm or in inch, and
angle given in degree.

G16: Data specification in polar coordinates on
G15: Data specification in polar coordinates off

G15 and G16 are modal functions. After power-on, at the end of the program or in case of reset,
the control turns to the state G15.

Data specified in polar coordinates are interpreted in the plane defined by the codes G17, G18 and
G19. In the course of data
specification, the control
considers the address of the first
axis of the plane to be the radius,
and the second axis to be the
angle.

P P G17 X (radius) Y (angle)

P P G18 Z (radius) X (angle)

P P G19 Y (radius) Z (angle)

P P PX , Y , Z could be the basic axes
X, Y, Z or axes parallel with
them. Fig. 5.4-1

54

5 Coordinate Data

Fig. 5.4-2

In the case of angle specification, counter-clockwise is the positive direction of the angle and
clockwise is the negative direction of the angle.
The control considers data of other axes being outside of the selected plane to be data specified
in Cartesian coordinates.

The radius and the angle can be specified as absolute data and incremental data as well.

When the radius is specified as
absolute data, the origin of the
actual coordinate system will be
the origin of the polar coordinate
system:

G90 G16 X100 Y60
Both the angle and the radius are
absolute data, the tool moves to
the point of 100 mm radius and of
60° angle.

G90 G16 X100 YI40
The angle is an incremental data.
The tool moves to the point of 100
mm radius being further on by 40°
compared to the previous angle
position.

When the radius is specified as
incremental data, the control
moves the given radius from the
axis positions specified at the
beginning of the block in the
direction of the angle given:

G90 G16 XI50 Y60
The control measures the radius of 50 mm from the starting point and moves to the absolute angle
of 60°.

G91 G16 X50 Y40
The control measures the radius of 50 mm from the starting point and moves to the angle of 40°
measured from the starting angle.

Programming a circle is also possible when the data specification in polar coordinates G16 is on.
The circle can be specified both by radius and by I, J and K. But in the latter case, the addresses
I, J and K will always be considered by the control to be Cartesian data.
When the origin of the actual coordinate system coincides with the center of the circle, multi-
revolution circle or spiral can also be programmed using data specification in polar coordinates:

G17 G16 G90 G02 X100 Y-990 Z50 R-100

55

5 Coordinate Data

Fig. 5.4-3

In the block above, a clockwise spiral of 2 3/4 revolutions is specified. When a multi-revolution
circle is to be programmed, attention has to be paid on programming negative polar angle in case
of direction G2, and on programming positive polar angle in case of direction G3.
The addresses in the following instructions are not considered by the control to be polar
coordinate data even in the case when the state G16 is switched on:
 – G10 coordinates in setup instruction;
 – G52 coordinate offset;
 – G92 coordinate setup;
 – G28, G30 coordinates of an intermediate point;
 – G53 positioning in the machine coordinate system;
 – G68 the central point of rotation of the coordinate system;
 – G51 the central point of scaling;
 – G50.1 the central point of reflection.

An example: Milling a hexagon
N1 G90 G17 G0 X120 Y120 F120
N2 G16 G1 X100 Y60
N3 Y120
N4 Y180
N5 Y240
N6 Y300
N7 Y0
N8 Y60
N9 G15 G0 X120 Y120

5.5 Specification and Accuracy of Coordinate Data

The control interprets the decimal point according to the unit system applied:
 – X2.134 means 2.134 mm or 2.134 inch;
 – B24.236 means 24.236 degrees, when angle data is specified at the address B.
Use of the decimal point is not mandatory:
 – X325 means 325 mm, for example.
The leading zeros can be eliminated:
 – .032=0.032
The following zeros after the decimal point can be eliminated:
 – 0.320=.32
Coordinate data can be specified with accuracy of up to 15 decimal digit.

56

5 Coordinate Data

5.6 Managing the Rotary Axis Roll-Over

This function can be used in case of axes that rotate, i.e. when an axis address (for eample C) is
assigned to a rotary axis.
Managing the roll-over means that the position on the given axis is registered by the control not
in between plus and minus infinities, but in between 0° and 360° for example, taking the axis
periodicity into account.

Designation of an Axis to be Rotary Axis and the Effect Produced
This designation has to be done by bit setting #1 ROT=1 in the parameter N0106 Axis Properties
. For rotary axis,
 – the control does not do the inch/metric conversion;
 – the roll-over management can be enabled.

Enabling the Roll-Over Management
This function is activated by bit setting #0 REN=1 in the parameter N0107 RollOver Control
. If the value of the bit REN:
 =0: the control will manage the rotary axis as it manages the linear axes, and filling the further

parameters will not produce any effect;
 =1: the control will apply the roll-over management for the rotary axis, and the essence of this

is as follows.

Specification of the Distance Travelled per Revolution
The distance travelled per one revolution of the axis can be specified in the parameter N0108
RollAmount. Thus, if the axis rotates 360° per one revolution, the value to be written in the
appropriate parameter will have to be 360. The system can manage arbitrary periodicity not only
that of 360°.
Using the abovementioned parameter settings, the control displays the position of the rotary axis
always in the range of 0E- +359.999° independently of the direction of rotation and the number
of revolutions the rotary axis performed.

Fig. 5.6-1

57

5 Coordinate Data

In the setting opportunities listed below, the bit state #0 REN=1 of the parameter N0107
RollOver Control and setting of the parameter N0108 RollAmount is supposed.

Rotation to the Specified Position: the Basic Case of Rotation
If the settings of the parameter N0107 RollOver Control are

#2 ABS=0 and #1 ASH=0,
in the case of absolute programming (G90) the rotation will be performed to the specified
position. The value of displacement will always be less than the value specified in the parameter
RollAmount, i.e. during motion the control always cuts the full revolutions.
An example:
Let the starting position of the axis C be

C=0
In accordance with the instructions

G90 C210
G90 C570
G90 C930
...

it will always rotate 210 degree (ÄC=210°) in the positive direction, having cut the full
revolutions, and the end position will be 210°.
Let the starting position of the axis C be

C=0
In accordance with the instructions

G90 C-210
G90 C-570
G90 C-930
...

it will always rotate 210 degree (ÄC= !210°) in the negative direction, having cut the full
revolutions, and the end position will be 150°(= !210°).

58

5 Coordinate Data

Rotation to the Specified Position in the Shorter Way
If the settings of the parameter N0107 RollOver Control are

#2 ABS=0 and #1 ASH=1,
in the case of absolute programming (G90) the rotation will be performed to the specified position
and in the direction belonging to the shorter way. The value of displacement will always be less
than the value specified in the parameter RollAmount, i.e. during motion the control always cuts
the full revolutions.
An example:
Let the starting position of the axis C be

C=0
In accordance with the instructions

G90 C210
G90 C570
G90 C930
...

it will always rotate 150 degree (ÄC= !150°) in the negative direction (in the shorter way), having
cut the full revolutions, and the end position will be 210°.
Let the starting position of the axis C be

C=0
In accordance with the instructions

G90 C-210
G90 C-570
G90 C-930
...

Fig. 5.6-2

59

5 Coordinate Data

it will always rotate 150 degree (ÄC=150°) in the positive direction (in the shorter way), having
cut the full revolutions, and the end position will be 150E(= !210E).

Rotation to the Absolute Value of the Specified Position in the Direction Defined by the
Sign

If the settings of the parameter N0107 RollOver Control are
#2 ABS=1 and #1 ASH=0,

in the case of absolute programming (G90) the rotation will be performed to the absolute value
of the specified position and in the direction defined by the sign. The value of displacement will
always be less than the value specified in the parameter RollAmount, i.e. during motion the
control always cuts the full revolutions.
An example:
Let the starting position of the axis C be

C=0
In accordance with the instructions

G90 C30
G90 C390
G90 C750
...

it will always rotate 30 degree (ÄC=30°) in the positive direction, having cut the full revolutions,
and the end position will be 30E.
Let the starting position of the axis C be

C=0
In accordance with the instructions

Fig. 5.6-3

60

5 Coordinate Data

G90 C-30
G90 C-390
G90 C-750
...

it will always rotate 330 degree (ÄC= !330°) in the negative direction, having cut the full
revolutions, and the end position will be 30E.

.L Note: The 0 (zero) is a positive number! Therefore, if position 0 is programmed, the motion
will be performed in the positive direction.

Let the starting position of the axis C be
C=0

In accordance with the instruction
G90 C0

it will rotate 330 degree (ÄC=330°) in the positive direction, and the end position will be 0E.
If the motion from 30° to 0° in the negative direction is required, the block

G90 C-360
will has to be programmed. In this case, it will rotate 30 degree (ÄC= !30°) in the negative
direction, and the end position will be 0E.

Fig. 5.6-4

61

5 Coordinate Data

Motion of a Rotary Axis in the Case of Incremental Programming
In the case of programming incremental data specification, the motion will be performed in the
direction defined by the programmed sign.
If the setting of the parameter N0107 RollOver Control is

REN=0,
the control does not apply the parameter Roll Amount for the travel programmed incrementally,
so multi-rotation displacement can be programmed using incremental specification.
Let the starting position of the axis C be

C=0
During execution of the blocks

G91 C30 (displacement 30 degree)
G91 C390 (displacement 390 degree)
G91 C750 (displacement 750 degree)
...

the control does not cut the full revolutions. On the other hand, the position of the axis C on the
position display will always be 30 degree at the end of the motion, because the value set in the
parameter RollAmount will always be valid for displaying the position.
If the setting of the parameter N0107 RollOver Control is

REN=1,
the control applies the parameter Roll Amount for the travel programmed incrementally too, so
displacement greater than one rotation cannot be programmed even if using incremental
specification.
Let the starting position of the axis C be

C=0
During execution of the blocks

G91 C30 (displacement 30 degree)
G91 C390 (displacement 30 degree)
G91 C750 (displacement 30 degree)
...

the control cuts the full revolutions. On the other hand, the position of the axis C on the position
display will always be 30 degree.

62

6 Feed

Fig. 6.2-1

6 Feed

6.1 Rapid Traverse

Positioning is executed by rapid traverse activated by the command G0. Apart from the G0
positioning, the positioning phases of the commands G53, G28,G30 and the cycles are executed
by rapid traverse too. The value of the positioning rapid traverse for each axis is set in parameter
by the builder of the machine, in mm/min, inch/min or degree/min. The rapid traverse values
for the axes can differ from each other.
When several axes perform rapid traverse simultaneously, the value of the resultant feed will be
calculated by the control in such a way so that neither of the speed components projected on the
axes will exceed the rapid traverse value given in parameter and valid for that given axis, and the
positioning will be performed in a minimum period of time.
The value of the rapid traverse can be modified by the rapid traverse percent (override) switch.
Operation of the rapid traverse override is defined in the PLC program by the builder of the
machine. The description of operation is contained in the manual provided by the builder of the
machine.
The value of the rapid traverse override does not exceed 100%.
The rapid traverse will always be stopped by the position 0% of the rapid traverse percent switch
.
If there is no valid reference point, the decreased rapid traverse values defined by the builder of
the machine will be valid for the axes in the parameter field until reference point is done.
In the case of moving the slide by the slide-actuating (jog) buttons, the rapid traverse differs from
the positioning rapid traverse, and it has a value different for each axis and set in parameter too.
Evidently, its value is less than that of the positioning rate in order that the human response time
can be calculated in for stopping.

6.2 Cutting Feed

Feed is programmed
at the address F.

The programmed feed will be valid in
blocks of linear interpolation (G01) and
blocks of circular interpolation (G02 and
G03).
The unit of the feed is determined by
the codes G94 and G95.
The feed is calculated by the control
tangentially along the programmed path.

F : tangential feed (programmed value)

xF : feed component in the direction X

zF : feed component in the direction Z

The programmed feed can be modified using the feed percent (override) switch, excluding the
G63, the percent switch and the inhibition of the stop states.

63

6 Feed

Fig. 6.3-1

Operation of the feed override is defined in the PLC program by the builder of the machine. The
description of its operation and value limit are contained in the manual provided by the builder
of the machine.
The feed is a modal value.
After the power-on, the control will have the value specified in parameter. Namely, the initial
value of the feed will be received from the parameter N0300 Default F G94 in the state G94, and
from the parameter N0301 Default F G95 in the state G95.
For a given machine, the maximum programmable feed is limited for each axis by the builder of
the machine in the parameter field. The value set here is always interpreted in minute dimension.
When the switch DRY RUN is in switched-on position, this value, at the same time, is the speed
of the feed motions.
The value of feed can be given with an accuracy of up to 15 decimal digit. Decimal point can be
used. It is always a positive number.

6.2.1 Feed per Minute (G94) and Feed per Revolution (G95)

In the program, the unit of feed can be specified by the codes G94 and G95:
G94: feed per minute
G95: feed per revolution

The term ‘feed per minute’ refers to the feed specified in the units of mm/min, inch/min or deg
/min.
The term ‘feed per revolution’ refers to the feed accomplished in a revolution of the spindle and
specified in the units of mm/rev, inch/rev or deg/rev.
They are modal values.
After power-on, reset or program end, the bit #0 G95 of the parameter N1301 DefaultG2
determines whether the control will get into the state G94 or G95.
The state G94/G95 does not affect the rapid traverse which has to always be interpreted in ‘per
minute’ dimension.

6.3 Feed Control Functions

The feed control functions are necessary
 – in the case of machining corners,
 – in such cases when it is required by the technology so that the switches override and stop must

be inhibited.
In the case of machining corners in the mode
of continuous cutting, the slides, because of
their inertia, are not able to follow the path
commands issued by the control. Depending
on the feed, the tool will round the corner
more or less.
If sharp corners are required on the workpiece,
the control must be told to decelerate at the
end of the motion, to wait until the axes stop, and to start the subsequent motion following this
only.

64

6 Feed

Fig. 6.3.5-1

6.3.1 Exact Stop at the End of the Block (G9)

This function is not a modal one, it is valid in that block only in which it was programmed.
At the end of the bloc in which it was specified, the control decelerates after execution of
interpolation, it stops and waits for the in-position signal of the measuring system.
If the in-position signal does not arrive even after expiration of the time set in parameter, the
control will send the error message ‘2501 Position error’.
This function is used for machining sharp corners.

6.3.2 Exact Stop Mode (G61)

This is a modal function. It can be cancelled by the commands G62, G63 and G64.
The control decelerates at the end of each block, it stops and waits for the in-position signal of
the measuring system, and starts the subsequent interpolation cycle following this only.
If the in-position signal does not arrive even after expiration of the time set in parameter, the
control will send the error message ‘2501 Position‘.
This function is used for machining sharp corners.

6.3.3 Continuous Cutting Mode (G64)

This function is a modal one. This is the state the control gets into after power-on, reset or
program end. It can be cancelled by the codes G61, G62 and G63.
In this mode of operation, the motion does not stop after execution of the interpolation, the axes
do not wait for the in-position signal of the measuring system, but the interpolation of the next
block starts immediately.
In this mode of operation, sharp corners cannot be machined because the control rounds them at
transitions.

6.3.4 Override and Stop Inhibition Mode (G63)

This function is a modal one. It can be cancelled by the codes G61, G62 and G64.
In this mode of operation, the percent switches of feed and spindle (override) as well as stopping
the feed are ineffective. The control interprets the percent values as 100% independently of the
positions of the switches. It does not decelerate after execution of the interpolation, but it starts
the next interpolation cycle immediately.
This mode of operation can be used for machining threads.

6.3.5 Automatic Feed Override at Inner Corners (G62)

This is a modal function. It can be cancelled by the commands G61, G63 and G64.
In the case of machining inner corners, the
force acting on the tool increases on the
sections before and after the corner. In order
that the tool will not flutter and the surface will
remain appropriate, the control reduces the
feed automatically on the sections before and
after the inner corners, when the G62 is
switched on.
The corner override will be effective under the
following conditions:

65

6 Feed

Fig. 6.3.5-2

Fig. 6.4-1

 – if the planar tool radius compensation is switched on (G41, G42);
 – between the blocks G1, G2 and G3;
 – in the case of motions in the selected plane;
 – if the tool machines the corner inside;
 – if the angle of the corner less than an angle specified in parameter;
 – before and after the corner, at a distance specified in parameter.
The feed override function acts for all the following four possible transitions: linear - linear;
linear - circular, circular - line, circular- circular.

The value of the internal angle n can be
set in the parameter N1409 CornAngle,
in the angle range of 1° - 180°.
Deceleration and acceleration will be
commenced and finished at the distance

d aL before and at the distance L after the
corner, respectively. In cases of circle

d aarcs, the distances L and L will be
taken into account by the control along

d athe arc. The distances L and L can be
specified in the parameters N1407
DecDist and N1408 AccDist,
respectively.

Writing the ratio between 0 and 1 in the
parameter N1410 CornOver there can be specified the value up to which the control has to reduce
the feed at inner corners. The feed will be

F*CornOver
where F is the programmed feed. Even the override switch produces effect on the feed obtained,
too.
If the aim is to program exact stop in the state G62, G09 will have to be written in the given
block.

6.4 Automatic Feed Override in the Cases of Inner Circle Arcs

When the planar tool radius compensation is switched on
(G41, G42), the programmed feed during circular
interpolation will be effective along the tool center. In the
case of machining inside circle arcs, the control reduces the
value of the feed automatically so that the programmed
feed will be effective along the cutting radius. The value of
the feed in the center of the tool radius is:

cwhere F : the feed of the center of the tool radius
(corrected feed);

R: the programmed circle radius;

cR : the corrected circle radius;
F: the programmed feed.

66

6 Feed

The lower limit of automatic feed reduction is determined by the parameter N1406 CircOver,
writing in which a ratio between 0 and 1 there can be specified the minimum value of feed
reduction, i.e. the condition

cF $F*CircOver
will be satisfied. The override for circle radius will be multiplied by the feed override and the
corner override, and then it will be issued.

67

7 Acceleration

Fig. 7-1

Fig. 7-2

7 Acceleration

Acceleration describes how velocity changes over the course of time. The shorter the time
necessary to reach a given velocity is, the great acceleration will be.
The higher acceleration we would like to reach, the higher power for motors and drives is
required.
During motion, the value of forces acting on the machine, after all the load on the machine is in
direct proportion to the acceleration come into being.
Parameters of acceleration for each axis are set by the builder of the machine on the basis of the
two abovementioned considerations

The control accelerates always the value of the tangential (vectorial) feed. It calculates the value
of acceleration in such a way so that the value of the axis component of acceleration does not
exceed, on none of the axes, the value set for the given axis.
Acceleration of two kinds can be set:
 – linear acceleration, and
 – bell-shaped acceleration.

In the case of linear acceleration, the value of
acce l e ra t i on i s cons tan t dur ing
acceleration/deceleration, the control
increases the feed at start or reduces the feed
at stop in accordance with a linear function.
The value of acceleration can be set in
parameter for each axis.

In the case of bell-shaped acceleration,
the value of acceleration changes during
acceleration/deceleration, it increases
linearly until it reaches the set value of
acceleration, or it decreases linearly
until it reaches the target speed. As a
consequence of this, the shape of the
feed leading and trailing branches is a
bell-shaped curve as a function of time,
and because of this the acceleration of
this kind is called ‘bell-shaped’.
The time T, during which the control
reaches the set value of acceleration,
can be set in parameter for each axis.

68

7 Acceleration

By setting acceleration without jerk the bell-shaped acceleration can be soften further.
Acceleration without jerk can be switched on by the bit position #1 JRK=1 of the parameter
N0421 Acc Contr. In this case, already the leading and trailing branches of the acceleration
function will be bell-shaped; in other words, there will not be step change in the first derivative
(j) of the acceleration (a) either.

By setting acceleration without jerk JRK=1, higher acceleration can be set on the machine, on the
other hand, the start and the stop will be softer.

In the case of high-speed machining, speed feedforward has to be used in order to reach the
accuracy required. In this case, bell-shaped acceleration must always be set.

In normal conditions, the control accelerates or decelerates in the following cases:
 – when manual actuation is performed;
 – in the case of rapid traverse positioning (G0), the motion always starts from the speed 0 at the

beginning of the block, and it always decelerates to the speed 0 at the end of positioning;
 – in case of feed motions (G1, G2 and G3), in the state G9 or G61, the control always decelerates

to the speed 0 at the end of the block;
 – the control will decelerate if motion is stopped by the button STOP, and it will accelerate if

motion is started by the button START;
 – the control will stop with deceleration if function is executed after motion, and at the end of

the block in BLOCK BY BLOCK mode.

Fig. 7-3

69

7 Acceleration

Fig. 7-4

Fig. 7-5

Acceleration to a new feed value greater than
previous one will always be started by the
control during execution of the block, in
which the new feed is given. This process
may cover several blocks too, if necessary.
Deceleration to a new feed value less than the
previous on will always be started by the
control in a proper previous block in such a
way so that the control starts the machining
with the speed programmed in that block in
which the new feed is given.

Tangential speed changes are pre-monitored
and registered by the control. It is necessary to
reach the desired target speed by continuous
acceleration covering execution of several
blocks as well.
Either at start or at stop, reaching the desired
speed may cover several blocks.

70

7 Acceleration

Fig. 7.1-1

7.1 Automatic Deceleration at Corners in the State G64

In case of continuous cutting, in the state G64, the control tries to follow the path at the
programmed feedrate.
If a corner is found between two blocks, the control will have to decelerate the tangential feed.

If no deceleration is executed at the corner in two subsequent blocks N1 and N2 , the feed diffe-

x zrences (ÄF and ÄF) shown in the figure will occur along the respective axes.

Detection of feedrate changes (corners) and deceleration of feed at the same time are necessary
for the following two reasons:
 – Feedrate changes for the axes deriving from sudden change in direction of the path may be so

big, that without deceleration the drives will not be able to follow them without swinging;
as a consequence, accuracy will decrease and mechanical load on the machine will
increase extremely.

 – If, in the course of cutting, sharp corner is to be formed, but without stop (without
programming exact stop G61) since it increases cutting time, it will be necessary to
decelerate too. The more the feed is decelerated, the sharper the corner will be.

The control can detect corners by monitoring either the change in direction angle of the path or
the change in axis components of the feed. The method to be used for deceleration can be chosen
by parameter.

71

7 Acceleration

Fig. 7.1-2

Deceleration at Corners by Monitoring the Change in the Direction Angle of the Path

At the bit position #0 FDF=0 of the parameter N0306 Feed Control, deceleration will be executed
by monitoring the change in the direction angle of the path.

If, at the meeting point of the blocks N1 and N2 shown in the figure, the value of the angle á

cexceeds the value enabled in parameter, the control will decelerate the feed to the value F .
It is the parameter N0307 Crit A Diff , in which the value of the critical angle can be set in
degree: á=Crit A Diff. The value in the parameter N0308 Feed Corn determines the value of
corner feed to which the control has to decelerate in the case of exceeding the critical angle:

cF =Feed Corn.
The greater the values of the critical angle and the corner feed are, the faster the machining will
be, but the bigger the load acting on the machine will be and the more rounded the corner will be.
This set-up is not appropriate for high-speed machining.

72

7 Acceleration

Fig. 7.1-3

Deceleration at Corners by Monitoring the Change in Axis Components of the Feed

At the bit position #0 FDF=1 of the parameter N0306 Feed Control, deceleration will be executed
by monitoring the change in axis components of the feed.

If, at the meeting point of the blocks N1 and N2 shown in the figure, the change in axis

x zcomponents of the feed ÄF , ÄF exceeds the maximum value enabled in parameter, the control

cwill decelerate the tangential feed F to the value F .
The control decelerates feed in such a way, so that the value of feed change does not exceed, on

xmax zmaxnone of the axes, the critical feed difference (ÄF , ÄF) enabled for the given axis in
parameter; the critical feed difference for a given axis can be specified in the parameter N0309

xmax x zmax zCrit F Diff : ÄF =Crit F Diff , ÄF =Crit F Diff .
The greater the value of the critical feed difference is, the faster the machining will be, but the
bigger the load acting on the machine will be and the more rounded the corner will be.
The control bounds the value of the preset critical feed difference from above, on the basis of
acceleration set-up.
This set-up must be applied for high-speed machining.

73

7 Acceleration

Fig. 7.2-1

7.2 Limiting the Normal Direction Accelerations

In the course of machining, the control keeps the feedrate constant along
the tangent of the path (in tangential direction). As a consequence,
acceleration components do not come into being in tangential direction.
The situation is different in normal direction (in the direction
perpendicular to the path and the velocity). The axial components of the
normal direction acceleration may exceed the value permissible for the
given axis. In order to avoid this, the feedrate along the path must be
limited in proportion to the curvature of the path.
The maximum permissible value of the normal direction acceleration can
be set in the parameter N0402 Normal Acc.

Limiting the Normal Direction Acceleration in case of Circular Arcs
In the course of machining circular arcs, the control limits the value of the feedrate F according
to the formula

where:
a: the lesser one among the acceleration values set for axes participating in circular
interpolation ;
r: the radius of the circle.

The circular interpolation will already be started using the rate calculated in this way.
The control does not decrease the feedrate under the value specified in the parameter N0310 Circ
F Min, independently of formula above.
L Warning!

This function should not be confused with automatic feed override in states G41and G42,
in the course of machining inner circular arcs.

74

7 Acceleration

Fig. 7.2-2

Limiting the Normal Direction Acceleration in case of Other Interpolations
Though in the case of linear interpolation, the given line segment (path) does not have curvature,
therefore there is no normal direction acceleration component either, but this is true for long
straight line segments only. If a path is made up of minute straight line segments, as it is usual
in manufacturing tools, the curvature of the path resulted in such a way can be significant, and
feed will have to be decreased, as it is illustrated in the figure below:

In the blocks N2, N3, N4 and N6, N7, N8, the path is made up of minute straight line segments.
If the value of tangential feed is kept constant (the left part of the figure above), the gradient of
speed change (acceleration in the normal direction) on the axes X and Y may exceed the value
permissible for the given axis, because of geometry (direction change) of the path.
For this reason, the control scans the path block by block in order to be able to limit normal
direction accelerations. Where, from the geometry, the acceleration components on given axes
are greater than the permissible values, the tangential speed must be decreased. The graphs on the
right part of the figure shows, how the measure of speed change (the normal direction
acceleration) decreases on the given axes in proportion to deceleration of tangential feed.

In the case of the smooth interpolation G5.1 Q2, the control also examines the normal direction
accelerations derived from the path curvature, and it decreases the feed, if necessary.

75

7 Acceleration

7.3 Limiting the Acceleration Step Change (Jerk)

On the certain sections of the path, sudden step change, jerk may occur that causes swings, loads
the machine mechanically, and appears on the surface machined. This is the case, when in the
course of machining a tangent circle follows a straight line segment or a circle arc is followed
by a tangent straight line.
The purpose of this function is that the control limits the value of acceleration step change in the
transition point by decreasing the feed.

Limiting the Acceleration Step Change at the Beginning and at the End of Circle Blocks
In the case of entering from a straight line segment into a tangent circle arc at a feedrate F, the
value of the acceleration step change can be calculated using the formula

where:
a: the value of the acceleration step change,
r: the radius of the circle.

For example, if the machine, at the feedrate F6000, enters into a circle arc with radius of 10 mm,
as it is illustrated in the figure below, the value of the acceleration step change on the axis Y will
be:

In order that the value of the acceleration step change will not be greater than 250mm/sec , the2

feedrate has to be decreased to the value F=50*60=3000 mm/min, using the equation above.

76

7 Acceleration

Fig. 7.3-1

Fig. 7.3-2

In case of circle arcs, the acceleration step change can be limited in the parameter N0404 Acc Diff
Circ.

Limiting the Acceleration Step Change in Straight Line Blocks following Each Other
If the path is composed of long straight line segments, the
measure of acceleration change will be negligible. In this
case, the change in axis components of the feed could
limit the feed.
The situation will be different if the path is made up of
minute straight line segments. In this case, there could
take place the situation when the feed change on the given
axes is small between two straight line segments; because
of this the interpolator does not limit the feed, but the
values of acceleration step change on the given axes are great. In such cases, the feed must also
be limited depending on the permissible acceleration step change.
In case of straight line segments following each other, the acceleration step change can be limited
in the parameter N0403 Acc Diff .

77

8 Dwell

8 Dwell (G4)

Using the command
G94 G4 P....

dwell time can be programmed in second.
Using the command

G95 G4 P....
dwell time can be programmed in number of spindle revolutions.
The accuracy of P is 15 decimal digits.

At the bit state #1 SEC=1of the parameter N1337 Execution Config , dwell is always counted in
second, even if in the state G95.
Dwell always means the programmed delay of execution of the next block. It is a non-modal
function.

78

9 Reference Point

Fig. 9-1

9 Reference Point

The reference point is the point of the axis
where the measuring system sends out
position 0.
On the axes equipped with incremental
measuring devices this point has to be found.
This process is called reference point return.
Measuring the workpiece coordinate systems
and positioning to an absolute position can be
done after finding the reference point. The
parametric end-positions and programmed
travel limits will be effective after reference
point return only.

Positions are recorded by the control not as
values relative to the reference point, but as
values in the machine coordinate system.
The zero point of the machine coordinate
system is specified by the builder of the
machine and it is a significant point on the
machine tool.
The control records the change positions, center of rotation of the rotary axes etc. in the machine
coordinate system. All the compensations (for thread pitch, straightness etc.) of the machine
measuring system are recorded in the machine coordinate system, too.

The position of the reference point is recorded by the control in the machine coordinate system
too, and this position is set by the builder of the machine in parameter.

If the axis is equipped with incremental measuring system, return to the reference point must be
executed after power-on. In the course of reference point return, the slides run onto a switch in
the direction specified in parameter, and then, coming down from it, they look for the zero pulse
of the measuring system and record existence of the reference point. The value given in parameter
will be the position in the machine coordinate system.

If the axis is equipped with distance-coded measuring system, return to the reference point must
be executed after power-on. In the course of reference point return, the slides start in the direction
specified in parameter, and then they look for two zero pulses and record existence of the
reference point. The position of the zero pulse found as second one will be the position in the
machine coordinate system.

If the axis is equipped with absolute measuring system, return to the reference point does not
have to be executed after power-on.

The reference point is also the point in the cases of both distance-coded and absolute
measuring systems where the measuring system sends out position 0. Generally, this point is not

79

9 Reference Point

within the working range of the machine. For this reason, the builder of the machine, by the use
of parameterization, shifts this point into the working space, e.g. near to the positive endpoint,
and then he measures this shifted reference point to the origin of the machine coordinate system.
It is necessary, for example in the case, when the instruction G28 is to be used in the part
program, for example for positioning together with tools.

9.1 Automatic Reference Point Return (G28)

The instruction
G28 v

will return the axes defined by the vector v to the reference point. There are two phases of the
motion.

Phase 1
At first, the control, taking the coordinates
given in the actual workpiece coordinate
system into account as intermediate point,
executes rapid traverse along the axes defined
by the vector v to the intermediate point
specified by the vector v. The specified
coordinate values can be either absolute or
incremental ones. When the intermediate
point is reached, the planar tool radius
compensation is deleted.

Phase 2
Then, from the intermediate point, reference
point return will be executed simultaneously
on the axes specified by the vector v.

If reference point return on a given axis did
not occur yet, it would occur according to the
mode determined by the manual reference point return. In this case,
 – if the axis is equipped with incremental measuring system, the reference point position

specified in parameter will be the machine position at the end of the motion;
 – if the axis is equipped with distance-coded measuring system, the position of the second zero

pulse will be the machine position at the end of the motion.

If reference point return on a given axis occurred already, or the axis is equipped with absolute
measuring system, the axis executes rapid traverse to the reference point position specified in the
machine coordinate system.

The code G28 is not a modal one.
For example:

G90 G28 X100 Z50 (the intermediate point: X=100, Z50)
If the position X is X=20 and the position Z is Z=50:

G91 G28 X100 Z50 (the intermediate point: X=120, Z=100)

Fig. 9.1-1

80

9 Reference Point

 L Note:
 – If there is no valid reference point yet, incremental values must be assigned to the intermediate

coordinates of v existing in the command G28.

9.2 Return to the 2nd, 3rd and 4th Reference Point (G30)

Three additional significant points
called 2nd, 3rd and 4th reference point
can be specified in parameter, in the
machine coordinate system.
These reference points are used on the
machine to store change positions, e.g.
tool change position, pallet change
position etc.
Motion to these change positions is
permitted after execution of reference
point return only.

The series of instructions
G30 v P

sends the axes coordinates of which are specified at the addresses of the vector v, to the reference
point specified at the address P.

P2: the 2nd reference point
P3: the 3rd reference point
P4: the 4th reference point

There are two phases of the motion as it was the situation in the case of the instruction G28.
At first, the control, taking the coordinates specified by the vector v into account as intermediate
point, executes rapid traverse of linear motion to the intermediate coordinates specified by the
vector v. The specified coordinate values can be either absolute or incremental ones. The motion
is always executed in the actual coordinate system. When the end point of the linear motion is
reached, the planar tool radius compensation vector is deleted.
In the second phase, the axes specified by the vector v execute rapid traverse from the
intermediate point to the reference point selected at the address P.
Travelling to the reference point is carried out by ignoring compensation vectors (length, offset,
3D radius); they do not have to be deleted before issuing the instruction G30, but the control will
implement them in the course of programming further motions. The planar tool radius
compensation resets automatically in the first motion block.
It is not a modal code.

The instruction G30 v P1moves the machine to the reference point, its effect and the effect of the
instruction G28 is the same.

Fig. 9.2-1

81

9 Reference Point

For example:
G90 G30 X100 Z50 P3 (the intermediate point X=100, Z50

moves to the P3)
If the position X is X=20, and the position Z is Z=50:

G91 G30 X100 Z50 P4 (the intermediate point X=120,
Z=100 moves to the P4)

82

10 Coordinate Systems and Plane Selection

Fig. 10-1

10 Coordinate Systems and Plane Selection

In the program, a position the tool is to be moved to is specified by coordinate data. When two
axes (X and Z) are used, the position of the tool is expressed by two coordinate data: X____ and
Z____.
As many axes are there on the machine, so many
coordinate data express the tool position. The
coordinate data have to always be interpreted in a
given coordinate system.
The control differentiates the following three
coordinate system:
 1. The machine coordinate system
 2. The workpiece coordinate system
 3. The local coordinate system

10.1 Machine Coordinate System

Positions are recorded by the control not as values relative to the reference point, but as values
in the machine coordinate system.
The zero point of the machine coordinate system is specified by the builder of the machine and
it is a significant point on the machine tool.
The control records the change positions, center of rotation of the rotary axes etc. in the machine
coordinate system. All the compensations (for thread pitch, straightness etc.) of the machine
measuring system are recorded in the machine coordinate system, too.

The position of the reference point is recorded by
the control in the machine coordinate system too,
and this position is set by the builder of the machine
in parameter.

The position of the machine coordinate system
cannot be changed by the use of any instruction or
offset.

Fig. 10.1-1

83

10 Coordinate Systems and Plane Selection

10.1.1 Positioning in the Machine Coordinate System (G53)

The instruction
G53 v

moves the tool to the point of coordinate v in the
machine coordinate system.
 – Independently of the state of G90 and G91,

coordinates of v are always interpreted as
absolute coordinates.

 – After the address of the coordinates or in the case
of using address U, V and W for incremental
specification, the operator I will send the
error message ‘2097 Illegal incremental
moving on ... axis’.

 – Motion is always rapid travel, similarly to the
case of G00.

 – Positioning is always executed by ignoring the
selected and set tool compensations (length
and radius).

The instruction G53 can be executed after reference
point return only. The instruction G53 is a one-shot instruction , it is effective in that block only
in which it is given.
An example: The effect of the instruction

G53 X200 Z20
is motion to the specified point in the machine coordinate system.

L Warning! The instruction G53 suspends the read ahead of the blocks(buffering). Therefore,
the instruction G53 in itself without coordinate specification can also be used to suspend
reading ahead of the blocks, that is to empty the buffer.

10.2 Workpiece Coordinate Systems

The coordinate system in which the part program has to be written is named workpiece coordinate
system. The control stores the origin of the workpiece coordinate system relatively to the machine
coordinate system.
The origin of the workpiece coordinate system is fixed to an appropriate point on the workpiece.
This point can be the axis of rotation in the direction X and the contact surface of the chuck or
the front of the workpiece in the direction Z, in case of turning; but in case of milling, it can be
one of the corners of the workpiece, the center point of a hole or a collar etc. Setting can be
carried out in the following ways:

within the machine by manual measurement, or by measurement using probe; or
outside the machine.

In the latter case, the values measured outside have to be input in the memory of the control. Data
input can be done manually, or from program by the use of NC instructions.

Relationship between the Workpiece Coordinate Systems and the Channels
Offsets of the workpiece coordinate systems refer to the given axes. Since each axis is assigned
in parameter to a given channel, therefore, each channel has different workpiece offset table.

Fig. 10.1.1-1

84

10 Coordinate Systems and Plane Selection

Fig. 10.2.1-1

If one or more axes are interchanged between two channels, the axes will take their zero point
offset away into the new channel. In such cases, after axis interchange, it is practical to calla new
workpiece coordinate system together with absolute positioning, and to continue the machining
after that.

10.2.1 Selecting the Workpiece Coordinate System (G54...G59)

In basic version, 6 different workpiece coordinate systems are stored by the control. The offsets
of the workpiece coordinate systems relative to the origin of the machine coordinate system
must be given for each axis separately.

The case, when there is no common zero point offset, illustrated in the figure below.

All the workpiece coordinate system can be offset relative to the origin of the machine coordinate
system. A common zero point offset will shift the origins of all the workpiece coordinate
systems relative to the machine coordinate system.

85

10 Coordinate Systems and Plane Selection

Fig. 10.2.1-2

Fig. 10.2.1-3

The following figure shows the case, when there is common zero point offset.

The instructions G54 ... G59 are those, by the use of which the selection can be done from among
the various workpiece coordinate systems.

G54: Workpiece coordinate system 1
G55: Workpiece coordinate system 2
G56: Workpiece coordinate system 3
G57: Workpiece coordinate system 4
G58: Workpiece coordinate system 5
G59: Workpiece coordinate system 6

These functions are modal ones.
After power-on, reference point return, reset
or program end, the coordinate system G54
will be selected.
The absolute coordinate data of the
interpolation blocks are taken into account by
the control in the actual workpiece coordinate
system.
For example, in the case of the instruction

G56 G90 G00 X80 Z60,
positioning to the point

X=80, Z=60
of the workpiece coordinate system 3 will be
executed.

86

10 Coordinate Systems and Plane Selection

Fig. 10.2.1-4

After changing the coordinate system, the
position of the tool will be displayed in the
new coordinate system. For example, as it is
shown in the figure, the offset of the
workpiece coordinate system G54 in the
machine coordinate system is

X=260 Z=80.
The offset of the workpiece coordinate system
G55 in the machine coordinate system is

X=140, Z=180.
The position of the tool in the coordinate
system G54 X', Z' is

X'=140, Z'=90.
By the effect of the instruction G55, the
position of the tool in the coordinate system
X'', Z'' will be interpreted as

X''=260, Z''=–50.

10.2.2 Selecting the Additional Workpiece Coordinate Systems (G54.1 P)

Optionally, 99 further workpiece coordinate systems can be used in the control. These coordinate
systems are augmentations to the 6 basic coordinate systems so they are called additional
workpiece coordinate system.
The common zero point offset shifts the additional workpiece coordinate system too. The
additional workpiece coordinate systems can be rotated just as the basic coordinate systems can
be.
The instruction

G54.1 Pp
is used for selection of a additional workpiece coordinate system, where the number of the
additional workpiece coordinate system can be specified at the address P:

P = 1, 2, ..., 99
It is a modal function.
L Warning! The address P can serve various purposes. Therefore, the use of the address P in the

block must be unequivocal:
G0 G54.1 P16 X100 Z20 M98 P1 (NOT CORRECT! Two Ps in one
block)
G0 G54.1 P16 X100 Z20 (unequivocal)

10.2.3 Compensating the Angular Position of the Workpiece

Compensation of the angular position of the workpiece is needed when the workpiece cannot be
aligned parallel to the main axes. Hereafter, this compensation is called misalignment
compensation.

Interpretation of misalignment compensation
In the general zero point offset table below, the columns have the following meanings:

X, Y, Z: the zero point offset along the 3 main axes,

87

10 Coordinate Systems and Plane Selection

á, â, ã: the angles of the misalignment compensation, namely, á in the plane G19, â in the
plane G18, ã in the plane G17.

X Y Z G17(ã) G18(â) G19(á)

G54

...

G54.1 P

...

The rotations are always about the main axes. The order of rotations is as follows:
Rotation 1: rotation about X axis at an angle á,
Rotation 2: rotation about Y axis at an angle â,
Rotation 3: rotation about Z axis at an angle ã.

The direction of á, ß and ã is always the direction of the rotational transformations about the
corresponding main axis, according to the right-hand rule.

The misalignment compensation transformations are always taken into account in the current
workpiece coordinate system, in the case of motion commands.
It never applies to commands on motion to a machine position (G53, G28, G30).

In the case of manual moving, the controller takes into account the switch ‘In accordance with
misalignment compensation’ (CP_WMCAXF PLC flag), i.e. it applies rotation about all three
axes.

Fig. 10.2.3

88

10 Coordinate Systems and Plane Selection

If the endpoint is v[x, y, z], rotation takes place in accordance with the equation

Z Y Xv’=M (ã)*M (â)*M (á)*v
where:

v’[x’, y’,z’] are the coordinates rotated, and

X Y ZM (á), M (â), M (ã) are the matrices of rotations about the X, Y and Z axes:

Applying misalignment compensation for lathe
The figure below shows an example for applying misalignment compensation. The sub-spindle
S2 in the turret T1 reaches the rear tool group T2 so that the its axis of rotation S2 makes an angle
ß with the axis Z. In this case, the misalignment compensation can be set in the column G19 â.
Henceforth, the program can be written using the Z’X’ coordinate system.

10.2.4 Setting the Offset of the Workpiece Coordinate Systems (G10 L2)

Offset, rotation and common zero point offset of the workpiece coordinate systems can also be
set using program instruction.
Setting is executed by the instruction

G10 L2 P v I J K,
where

P = 0 setting the common zero point offset;
P = 1...6 selecting the workpiece coordinate system G54, ..., G59;
v (X, Y, Z, ...): offset values for the axes.

Axis offsets are always entered as Cartesian values; length data in mm or in inch, angle data in
degree.

Fig. 10.2.3

89

10 Coordinate Systems and Plane Selection

I: ã the angle of rotation in the plane G17;
J: â the angle of rotation in the plane G18;
K: á the angle of rotation in the plane G19.

The angle of rotation must always be specified in degree.
For common zero point offset, rotation cannot be specified.
G10 is a one-shot instruction.
In the absolute data setting command state G90, the value written at the coordinate addresses or

at the address I, J and K will be put in the appropriate offset register.
In the incremental data setting command state G91 or in the case of using the operator I, the data

written at the addresses will be added to the content of the appropriate offset register. The
operator I can be used for coordinate addresses only, but not for the address I, J and K.

10.2.5 Setting the Offset of the Additional Workpiece Coordinate Systems (G10 L20)

Offset and rotation of the additional workpiece coordinate systems can also be set using program
instruction.
Setting is executed by the instruction

G10 L20 P v I J K,
where

P = 1...n selecting the workpiece coordinate system G54.1 P1, G54.1 P2, ...,
G54.1 Pn;

v (X, Y, Z, ...): offset values for the axes.
Axis offsets are always entered as Cartesian values; length data in mm or in inch, angle data in
degree.

I: ã the angle of rotation in the plane G17;
J: â the angle of rotation in the plane G18;
K: á the angle of rotation in the plane G19.

The angle of rotation must always be specified in degree.
G10 is a one-shot instruction.
In the absolute data setting command state G90, the value written at the coordinate addresses or

at the address I, J and K will be put in the appropriate offset register.
In the incremental data setting command state G91 or in the case of using the operator I, the data

written at the addresses will be added to the content of the appropriate offset register. The
operator I can be used for coordinate addresses only, but not for the address I, J and K.

10.2.6 Creating a New Work Coordinate System (G92)

The command
G92 v

establishes a new workpiece coordinate system in such a way that a designated point, e.g. the tool
tip will be the point of coordinate v of the new workpiece coordinate system. Afterwards, any
following absolute command will have to be interpreted in this new workpiece coordinate system,
and positions will also be displayed in this coordinate system. The coordinates specified in the
command G92 will always be interpreted as absolute Cartesian values.

90

10 Coordinate Systems and Plane Selection

Fig. 10.2.6-3

Fig. 10.2.6-4

For example, if the tool is at the point of the
coordinates

X=200, Z=150,
in the actual X, Z coordinate system, the
command

G92 X120 Z90
creates the new X', Z' coordinate system in
which the tool will be at the point of the
coordinates

X'=120, Z'=90.
The axis components of the offset vector v’
between the coordinate systems X, Z and X', Z'
will be the following:

xv’ =200-80=120, and

zv’ =150-90=60.

The command G92 is valid in each
workpiece coordinate system, i.e. the
offset v calculated in one of them will
be taken into account in the other
ones too.

The offset of the workpiece
coordinate system set by the
command G92 will be cancelled by
power-on, at the end of the program
and by reset.
The command G92 cancels the tool
radius compensation vector, it will
not be included in calculation of the
offset.
The command does not cancel the
length compensation vector, the offset will always be calculated for the position of the tool tip.
The command G92 cancels the local coordinate system’s offsets programmed by the command
G52 on the axes that are given in the command.
During motion, if the valid workpiece coordinate system is rotated, the offset vector specified in
the command G92 will be taken into account as rotated vector.

10.3 Local Coordinate System (G52)

When writing part programs, it is sometimes more convenient to specify the coordinate data in
a so-called local coordinate system instead of the work coordinate system.
The command

G52 v
creates a local coordinate system.
If the coordinate v is specified as absolute value, the origin of the local coordinate system will
coincide with the workpiece coordinate system’s point of coordinate v.

91

10 Coordinate Systems and Plane Selection

Fig. 10.3-1

If the coordinate v is specified as incremental value, the origin of the local coordinate system
will be shifted with the offset v.
Afterwards, any following motion command specified with absolute coordinates will be executed
in this new coordinate system. Positions will also be displayed in this new coordinate system.
The values of the coordinates v will always be handled as Cartesian data.
The command

G90 G52 v0
cancels the offsets at the point of coordinate v. On power-on, at the end of the program and on
reset the offset values set by the command G52 will be cancelled.

If the tool is at the point of the coordinates
X=200, Z=150

in the actual X, Z workpiece coordinate
system, the command

G90 G52 X80 Z60
creates the new X',Z' coordinate system in
which the tool will be at the point of the
coordinates

X’=120, Z’=90.
The axis components of the offset vector v’
between the coordinate systems X, Z and X', Z'
will be the following by the command G52:

x zv’ =80, and v’ =60.
A new coordinate system X”,Z” can be created in the following two ways.
By absolute data specification:
The command

G90 G52 X120 Z30
moves the origin of the coordinate system X”,Z” to the point of coordinates X=120, Z=30 in the
workpiece coordinate system X, Z. The components of the vector v” will be produced by the

x zspecification of v" =120, v" =30.
By incremental data specification:
The command

G91 G52 X40 Z-30
shifts the origin of the local coordinate system X’,Z’ by the values X’=40, Z’=-30. The

x zcomponents of the vector v will be produced by the specification of v =40, v =-30. The vector v”
showing the position of the new local coordinate system in the workpiece coordinate system X,Z

x zis v”=v’+v. Its components are the following: v” =80+40=120, v” = 60+(-30)=30.
The position of the tool in the coordinate system X”,Z”: X”=80, Z”=120.

92

10 Coordinate Systems and Plane Selection

Fig. 10.3-2

Fig. 10.3-3

The offset of the local coordinate system is
valid in all the workpiece coordinate systems.

Programming the command G92 on the axes for which values were specified, cancels the offsets
created by the command G52, as if the command G52 v0 would have been issued.

If the tool is at the point of coordinates X=240,
Z=200 of the workpiece coordinate system X,
Z, by the command

G52 X80 Z60
its position in the local coordinate system X’,
Z’ will be X’=160, Z’=140. Then, by the
command
G92 X80 Z110
the position of the tool in the new workpiece
coordinate system X”, Z” will be X”=80,
Z”=110. So, the command G92 deletes the
local coordinate system X’, Z’ as if the
command G52 X0 Z0 would have been issued.

93

10 Coordinate Systems and Plane Selection

Fig. 10.4-1

10.4 Plane Selection (G17, G18, G19)

The plane in which
 – circular interpolation,
 – data specification using polar coordinates,
 – planar rotation of the coordinate system,
 – planar tool radius compensation,
 – positionings of drilling cycles,
 – turning cycles
are performed, can be selected using the following codes
G:

p pG17 the plane X Y ;

p pG18 the plane Z X ;

p pG19 the plane Y Z ,

pwhere: X : the axis X, or the axis parallel with it;

pY : the axis Y, or the axis parallel with it;

pZ : the axis Z, or the axis parallel with it.
The plane selected is called main plane.
It depends on axis addresses programmed together with the command G17, G18 or G19 in one
block, which one of the parallel axes will be selected:
For example, if X and U, Y and V, Z and workpiece are parallel axes, then:

the axis XY will be selected by the command G17 X____ Y____;
the axis XV will be selected by the command G17 X____ V____;
the axis UV will be selected by the command G17 U____ V____;
the axis XW will be selected by the command G18 X____ W____;
the axis YZ will be selected by the command G19 Y____ Z____;
the axis VZ will be selected by the command G19 V____ Z____.

If G17, G18, G19 is not given in a block, the plane selection will remain unchanged:
G17 X____ Y____ the plane XY

U____ Y____ the plane remain the planeXY.

If axis address is not given in the block G17, G18 and G19, the control will select the main axes:
G17 selects the plane XY;
G17 X selects the plane XY;
G17 U selects the plane UY;
G17 V selects the plane XV;
G18 selects the plane ZX;
G18 W selects the plane WX.

The motion command does not affect the plane selection; due to the command
G90 G17 G00 Z100

the plane XY will be selected and the axis Z moves to the point of coordinate 100.
Changing planes within a program can be done more than once.

After power-on, program end or reset, it will be decided by the bits #1 G18 and #2 G19 of the
parameter N1300 DefaultG1 which plane will be valid.

It can be set in the parameter N0103 Axis to Plane which axis address will be used by the control
for main and parallel axes.

94

10 Coordinate Systems and Plane Selection

In this manual there are many references to the first axis and the second axis of the selected plane.
The figure below illustrates how to interpret them.

Fig. 10.4-2

95

11 Spindle Functions

11 Spindle Functions

11.1 Spindle Speed Command (Code S)

With writing a maximum 8-digit number at the address
S nnnnnnnn

the code will be transmitted by the control to the PLC.
Depending on the design of the given machine tool, the PLC can interpret the address S either as
a code, or as a value with the dimension of revolution/minute.
If motion command and spindle speed (S) are programmed in the same block, the function S will
be executed during or after carrying out the motion command. The builder of the machine tool
determines the manner of execution.
The speed values specified at the address S are modal ones. After power-on the control starts with
the code S0.
In each gear ratio range, the spindle has a minimum and a maximum limit. These limits are
determined by the builder of the machine too in the parameter field, and the control does not
allow the speed to come out from the range.
The control can manage maximum 8 speed range.

11.1.1 Referring to Several Spindles. Extending the Address S

The control can manage maximum 16 spindles.
If there are several spindles on a machine or in one channel, the address S will not be enough to
discriminate the spindles. The control provides two ways for managing several spindles.

Referring to a Spindle at Addresses S and P
The first way is to give the spindle number at the address P in addition to the address S. By the
command

Snnnnnnnn Pp
the code S and the spindle number written at the address P will be transmitted by the control to
the PLC.
The program language uses the address P for various purposes, for example for waiting, for called
subprogram etc. For this reason, the spindle references at the address P must be written in a
separate block, otherwise interpretation of the address P will not be unambiguous.

Referring Several Spindles by Extension of the Address S
The another way is to extend the addresses of the spindles. The spindles can also be referred by
specifying maximum 3 characters.
The addresses of the spindles must always begin with the letter S. In the parameters N0605
Spindle Name2 and N0606 Spindle Name3, two additional characters may be given which can
be letters of the English alphabet: A, B, C, D ... Y, Z or numbers: 0, 1, 2 ... 9. If the spindle name
2 or the spindle name 3 is not used, the value of the parameters will be 0.
Accordingly, the name of a spindle can be SSB, but S1 and S2 may also be used as spindle name.
If the name of a spindle ends with letter, the value belonging to it can be added. The meaning of

SSB12500
is: the spindle SSB has to rotate at the speed of 12500/min.

96

11 Spindle Functions

If the name of a spindle ends with number, the sign = will have to be written after the name. The
meaning of

S1=8700
is: the spindle S1has to rotate at the speed of 8700/min.
In the case of referring with an extended spindle address, the speed value programmed on the
address and the number of the referred spindle will be transmitted by the control to the PLC.

In the program, only one spindle should be referred within one block. If several spindles have
to be started, the commands must be written in separate blocks:

S1=500 M3 (S1 500/min, clockwise)
S2=1000 M4 (S2 1000/min, counter-clockwise)

The control always stores the spindles according to their number. Numbering and naming the
spindles is also global and channel-independent.

11.1.2 Assigning Spindles to Channels

The given spindles are always assigned to the given channels by the PLC program.
Assignment means that speed command for a given spindle can only be issued from the program
running in that given channel. For example, if the spindle S4 is assigned to the channel 2, the
address S4 cannot be programmed in the channel 1.
During program run, the PLC program can move a given spindle into an other channel due to M
function, for example.
Assigning spindles to channels and moving them into other channels is always determined by the
builder of the machine tool.
In each channel, a default spindle can be designated in the parameter N0604 Default Spindle. This
designated spindle can always be referred at address S even if it has multicharacter name. For
example, let the S2 be the spindle No.2. If in the channel 2 N0604 Default Spindle=2, then the
spindle can be referred at both addresses S2 and S in the channel 2.

11.2 Functions M Controlling the Spindle

Built-in Functions M
The control manages the spindles using the following built-in codes M:

M3: Spindle On, clockwise
M4: Spindle On, counter-clockwise
M5: Spindle Off (Stop)
M19: Orientation

The direction is always to be meant from the motor towards the spindle. M03, M04 and M05 can
also be written instead of M3, M4 and M5.
These are built-in codes M controlling the spindle because they are transmitted by the control for
the PLC to stop the spindle, to change its direction of rotation and to orient it during execution
of drilling cycles.

Optional Functions M
In addition to the abovementioned built-in codes M, further codes M can also be designated to
manage the spindles. These codes can be set in the parameters N0689 Spindle M Low and N0690
Spindle M High, in one array. The smallest value of the array of the codes M has to be written

97

11 Spindle Functions

in the parameter Spindle M Low, but the greatest value has to be written in the parameter Spindle
M High.
For example, let Spindle M Low be S2=20, and Spindle M High S2=24. Let the functions of the
codes M be the following:

M20: Conversion of the spindle into axis C
M21: Synchronization of the spindle
M22: Synchronization of the spindle together with phase shift
M23: Preparation of the spindle for polygonal turning
M24: Closing the spindle position loop without orientation (Code M for Closing S Loop)

L Warning! The abovementioned array of the codes M is an example only. The optional
functions M of the spindles are always determined by the builder of the machine tool, and
for this reason, description of them can be found in the manual of the given machine.

The optional functions M designated in parameter and the built-in ones are registered by the
control as exclusive functions. It means that only one such code M can be written in one block.

The functions M controlling the spindle refer always to the spindle programmed last:
S1=1500 M4 (S1 On in M4 direction)
S2=2000 M3 (S2 On in M3 direction)
M5 (S2 Stop)
M19 (S2 Orientation)
S1=0 M5 (S1 Stop)

The example above shows, that if the spindle S2 was referred already, the further codes M
controlling the spindle will refer to the spindle S2.If, however, the spindle S1should be stopped,
it is needed to refer to the address of the spindle.

11.3 Managing the Speed Ranges

There could be a variable-ratio drive between the driving motor and the spindle which can be
used for changing the spindle speed range. Maximum 8 speed ranges for each spindle can be
managed by the control. The lower the speed range the spindle is in, the higher the torque will be
with which it is able to machining.
For each ratio range, there can be set permissible minimum and maximum speeds, below and
above of which the control does not allow the spindle speed to decrease and increase,
respectively.
The permissible speeds can overlap each other between the ranges.

The case when speed ranges do not overlap each other
For example:

The minimum speed of the range 1: 50/min
The maximum speed of the range 1: 1000/min
The minimum speed of the range 2: 1001/min
The maximum speed of the range 2: 4000/min

In the case above, according to programming the code S900 it is unambiguous that the spindle
has to be rotated in the range 1.
If the ranges do not overlap each other, in addition to the value of the address S and the number
of the referred spindle, the control will transmit the code of the range too to the PLC, and the PLC
will change the required range automatically.

98

11 Spindle Functions

The case when speed ranges overlap each other
For example:

The minimum speed of the range 1: 50/min
The maximum speed of the range 1: 1000/min
The minimum speed of the range 2: 800/min
The maximum speed of the range 2: 4000/min

According to programming the code S900 it is not unambiguous to decide which is the range the
spindle has to be rotated in, whether the range 1 or the range 2.
If the ranges overlap each other, the programmer will have to use M function to select the range
in which he would like to rotate the spindle.
These functions M are the following:

M11: Selecting the range 1
M12: Selecting the range 2
...
M18: Selecting the range 8

Managing the ranges on a given machine is determined by the builder of the machine tool, and
description of it can be found in the manual of the given machine.

11.4 Main Spindle. Selecting the Main Spindle

If there are several spindles on a machine tool or in a channel, it will have to be decided which
one of them will be the ‘main’ spindle. The following functions apply to the spindle designated
as main spindle:

enabling the feed;
feed per revolution;
calculation of constant cutting speed;
threading;
rigid tapping;
master spindle of polygonal turning.

The main spindle has to be designated in each channel. In a given channel, a spindle belonging
to an other channel can also be designated as main spindle, for this reason it cannot be
programmed in this channel, but the feed per revolution has to be received from this spindle, for
example.
The way of selection of the main spindle is determined by the PLC program of the given
machine tool, and it is contained in the manual provided by the builder of the machine tool.
Selection can be done using function M, for example:

M31 (the spindle 1 acts as main spindle)
M32 (the spindle 2 acts as main spindle)

99

11 Spindle Functions

Fig. 11.5-1

11.5 Controlling the Constant Surface Speed

Function of controlling the constant surface
speed can be used for infinitely variable
spindle drive only. In this case, the control
changes the speed of the spindle in such a way
that the tool speed relative to the workpiece
surface is always constant and equal to the
value programmed.
The control changes always the speed of the
spindle designated as main spindle.
The value of the constant surface speed as a
function of the input unit system has to be
done on the basis of the table below:

Input unit Unit of the constant surface speed

mm (G21 metric) m/min

inch (G20 inches) feet/min

11.5.1 Specifying the Constant Surface Speed Control (G96 S, G97 S)

The command
G96 S

switches the constant surface speed control on. At the address S the value of the constant surface
speed control has to be given in the unit shown in the table above.
The value of the constant surface speed control must be given always at the address S, and
specification of the speed applies to the spindle designated as main spindle.
For example:

M32 (designation of the spindle 2 as main spindle)
G96 S300 (the surface speed is 300 m/min)

(M32 here is an example only, the way of designation as main spindle is found in the manual on
the given machine tool.)
The command

G97 S
switches the constant surface speed control off .
At the address S, the desired spindle speed can be specified (in rev/min). In the case when there
are several axes, after programming G97 always the address of the main spindle has to be used,
instead of S. For example:

G97 S2=1200 (The speed of the spindle 2 is 1200/min)

100

11 Spindle Functions

 – For calculation of constant surface speed, the zero point of the axis, on the basis of the position
of which the speed of the main spindle has to be changed, must be set on the axis of
rotation of the main spindle.

 – The constant surface speed control is effective only after starting the main spindle by M3 or
M4.

 – The value of the constant surface speed is modal even after its calculation has been cancelled
by the command G97.

G96 S100 M3 (100 m/min or 100 feet/min)
G97 S1500 (1500 rev/min)
G96 X260 (100 m/min or 100 feet/min)

 – The constant surface speed calculation is effective in mode G94 (feed/min) too.
 – If the constant surface speed calculation is cancelled by the command G97 and a new speed

of the main spindle is not specified, the last speed of the main spindle taken in the state
G96 will remain effective.

G96 S100 (100 m/min or 100 feet/min)
.
.
.

G97 (Speed belonging to the resulted diameter X)
 – In the case of rapid traverse positioning (block G0), the spindle speed is not calculated

continuously, but the control sets the speed belonging to the position actual in the
endpoint of the positioning.

 – After power-on, the parameter N0686 Default Surf Speed determines the value of the constant
surface speed.

11.5.2 Clamping the Speed during Calculation of Constant Surface Speed (G92 S)

The command
G92 S

is used for setting the highest speed of the main spindle permissible during constant surface speed
control. When the constant surface speed control is switched on, the control disables issuing a
main spindle speed greater than the value specified here. In this case, the unit of the S is rev/min.
The maximum value of the main spindle speed must be given at the address S, and the speed
clamp applies to the spindle designated as main spindle.
 – After power-on or if the value of the speed is not clamped by the command G92, in the case

of constant surface speed control, the maximum value permissible in the given range will
be the upper limit of the main spindle speed.

 – In the case of constant surface speed control, a lower limit can also be given for the main
spindle speed in the parameter N0688 Min Spindle Speed G96, which can be greater than
the minimum value of the speed belonging to the range.

 – The value of the maximum speed is modal until a new value is programmed.

11.5.3 Selecting an Axis for Constant Surface Speed Control (G96 P)

In the state G96, the parameter N0687 Default G96 Axis selects the axis, according to the position
of which the control calculates the spindle speed.
If an other axis is to be used, the axis according to which the surface speed should be calculated
can be specified by the command

G96 P.

101

11 Spindle Functions

The address P is to be interpreted as number of axis.
In the command G96, address S can also be programmed together with address P:

G96 S300 P4 (surface speed 300 m/min together with the axis
4)

The value set at the address P is modal.

11.6 Spindle Speed Fluctuation Detection

The control monitors speed fluctuation of each spindle. It determines the fluctuation as difference
between the programmed speed modified by override and by speed limits, and the actual speed
measured from encoder.
If the speed of the spindle is out of the tolerance range set in parameter by the builder of the
machine tool, the control will send message to the PLC.
Then, the PLC program sends error message and takes action to stop the spindle and machining.
All this is described in the manual provided by the builder of the machine tool.
 – The function of speed fluctuation detection will work in the only case if the spindle is equipped

with encoder.
 – The spindle fluctuation detection is only effective when the spindle rotates (in the state M3 or

M4).

11.7 Positioning the Spindles

In case of normal machining, the control issues speed commands proportional to the programmed
speed to the spindle drives. At this time, the spindle drive works in the mode of speed control .
In cases of certain technological tasks it could be necessary to bring a spindle into a defined
angular position. This process is called spindle positioning or indexing.
Prior to positioning, the control switches the spindle in the mode of position control. Practically,
it means that henceforth the control does not issue speed command proportional to the code S,
but it measures the spindle position by the use of angular position transmitter (encoder) mounted
on the spindle and it issues command depending on desired angular displacement, as it is done
on the other position-controlled axes. This is the position feedback.
In order that the spindle on a given machine tool can be positioned, an encoder has to be mounted
on the spindle, and the spindle drive should have the design providing operation in the mode of
position feedback too.

11.7.1 Spindle Orientation

The function of stopping the spindle in a particular angular position is called spindle orientation
or oriented spindle stop. It could be necessary in the case of automatic tool change or for carrying
out certain drilling cycles, for example.
The bit state #1 ORI=1of the parameter N0607 Spindle Config means that it is possible to orient
a given spindle.
The orientation command is issued by the function

M19.
If there are several spindles on the machine, in addition to the function M19, the spindle also has
to be selected. For example:

S2=0 M19
Technically, orientation can be done in the following two different ways.

102

11 Spindle Functions

If the spindle cannot be fed back in position control (parameter state of N0607 Spindle Config
#2 INX=0), orientation can be carried out by turning on the position switch mounted on the
machine.
If the spindle can be fed back in position control (parameter state of N0607 Spindle Config #2
INX=1), the command M19 will cause the control to seek zero pulse of the spindle encoder.
Then, the control closes the position control loop automatically.
This, at the same time, means the reference point return of the spindle too, i.e. the spindle can be
sent to an absolute angular position after orientation.

11.7.2 Stopping the Spindles and Closing the Position Control Loop

The parameter state N0607 Spindle Config #2 INX=1means that the position control loop can be
closed.
In this case, in the parameter N0823 M Code for Closing S Loop there can be given a code M due
to which the spindle stops, closes the position control loop, but does not go to the orientation
position (does not seek the zero pulse of the encoder).
For example, if the value of the parameter is 24, closing the loop will occur due to the command

M24.
If there are several spindles on the machine, in addition to the function M, the spindle also has
to be selected. For example:

S2=0 M24
It is the builder of the machine tool who can give information about the code and work of the
function.
This function can accelerate execution of rigid tapping cycles, for example.

11.7.3 Programming of the Positioning the Spindles

The parameter state N0607 Spindle Config #2 INX=1means that the position control loop can be
closed. This is the only case when positioning the spindles is possible.
The parameter will be set by the builder of the machine tool in the case if the function is
implemented on the given spindle.

Positioning on the Basis of Axis Name
Each spindle may have a maximum 3-character-long axis name which can be referred to after
closing the position control loop.
In the parameter N0817 Spindle Axis Name1, it is obligatory to set the letter A, B or C. In the
second character (parameter N0818 Spindle Axis Name2) and on the third character (parameter
N0819 Spindle Axis Name3) there can be given letters A, B, C, G ...Y, Z of the English alphabet
or numbers 0, 1, 2 ... ,9.
For example:

CS: the name of the spindle axis 1
CS2: the name of the spindle axis 2
ABC: the name of the spindle axis 3

If the name ends with number, the sign = will have to be used. Certainly, the name given should
not coincide with other names.
After the address, position has to be given in degree. Positioning is executed at the rapid traverse
speed set for the spindle axis. The unit of the rapid traverse is 1/min.

103

11 Spindle Functions

Prior to the positioning by absolute data specification, M19 has to be programmed. For example:
The command lines

S2=0 M19
G90 CS2=30

moves the spindle CS2 to the position of 30 degree, rotating the spindle in positive direction.
In the case of absolute positioning, the control cuts the full turns from the data greater than 360
degree, for example, if

S2=0 M19
G90 CS2=750

are given, the control will rotate the spindle to the 30 degree. The control rotates always in the
direction of the shorter travel. If

S2=0 M19
G90 CS2=270

are given, the control will rotate to the 270 degree, in negative direction.

Prior to the positioning by incremental data specification, M19 has not to be programmed, it is
enough to close the position loop only. If the loop is closed by the M24, then:
in the case of the following data specifications

S2=0 M24
G91 CS2=3600

or
S2=0 M24
CS2=I3600,

the spindle will make 10 revolutions in the given direction (here in positive direction). In the case
of incremental data specification, the control does not cut the full turns and will rotate in the
direction given by the sign.

Indexing the Spindles using Function M
Spindles can be indexed using codes M. Indexing means revolving the spindle to a discrete preset
positions.
For this, the following parameters have to be set:
The direction of indexing at the bit #7 IDS of the parameter N0607 Spindle Config: =0 positive,
=1 negative.
The initial value of the codes M in the parameter N0820 Start M of Spnd. Pos. and the the number
of the codes M in the parameter N0821 No. of M Code for Spnd. Pos..
The angle of indexing in the parameter N0822 Basic Angle of Spnd. Pos..

An example:
The spindle can be fixed by 18 degrees starting from the orientation position. The setting is as
follows:
Spindle Config: #7 IDS=0: indexing in positive direction
Start M of Spnd. Pos.=201 (m=201)
No. of M Code for Spnd. Pos.=20 (n=20)
Basic Angle of Spnd. Pos.=18 (ö=18)

104

11 Spindle Functions

The following table explains the different codes M:

Code M The revolved angle á

Mm (M201) á=ö=18°

M(m+1) (M202) á=2ö=36°

M(m+2) (M203) á=3ö=54°

....

M(m+n) (M220) á=nö=360°

On the basis of the settings above, let’s have the example below:
M19 (orientation)
M205 (revolving by 90°)
... (drilling)
M210 (revolving by 180°)
... (drilling)

Before issuing a code M for positioning, the spindle should be oriented by M19. Thus the spindle
gets the position á=0.
A hole has to be drilled at the position 90°, the spindle revolves to the position á=5ö=5*18=90°
by the command M205.
The next hole has to be drilled at the position 270°. When code M is used, the spindle can be
moved only incrementally, for this reason M210 has to be programmed, because the displacement
will be 10*18°=180° in this case.

11.7.4 Position-correct Synchronization of Two Spindles

Synchronization of two spindles means their rotation at the same speed and their being in a preset
phase shift to each other during rotation.
Position-correct synchronization of two spindles is done by the PLC program, using generally a
code M. The method of synchronization is contained in the documentation provided by the
builder of the machine tool.
For synchronization of two spindles, it is required of both spindles to be equipped with encoder,
and that the position control looping can be realized.
During synchronization, the maximum speed of spindles is limited by the rapid traverse speed
set for the spindle axis. Generally, this speed is lower than the maximum spindle speed.
In the course of synchronization, there are differentiated master and slave spindles. Always the
slave spindle is synchronized to the master one.

The process of synchronization is as follows:
 – if the speed of the master spindle is higher than the lower one of the rapid traverse speeds

specified for the two (master and slave) spindles, the master one will slow down to the
proper speed;

 – the master spindle closes the position control loop;
 – the slave spindle accelerates up to the master spindle speed in the same or opposite direction

of the master spindle rotation;
 – the slave spindle closes the position control loop;

105

11 Spindle Functions

 – then, the slave spindle pulls its zero pulse over the zero pulse of the master spindle, or it
executes a phase shift from the zero pulse of the master spindle on a distance given in
encoder pulse and specified in the parameter N0685 Spindle Phase Shift.

An example:
It is required to machine the another side of a workpiece cut in the main spindle (marked as S1)
of a sub-spindle lathe. The material the main spindle uses is bar. First, the sub-spindle being the
slave spindle (marked as S2) should be synchronized to the main (master) spindle, the slave
spindle should clamp the workpiece, and then cutoff should be executed.
Let M21 be synchronization realized by synchronous run of the zero pulses and let M22 be pulse
shift synchronization.
If pulse shift is not necessary, the program detail will be the following:

S1=3000 M3
S2=0 M21 (synchronizing the S2 to S1)
... (clamping the workpiece by the chuck of the S2)
... (cutting off)
S2=1200 M4(turning the synchronization off, rotating the S2)

If a shaped workpiece should be clamped, the code M22 will have to be used and phase shift will
have to be set in the parameter N0685 Spindle Phase Shift.

L Warning! The example above is a sample only. In a particular case, the process is as it is
directed by the builder of the machine tool.

11.7.5 Turning the Position-controlled Operating Mode off

After orientation, positioning or synchronization, the following function must be used for turning
the spindles off from the position-controlled operating mode:

M3, M4 or M5

Fig. 11.7.4-1

106

11 Spindle Functions

For example:
S1=0 M19 (position-controlled mode on, orientating the S1)
CS1=60
...
S1=0 M5 (position-controlled mode off, spindle stands)

or
S1=2400 (position-controlled mode off, spindle on)

11.8 Converting Spindle into Axis and Axis into Spindle

Spindle axes can be used for machining with limitations only because they can be positioned only,
and they cannot participate in interpolation with other axes. Furthermore, spindle axes use low-
resolution and high-speed encoder, while a rotary table requires high-resolution encoder operating
at low speed.
Therefore, in the course of machining it could be necessary to convert a spindle into axis or an
axis into spindle. The spindle of a lathe has to be converted into axis C in order to mill on the face
of the workpiece using polar coordinate interpolation or to engrave something onto its curved
surface using cylindrical interpolation. Then, the axis C has to be reverted to spindle in order to
execute further turning operations.
If the construction of the machine makes it possible, the rotary table B of a horizontal machining
center can be converted into spindle in order to execute turning operation on the workpiece.

Appropriate mechanical and electronic construction of the machine tool is necessary to convert
a spindle into axis or an axis into spindle. The manual of the given machine contains
information about whether such conversion is possible on the machine. Always the PLC executes
conversion in accordance with capabilities of the given machine.
Usually, the process of conversion of a spindle into axis is as follows:
 – stopping the spindle if it rotates;
 – stopping drive operation;
 – disconnecting the spindle from the drive;
 – converting the encoder into a high-resolution one;
 – adjusting the drive parameters;
 – turning the drive on again;
 – connecting the axis to the drive and makes its display visible.
Usually, the process of conversion of an axis into spindle is as follows:
 – waiting until the axis stops;
 – stopping drive operation;
 – disconnecting the axis from the drive and makes its display invisible;
 – converting the encoder into a low-resolution one;
 – adjusting the drive parameters;
 – turning the drive on again;
 – connecting the spindle to the drive.

An example:
On a lathe, the spindle S1 should be converted into the axis C1 for milling, and then, the axis C1
shoul be reverted to the spindle S1for further turning:

S1=0 M20 (converting S1 into C1)
G28 G91 C1=0 (reference point return on the axis C1)
... (milling by the use of the axis C1)

107

11 Spindle Functions

S1=3000 M3 (reverting C1 to S1, rotation by 3000)
... (turning by the use of S1)

L Warning! The example above is a sample only. In a particular case, the process is as it is
directed by the builder of the machine tool.

108

12 Function T

12 Function T

In the part program, the tool number is referred by code T. The code T should be given with a
maximum 8 decimal digit:

Tnnnnnnnn
The leading zeros can be eliminated.

12.1 Programming the Tool Change

There are basically two ways of referring to tool change in the part program. These two ways
depend on the machine construction. The tool call technique applicable in the part program is
defined by the builder of the machine tool.

Case A: Tool change on code T
Tool change on the machine can be carried out manually or using turret-type tool changer.
At the bit position #0 TCM=0 of the parameter N1414 Comp. Config on Lathes, the code T
includes the code of tool compensation too at the digits of low place value. The tool number can
be given at the remaining digits of great place value. At the bit position TCM=0, tool change
occurs too when tool number is called.
It is the parameter N1413 No. of Digits of Offs. No. in T Code which determines how many digits
are needed to specify the tool compensation. The value of the parameter can be 0, 1, 2 and 3.

Tnnnnnnnk: compensation on one digit
Tnnnnnnkk: compensation on two digits
Tnnnnnkkk: compensation on three digits

where:
nnnnnn: the number of the tool
kk: the number of the compensation location

If compensation is given on two digits, the meaning of the command
T1236

will be:
the tool of number 12 is to be changed, and
the compensation group of number 36 is to be called too.

If 0 is programmed for the tool number or only so many digits are programmed at the address T
as many digits are needed for specifying the compensation, tool change will not occur but new
compensation will be called. Using the setting above, the meaning of

T12
is for example: the compensation group of number 12 is to be called and the previous tool
remains changed.

If motion command and tool number (T) is programmed in the same block, the function T will
be executed during or after execution of the motion command. The builder of the machine
determines the manner of execution.
The tool number will be given to the PLC program.

109

12 Function T

Case B: Tool change on the function M6
If tool preparation on the machine is needed for tool change, i.e. the tools are in a magazine and
they can be changed by arm-type changer, the tool number will not have to include the
compensation code, because the code T prepares the tool for change only, and the change will
occur later due to the function M6.
In this case, at the bit position #0 TCM=1 of the parameter N1414 Comp. Config on Lathes the
code T does not include the code of tool compensation.
Tool preparation on the machine is needed for tool change. The steps of preparation are as
follows:
 – Finding the tool to be changed in the tool magazine. In this step, referring to the address

Tnnnnnnnn
in the part program triggers motion of the appropriate tool to the change position. This
action goes on in the background, parallelly with the machining.

 – Sending the slides to the change position.
 – Executing the tool change by the function

M6
in the program. (M06 can also be used.) The control waits for executing the tool change
until the tool T being under preparation arrives at the change position. Then it inserts the
new tool into the tool holder. From this point, machining can be continued.

 – Inserting the previous tool back into the tool magazine. This action goes on in the background,
parallelly with the machining.

 – Beginning to find the new tool in the tool magazine.

In the case of tool change on the function M6, the following parameter settings are required:
Bit position #0 M06=1 of the parameter N1338 Block No Search - for block search
Bit position #1 TLC=0 of the parameter N2901 Search Config - for tool life management

An example:
T12 M6 (changing the tool T12)
T15 (calling the tool T15, the PLC searches in the

course of machining)
... (machining by the use of the tool T12)
M6 (changing the tool T15)
T8 (calling the tool T8, the PLC searches in the

course of machining)
... (machining by the use of the tool T15)
T9 (calling the tool T9, the PLC searches in the

course of machining)
M6 (changing the tool T8)
... (machining by the use of the tool T8)

If command T and command M6 are written in one block, the PLC will usually execute function
T at first, and then function M6, i.e. it will execute tool change. After tool change, M6, it is
practical to program tool call in the next block in order to minimize secondary time of the
machine.

L Warning! The example above is a sample only. In a particular case, the process is as it is
directed by the builder of the machine tool.

110

13 Miscellaneous and Auxiliary Functions

13 Miscellaneous and Auxiliary Functions

13.1 Miscellaneous Functions (Codes M)

Having written a numerical value of maximum 8 digits behind the address M
Mnnnnnnnn,
the NC transfers the code to the PLC.
The leading zeros can be eliminated.
Eight several codes M can be transferred by the control to the PLC at the same time, i.e.
maximum 8 codes M can be written in one block.
The execute sequence of the functions M written in one block is determined in the PLC program
by the builder of the machine tool.
If motion command and miscellaneous function (code M) are programmed in the same block, the
miscellaneous function will be executed during or after execution of the motion command.
All the codes M, even those that are executed by the control, will be transferred by the control to
the PLC.
The way of execution is determined by the builder of the machine tool.

The program control codes M:
M0: programmed stop

This code is executed by the PLC. At the end of the block in which the M0 is specified, the
control

arrives at the condition Stop;
stops the spindles;
cuts off the coolant.

All the modal functions remain unchanged. Due to the start, the control restarts the spindles,
switches back the coolant and continues the program.

M1: conditional stop
This code is executed by the PLC. Its effect is the same as the effect of the code M0. It will only
be executed when the button CONDITIONAL STOP is activated. If the appropriate button is not
activated, this code will be ineffective.

M2, M30: end of program
This code is executed by the PLC. It means the end of the main program. The machine functions
are reset by the PLC program; generally, it stops the rotation of the spindles and switches off the
coolant.
Each of the commands M2 or M30 executed increases the value of the workpiece counters by
one, unless other code M is assigned in the parameter N2305 Part Count M for stepping the the
counter.

M96: enabling the interruption macro
This code is transferred to the PLC but it is executed by the control. It enables the interruption
signal coming from the PLC, due to which the interruption macro will be called.

111

13 Miscellaneous and Auxiliary Functions

M97: disabling the interruption macro
This code is transferred to the PLC but it is executed by the control. It disables interruption signal
coming from the PLC to be valid, and running the interruption macro.

M98: calling subprogram
This code is transferred to the PLC but it is executed by the control. Due to it, calling a
subprogram will be occurred.

M99: end of subprogram
This code is transferred to the PLC but it is executed by the control. Due to it, execution returns
to the position of the call.

The spindle control codes M
M3, M4, M5, M19: the codes of spindle management

These codes are executed by the PLC. See the sub-chapter Functions M Controlling the Spindle.

The spindle management codes M that can be specified in parameter
In the parameters N0689 Spindle M Low and N0690 Spindle M High, additional spindle control
codes M can be assigned in one array. See the sub-chapter Functions M Controlling the Spindle.
The spindle control codes M together with the codes M3, M4, M5, M19 are exclusive ones,
giving only one such code in one block is allowed.
These codes are executed by the PLC.
The initial value and the number of the codes M indexing the spindles can be specified in the
parameters N0820 Start M of Spnd. Pos. and N0821 No. of M Code for Spnd. Pos., respectively.
See the sub-chapter Programming of the Positioning the Spindles.
These codes are executed by the control.

Speed ranges management codes M
 M11, ..., M18: the codes of speed range change
These codes are executed by the PLC.

Tool change code M
M6: the code of the tool change

This code is executed by the PLC.

Code M group that can be set in parameter
There can be assigned 16 different groups of code M in 16 pairs of parameter. These are executed
by the PLC.
The code of the lowest number in the group has to be written in the parameters N1341 M GR Low
1, ..., N1356 M GR Low 16; the code of the highest number in the group has to be written in the
parameters N1357 M GR High 1, ..., N1372 M GR High 16.
The groups of codes M must be specified in such way so that the codes mean exclusive machine
statuses.
During execution of the program, the control filters the codes M in such a way that only one of
the Codes M in the group is in the given block, otherwise the control sends error message
Conflicting M codes.

112

13 Miscellaneous and Auxiliary Functions

When it gathers the codes M, the control takes the values preset in the parameters into account
in the course of finding blocks, too. From the codes M related to a group, the only code given last
will be gathered by the control.
 The values of these codes M will be displayed by the PLC program on the screen in the window
of codes M, too.
For example:
Let the codes M of opening and closing the chuck be the following:

M51: opening the chuck
M52: closing chuck
M53: opening the chuck when the spindle id rotating

The parameters are set as follows:
N1341 M GR Low 1=51
N1357 M GR High 1=53

The codes M of chuck gripping modes:
M54: gripping from the outside
M55: gripping from the inside

The parameters are set as follows:
N1342 M GR Low 2=54
N1358 M GR High 2=55

In the part program, writing either M51 or M52 or M53 is allowed in one block, otherwise error
will be indicated by the control during program run. This is related to the group of M54 and M55,
too.
During block finding, from among the M51, M52 and M53, the control gathers and gets it
executed the only one programmed last. This is related to the group of M54 and M55, too.
From among the appropriate machine statuses, the only status code valid in the group will be
displayed in the window of codes M.

The codes M carrying out synchronization of the channels
In the parameters N2201 Waiting M Codes Min and N2202 Waiting M Codes Max, there can be
assigned a gruop of codes M, using which synchronization, waiting for each other can be realized.
It is executed by the control.

13.2 Auxiliary Functions (A, B, C, U, V or W)

In addition to the addresses M, S and T, there can be assigned in parameter further 3 addresses
at which auxiliary function can be transferred to the PLC program. All the 3 auxiliary functions
can be transferred by the control at the same time.
In the parameters N1333 Aux Fu Addr1, N1334 Aux Fu Addr2, N1335 Aux Fu Addr3, from
among the addresses A, B, C, U, V and W there can be selected ones at which auxiliary functions
can be transferred
For the auxiliary functions, value can be given using number of maximum 8 decimal digits
If motion command and auxiliary function (code M) are programmed in the same block, the
auxiliary function will be executed during or after execution of the motion command.
The execute sequence is determined by the builder of the machine tool, and it is contained in the
machine tool specification.
For example, at the address B, indexing of the indexing table can be realize.

113

13 Miscellaneous and Auxiliary Functions

13.3 Buffer Emptying Functions

The block processor in the control reads ahead, processes the blocks, and then buffers them.
The executive element (the interpolator and the PLC) takes the processed blocks from the buffer,
and then executes motions and functions specified in the blocks
In certain cases, it could be necessary to stop reading ahead the blocks in order to synchronize
action between the control and the PLC.
For example, if the PLC asks the NC for one or more axes in order to move them, reading ahead
will have to be suspended. Reading ahead can be continued after execution of the function only,
when the PLC gave back the axes to the NC. Then, the NC can continue the machining from the
axis position changed by the PLC.

Ten single codes M, eight groups of codes M, all the three auxiliary functions and the codes S and
T can be assigned in parameter for buffer emptying.
The buffer emptying functions are determined and set by the builder of the machine tool.

For example, in the course of execution of the program, reading ahead the blocks is necessary to
take the tool radius compensation into account (G41 and G42). If buffer emptying function is
programmed during G41and G42, the control suspends calculation of the tool radius
compensation, and as a result of this, the contour will damage.

114

14 Part Program Configuration

14 Part Program Configuration

The structure and the format of the part program have already been shown in the introduction. In
this chapter, organizing the part programs will be dealt with.

14.1 Block Number (Address N)

The blocks of the program can have serial number. The block numbers can be managed as labels
which can be referred to in the other parts of the program. Blocks are numbered by the command

Nnnnnnnnn.
Maximum 8 digits can be written at the address N. It is not obligatory to use address N. Some
blocks could be numbered, others not. The block numbers need not follow each other in a
consecutive order.

14.2 Conditional Block Skip (/ address)

Conditional block skip can be programmed using slash command
/n.

The value of the slash address can be n=1-8. The numbers from 1 up to 8 are serial numbers of
switches. The conditional block switch No.1 can be found on the operator’s panel of the control.
Mounting the other switches is optional and is determined by the builder of the machine tool.
If a conditional block skip /n is programmed at the beginning of a block,
 – that block will be omitted from the execution when the n switch is on,th

 – that block will be executed when the n switch is off.th

If address /only is programmed at the beginning of the block, that will be related to the switch 1:

/ N1200 G0 X200 (the block will be omitted if the
switch 1 is on)

It can be programmed in the following way, too:

/1 N1200 G0 X200 (the block will be omitted if the
switch 1 is on)

If the intention is that a switch of conditional block skip should be taken into account by the
control even in the block preceding the execution of the conditional block, the parameter N1337
Execution Config will have to be set in #4 CBB=0. Then, the command of conditional block
(blocks beginning with the character /) suppresses the reading ahead of block. In this case, using
G41 and G42, the contour becomes distorted, but it is enough to turn the switch of conditional
block skip on during execution of the previous block in order that it will be effective.

In order that the command of the character / will not suppress the reading ahead of block, the
parameter N1337 Execution Config will have to be set in #4 CBB=1. Then, the command of
conditional block (blocks beginning with the character /) does not suppress the reading ahead of
block. In this case, using G41 and G42, the contour does not become distorted, but the switch
of conditional block skip has to be turned on before execution of the program, for sure
effectiveness.

Some switches can also be used by the PLC programin order to control the program run.

115

14 Part Program Configuration

For example, in the case of a machine equipped with workpiece feeder, the main program can be
made endless using M99:

... (part program)
M90 (stepping the workpiece counter)
/8 M30 (the switch 8 is controlled by the workpiece counter)
M99

When the workpiece counter reaches the needed workpiece quantity, the PLC turns the switch 8
of conditional block skip off, the program runs to the M30, and the execution stops.
The example above is correct when the parameter N1337 Execution Config is in the state #4
CBB=0, i.e. the switches / suppress the reading ahead of block.
When the parameter N1337 Execution Config is in the state #4 CBB=1, the program will run
correctly in that case only if the code M90 is set for buffer emptying.
Before changing the parameter, please ask the builder of the machine tool for information about
effects!

14.3 Writing Comments into the Part Program: (comment)

If a part of the program is parenthesized between round brackets (), the section between the
brackets will not be taken into account by the block processor.
Thus, notes (comments) can be written into the part programs.
If the intention is that a part of the part program will not be executed by the controller but that
program part will not be deleted from the program, that given part will have to be put into round
brackets.

For example:
N10 G0 X100 (positioning to X100)
N20 Z30
(N30 G1 Z60 F0.3
N40 X300)
...

A comment is written in the block N10. The block N30N40 is put into brackets, so these two
blocks will be taken into account by the control.

14.4 Main Program and Subprogram

Two kinds of program are distinguished: main program and subprogram. Macro is a subprogram
to which arguments can be transferred.
In the course of machining a part, repetitive actions could be encountered, which can be described
by the same program part. In order to avoid writing the repetitive parts many times in the
program, from these parts subprogram can be organized that can be called from the main
program.
Structure of a main program and a subprogram is given in the Introduction.
The difference between them is as follows: after execution of a main program, machining is
completed and the control waits for restart; but after execution of a subprogram, the execution
returns to the calling program and continues machining from there.
In terms of programming technique, the difference between the two programs lies in the way of
terminating the program. The end of the main program is indicated with the codes M02 or M30
(it is not obligatory to use them), whereas the subprogram must be terminated with the code M99.

116

14 Part Program Configuration

14.4.1 Identification of Programs in Memory. The Program Number (O)

In the memory, programs are placed in folders defined by the user and having different names.
Programs in the folders are identified by their file name. The control will consider a file as a part
program, i.e. a file can be run as a part program if its extension (the fraction after the dot ‘.’) is
as follows:

.txt
filename.prg
filename.nct

or
filename.nc

The file name of a program can be composed of alphabetical and numerical characters.
Subprograms are stored in separate file, they together with the main program have not to be in
one file.

Program number
The program number

Onnnn.ext
or

Onnnnnnnn.ext
is a special filename beginning with the letter O obligatorily, and followed by 4 or 8 decimal
digits. For their extension (.ext), the notes above are valid.
Onnnn: Letter O followed by 4 digits together with the leading zeros.

O1 is an invalid filename,
O0001 is a valid filename;

or
Onnnnnnnn: Letter O followed by 8 digits together with the leading zeros.

O01234 is an invalid filename,
O00001234 is a valid filename.

14.4.2 Calling a Subprogram (M98)

Subprograms can be called in two ways, by program number or by filename.

Calling a subprogram by program number
The command line

M98 P....
generates a subprogram call. The program number of the called program is written at the address
P. At the address P, the leading zeros can be eliminated and it is not allowed to write extension
after the number. Due to the command, execution of the program will continue at the subprogram
the number of which defined at the address P:

calling program

O0010
......
......

subprogram note

execution of the
program O0010

M98 P11 –––> O0011 c a l l i n g t h e
subprogram O0011

117

14 Part Program Configuration

......

......

......

execution of the
subprogram O0011

next block <––– M99 return to the calling
program

......

......
c o n t in u i n g t h e
program O0010

In the case of subprograms called at the address P and by program number, the following
limitations concerning their location in the folder system and their filenames are valid:
 – The subprograms have to be in the same folder where there is the program calling them.
 – For filename of the subprograms called by program number, the limitations described in the

previous subchapter are valid.
 – The extension of subprograms and the extension of the program calling them have to be the

same:
For example, if the filename of the main program is

Foprogram.prg,
the extension of the subprogram called from the ‘Foprogram.prg’ will have to be .prg, too:

in the case of O1234.prg the call is executed;
in the case of O1234.nct error message is generated.

Calling a subprogram by filename
The command line

M98 <alprogram.nct>
calls the subprogram named ‘alprogram.nct’ being together with the program in the same folder.
The filename has to be written in between the symbols < less than and > greater than.
In this case the extensions of the main program and the subprogram do not need to be the same.
The relative path of the file can also be given between the symbols < and >. The path has to be
always given from the folder of the calling program.

If the called subprogram ‘subprogram.prg’ is in a subfolder named ‘subprograms’ being a level
lower from the folder of the program ‘program1.nct’ which calls it:

...
subprograms (folder)
program1.nct (file)

the subprogram call will be executed by the command
M98 <\subprograms\subprogram.prg>.

If the called subprogram ‘subprogram.prg’ is in a level upper from the folder ‘mainprograms’ of
the program which calls it:

...
mainprograms (folder)
subprogram.prg (file)

the subprogram call will be executed by the command
M98 < ..\subprogram.prg>.

Steppings backward and forward can be done through several levels.
For example:

< ..\..\..\folder1\folder2\folder3\file.txt>

118

14 Part Program Configuration

However, the length of the text between the symbols < and > can be maximum 60 characters.

L Note: In the course of giving the path, the symbol \ (backslash) has to always be used; it
should not be confused with the symbol / (per).
For stepping backward in the folder system, 2 dots (..) has to always be used.

Calling a subprogram by number of repetitions
The command line

M98 P.... L....
or

M98 <path \ filename> L....
calls in succession the specified subprogram so many times as many times given at the address
L.
The address L can be specified by maximum 8 decimal digits.
If value is not given to the L, the subprogram will be called once, i.e. L=1 is assumed by the
control.
The command

M98 P11 L6
means that the subprogram O0011 has to be called 6 times in succession.

Multi-level subprogram call
A subprogram can be called from another subprogram, too. Subprogram calls (together with
macro calls) can be nested to maximum 16 levels.

14.4.3 Return from a Subprogram (M99)

Return to the block following the call
Using the command

M99
in a subprogram means the end of that subprogram, and control will be given back to that block
of the calling program which follows the call:

calling program

O0010
......
......
......

subprogram note

execution of the
program O0010

N101 M98 P11 –––> O0011 c a l l i n g t h e
subprogram O0011

......

......

......

execution of the
subprogram O0011

main program subprogram subprogram subprogram subprogram
O0001 >O0011 >O0012 >O0013 >O0014
....
....
M98P11 M98P12 M98P13 M98P14
....<<<<
....
M02 M99 M99 M99 M99

119

14 Part Program Configuration

N102 <––– M99 return to the next
block of the calling
program

......

......
c o n t i n u i n g t h e
program O0010

Return to a given block
Using the command

M99 P...
in a subprogram means the end of that subprogram, and control will be given back to that block
of the calling program the number of which was specified at the address P. Maximum 8 decimal
digits can be written at the address P.

calling program

O0010
......
......
......

subprogram note

execution of the
program O0010

N101 M98 P11 –––> O0011 c a l l i n g t h e
subprogram O0011

......

......

......

execution of the
subprogram O0011

N250 <––– M99 P250 return to the block
N250 of the calling
program

......

......
c o n t i n u i n g t h e
program O0010

Return by modification of cycle counter
The command

M99 (P...) L...
modifies the cycle counter of the calling program. If 0 is written at the address L, the subprogram
will be called once only. For example, if the subprogram O0011 is called by the command

M98 P11 L20,
and return from there is executed by the command

M99 L5,
the subprogram O0011 will be called 6 times altogether.
Maximum 8 decimal digits can be written at the address L.

120

14 Part Program Configuration

14.4.4 Jump within the Main Program

Using the command
M99

in the main program produces an unconditional jump to the first block of the main program, and
the control continues execution of the program from here. Using the command results in endless
cycle:

Using the command
M99 P.....

in the main program produces an unconditional jump to that block of the main program the
number of which is specified at the address P, and the control continues execution of the program
from here. Using the command results in endless cycle:

The program can be recovered from the endless cycle either by reset, or by programming the
block containing the command M99 with conditional block skip

/ M99;
depending on the position of the conditional block skip switch, jump will happen or not.

14.5 Functions M of Channel Synchronization

In the course of multi-channel operation, it could be necessary that the running of a program in
a channel has to wait at a given point until a program or programs running in one or more other
channels come to execution of certain operations. This is the synchronization among channels.
This synchronization can be realized by the use of so-called codes M for waiting .
The codes M for waiting are program organizing codes M; they are processed by the control and
they are not transferred to the PLC. They are buffer emptying codes M, i.e. preprocessing the
blocks is being intermitted until synchronization is completed in all the channels, and it will only
be continued after synchronization.
Maximum 100 codes M for waiting can be assigned in parameter. The initial value of the group
can be given in the parameter N2201 Waiting M Codes Min, and the final value of the can be
given in the parameter N2202 Waiting M Codes Max.
If, for example,

N2201 Waiting M Codes Min=500 and
N2202 Waiting M Codes Max=599,

then the codes M M500, M501, M502, ... , M599 M can be used for waiting.

O0123
N1... <
...
.....
.....
M99

O0011 O0011
....
.... M99 P225
N128....<
....
.... N225 <
M99 P128

121

14 Part Program Configuration

The command
Mm Ppppppppp

will program the waiting among two or more channels. The waiting has to be programmed in
separate line.

m: one of the codes M for waiting specified in parameter,
pppppppp: number of those channels among which the waiting has to be done. Since

there can be maximum 8 channels in the system, the address can have maximum
8 digits.

If, for example, the waiting has to be done between the channels 1 and 2, the command
M501 P12

will have to be written into both programs, to the appropriate point.
The PLC can ignore the waiting by function M or by push-button, using the flag CP_NOWT. It
can be useful in the case, when the program should be run in one of the channels only and the
codes M for waiting should not be glossed.

An example:
Let the minimum and maximum values of the codes M be 500 and 599, respectively; and let there
be 3 channels:

The program of the
channel 1
... machining

N60 M501 P12

waits for the channel 2
... machining

N130 M502 P123

... machining

The program of the
channel 2
... machining

N100 M501 P12
...machining

M502 P123
waits for the channels 1
and 3

... machining

The program of the
channel 3
... machining

N110 M502 P123
waits for the channels 1
and 2

... machining

Explanation:
First, the channel 1 runs to the code M501 and waits until the channel 2 runs to it, too.
After synchronization, both channels continue its own program. Meanwhile, the channel
3 operates continuously.
It is the channel 3 that runs to the code M502 first of all, then the channel 2 does this, and
then the channel 1, last of all. The channel 3 has to wait until the channels 1 and 2 run to
the code. After reaching this point, machining in all three channels can start.

122

15 Tool Compensation

15 Tool Compensation

In order that overhang and radius etc. values related to different tools should not be taken into
account in the part program in the course of specifying the coordinates, tool characteristics are
gathered in a so-called offset table. Whenever a tool has to be called in the part program, it has
to be specified where the characteristics of that given tool can be found in the offset table.
According to this, the control directs the tool along the programmed path, taking the referred
offsets into account.

15.1 The Compensation Memory. Referring to Tool Compensation (T or D)

The address at which the tool compensation can be referred to is determined by the mechanism
of the tool changer. See the chapter The Function T.

The case A
In the case of turret-type tool changer, at the bit state #0 TCM=0 of the parameter N1414 Comp.
Config on Lathes the code T contains the code of tool compensation too at the digits of low
place value. The tool number can be given at the remaining digits of great place value.
It is the parameter N1413 No. of Digits of Offs. No. in T Code which determines how many digits
are needed to specify the tool compensation. The value of the parameter can be 0, 1, 2 and 3.

Tnnnnnnnk: compensation on one digit
Tnnnnnnkk: compensation on two digits
Tnnnnnkkk: compensation on three digits

where:
n: the number of the tool
k: the number of the compensation

The case B
If the tool change is executed by the code M6, at the bit state #0 TCM=1 of the parameter N1414
Comp. Config on Lathes the code T does not contain the code of tool compensation. In this case,
the compensation cell, the length and radius compensations together can be referred to at the
address D:
to the length and radius compensations: at the address D
The number following the address is the compensation number, and it indicates the compensation
value to be called. The range of the address D is 0-999. The leading zeros can be eliminated.

Distribution of the compensation memory among the channels
The quantity of the tool compensation groups to be accessible in a given channel can be given
for each channel in the parameter N1400 No. of Tool Offsets. Length and radius compensations
also pertain to each group.
In the whole system, the sum of the lathe channel compensation groups has not to be more than
999. In each channel, referring to the compensation group begins from 1 and proceeds up to the
preset parameter value, let it be executed either from program at addresses T or D, or from the
offset table.
The number of common compensation group callable from each channel can be given in the
parameter N1412 No. of Common Tool Offsets T. Milling machine compensation cannot be
referred to from lathe channel.

123

15 Tool Compensation

In each channel, referring to a compensation group from 1 up to the No. of Common Tool Offsets
T , indicates the common values, let it be executed either from program at addresses T or D, or
from the offset table.

An example:
Let there be 3 channels. Let there be 30 compensations in the channel 1 (No. of Tool Offsets
L1=30), 40 compensations in the channel 2 and 60 compensations in the channel 3. Let the
quantity of the common compensations be 10 (No. of Common Tool Offsets T=10).

Channel 1 Channel 2 Channel 3

N001 From N001 up to N010, all the three channels read the common compensations
(T1-T10, D1-D10)

...

N010

... From N011 up to N030,
it reads its own

compensations (T11-
T30, D11-D30)

From N011 up to N040,
it reads its own

compensations (T11-
T40, D11-D40)

From N011 up to N060,
it reads its own

compensations (T11-
T60, D11-D60)

N030

...

N040

...

N060

The quantity of compensation groups used in such a way: 10+(30!10)+(40!10)+(60!10)=110.

Distribution of the compensation memory within a channel
Using the offset number, a group of the offset table is selected for the control. The elements of
this table are the following:

Group
number

X Y Z R Q

Geometry Wear Geometry Wear Geometry Wear Geometry Wear

1 123.500 -0.234 87.450 -0.129 267.400 -0.036 1 -0.010 3

2

3

...

The tool offset table contains the tool overhang in the directions X, Y and Z, the tool radius (R),
and the code of imaginary tool tip (Q).

124

15 Tool Compensation

Fig. 15.1-3

Fig. 15.1-1

Fig. 15.1-2

L Warning!
There is no compensation number 00 in the table, offset values on it are always zeros,
therefore the command T0 or D0 means cancel of compensation.

Compensations in the directions X, Y and Z and radius compensation (R) have two components:
geometry value and wear value.
Geometry value: length/radius of the tool measured. It is a signed number.
Wear value: amount of wears resulting in the course of machining. It is a signed number. In the

case of manual data input, the absolute value of the input data is limited to the value given
at parameter N1415 Max. Amount of Wear Comp.

Imaginary tool tip: The code of the imaginary tool tip (Q) is a one-digit number; its value can
be 0, 1, ,,, ,9.

The code of imaginary tool tip refers to
the direction of position where the
imaginary tip of the tool is , viewed
from the center point of the tool nose
circle. It has to always be given by
taking the first and second axes of the
selected plane into account. In the case
of milling tool, the value of the code Q
is always 0 or 9.

125

15 Tool Compensation

Fig. 15.1-4

The compensation code called is a modal one, i.e. the same offset value will be taken into
account by the control until it receives another command T or D; it means that if the offset value
is read out by a command T or D, modification of the offset table (by programming G10, for
example) will not produce effect on the read-out value already.
The offset values in the compensation memory will be retained after power-off.
Tool compensation values can be set or modified by data input from the operator panel, and from
the program by the use of the setting command G10.

15.2 The Second Geometry Compensation Memory

In the case of lathes having linear tooling, it is practical to introduce a second geometry
compensation memory related to length compensation. The capacity of the second geometry
compensation memory is the same as that of the first geometry compensation memory, and in
case of referring to geometry length corrections, the values stored in the second geometry
compensation memory will be added to the values stored in the first geometry compensation
memory by the control, when specific requirements are satisfied.

126

15 Tool Compensation

In the second geometry compensation memory, the position X, Y and Z of the tool holders in
the machine coordinate system can be given. Thus, it will be possible to give the real length x,
y and z of the tool in the first geometry compensation memory, i.e. to give overhang values
measured with external tool measurement device directly in the first geometry compensation
memory. Therefore, the offset value taken into account is:

offset = first geometry offset + second geometry offset + wear offset

Making the second geometry compensation memory to be accessible will be enabled by the bit
position #4 SGC=1of the parameter N1414 Comp. Config on Lathes.
Furthermore, it is the PLC program of the given machine that enables or disables whether the
second geometry offset values will be taken into account or not and with which algebraic sign.
It is the builder of the machine tool who calibrate and manages the second geometry
compensation memory.

Fig. 15.2-1

127

15 Tool Compensation

15.3 Modifying the Tool Compensation Values from the Program (G10)

The command
G10 L P X Y Z R Q

can be used for modifying the tool compensation values from the program. The command G10
is a one-shot command. The meaning of t he addresses and their values is as follows:

L=10: entering geometry value;
L=11: entering wear value.

The compensation group to be modified can be specified at the address P:
P: the number of the compensation group.

The length and radius compensation values can be entered at the addresses X, Y, Z and R:
X: the length compensation value along the axis X;
Y: the length compensation value along the axis Y;
Z: the length compensation value along the axis Z;
R: the radius compensation value.

In the absolute data setting command state G90, the value written at the addresses X, Y, Z and
R will be put in the appropriate offset register.

In the incremental data setting command state G91 or in the case of using the operator I, the data
written at the address will be added to the content of the appropriate offset register.
Q: the imaginary tool tip (0...9)

The control also accepts the code by specifying L10 and L11.
The data stored in the second geometry compensation memory cannot be modified by the use of
the command G10.

15.4 Tool Length Compensation by Code T

At the bit state #0 TCM=0 of the parameter N1414 Comp. Config on Lathes, the code T contains
the code of tool compensation too, at the digits of low place value.
It is the parameter N1413 No. of Digits of Offs. No. in T Code which determines how many digits
in the code T are needed the compensation.
The reference can be

Tnnnnnnnk
Tnnnnnnkk
Tnnnnnkkk

where:
n...: tool number;
k...: compensation number.

The compensation number calls the geometry compensation together with the wear
compensation

It is the case, when at the bit state #1 GTN=0 of the parameter N1414 Comp. Config on Lathes
, the number of compensation referred at the address T calls geometry compensation together
with the wear compensation.
In the case of the reference Tnnkk:
 – the control transmits the value nn to the PLC;
 – the control adds the value of the kk geometry register together with the value of the kk wear

register, and the sum will be the called value of the compensation:

kk kkCompensation= Geometry + Wear

128

15 Tool Compensation

Fig. 15.4-1

The command
Tnn00

cancels the compensation.

The tool number calls the geometry compensation, the compensation number calls the
wear compensation

It is the case, when at the bit state #1 GTN=1 of the parameter N1414 Comp. Config on Lathes
, the number of the tool referred at the address T calls geometry compensation, and the
number of the compensation referred calls the wear compensation.
In the case of the reference Tnnkk:
 – the control transmits the value nn to the PLC;
 – the control adds the value of the nn geometry register together with the value of the kk wear

register, and the sum will be the called value of the compensation:

nn kkCompensation= Geometry + Wear

The solution above raises two problems. The first one: from which register (nn or kk) the
imaginary tool tip, i.e. the value of Q has to be taken by the control; the second one: how the
reference Tnn00 has to be interpreted by the control.
If the state of the bit #2 QGW of the parameter N1414 Comp. Config on Lathes is:

=0: the imaginary tool tip (Q) will be taken from the wear code register by the control;
=1: the imaginary tool tip (Q) will be taken from the geometry code register by the
control

If the state of the bit #3 ZCG of the parameter N1414 Comp. Config on Lathes is:
=0: the compensation number 0 (Tnn00) will not delete the geometry compensation, but
it deletes the wear compensation only;
=1: the compensation number 0 (Tnn00) will delete both the geometry compensation and
the wear compensation.

Due to the code T the coordinate system will

k kbe shifted by the compensation values X , Y ,

kZ belonging to the compensation group
specified in the code T. This means, that the

k kcompensation values in the direction X , Y ,

kZ belonging to the selected compensation
group will be subtracted from the actual
positions X, Y, Z. From that moment, not the
coordinates of the reference point of the tool
holder, but the coordinates of the imaginary
nose of the tool will be displayed on the
screen. Hereafter, compensation value means
the sum of the geometry compensation and
wear compensation.
For example, due to the following command
lines

T0
N10 G0 G90 X700 Z350
N20 T202
N30 X300 Z150

129

15 Tool Compensation

Fig. 15.4-2

the control moves the reference point of the tool holder to the point of coordinates
X700; Z350

according to the block N10. In the block N20, it executes the tool change, and it subtracts the

k kcompensation values X =340, Z =30 belonging to the compensation group 2 from the actual
position. Now, the position display will show the following values:

X=700–340=360; Z=350–30=320
No motions will happen in the block N20. In the block N30, the control will already move the
imaginary nose of the tool to the programmed point X300; Z150, i.e. the displacement will be

X=300–360= –60; Z=150–320= –170.
If the code T is given together with the motion block, motion to the block-end position will
already be carried out in accordance with the compensation value specified by the code T. The
tool change, however, will be executed parallelly with or at the end of the motion if the code T
contains tool change command, too. (The time of tool change is defined by the builder of the
machine tool .)
Let us return to the example above:

T0
N10 G0 G90 X700 Z350
N20 X300 Z150 T202

Now, the block N30 is left and the commands of the blocks N20 and N30 are merged. The control
will already move the imaginary nose of the tool to the point of coordinates

X=300, Z=150
as in the case of the block N30 in the previous example.
If compensation number only is programmed at code T:

N10 G0 G90 X700 Z350
N20 X300 Z150 T2

tool change will not be executed, and compensation group 2 only was called in the block N20.

Cancelling the length compensation
The specific role of the compensation group 0 is cancelling compensation.
Due to the command

Tnn00 or
T0

the length compensation will be cancelled (nn is an arbitrary tool number). The process is exactly

k k kinverse of the calling the compensation. This means, that the compensation values X , Y , Z
which were valid previously will be added to
coordinates X, Y, Z of the imaginary nose of
the tool, and from that moment, the
coordinates of the reference point of the tool
holder will be displayed on the screen. If
cancelling the compensation is done together
with motion block, the reference point of the
tool holder will be sent to the programmed
end point of the block by the control.
For instance, in the example

N10 X180 Z120 T202
N20 X200 Z180
N30 X280 Z210 T200

in the block N10 compensates the motion
with the offset called in the comparison with

130

15 Tool Compensation

the programmed one; and in the block N30 it cancels the compensation, namely the zero point
offset set in the block N10.

15.5 Tool Length Compensation by Code G (G43.7, G49)

At the bit state #0 TCM=1 of the parameter N1414 Comp. Config on Lathes, calling the length
compensation will be executed by the code G.
The command

G43.7
starts the tool length compensation. If it is programmed together with axis address, positioning
to the given point will already be carried out by the control using the new compensation.
Meaning of the address D: the value of the tool length compensation is taken from the
compensation group specified at this address.

In the case of absolute data specification the command
G43.7 G0 G90 X100 Z10 D5

moves the tip of the tool to the point of coordinates X100 Z10, taking the compensation D5 into
account.

In the case of incremental data specification the command
G43.7 G0 G91 X20 Z10 D1

shifts the starting point by the compensation value, and then the incremental displacement will
be counted from here, from the starting point compensated.
Accordingly, due to the command

G43.7 G91 X0 Y0 Z0 D2
the axes X, Y and Z do not execute motion; only the position will get the value adequate to the
new compensation.

The effect of G43.7 is modal until the control receives another command from this group. If the
compensation value is changed by calling a new address D, the old value will be cancelled, and
the new value will be validated:

G43.7 X120 Z100 D1 (it moves to the machine position X150
Z=110)

...
X120 Z100 D2 (it moves to the machine position X170 Z=120)

The state of G43.7 is hereditary by the block X120 Z100 D2, therefore the new compensation D2
will be taken into account.
D0 cancels the compensation. Continuing the example above:

G43.7 X120 Z100 D2 (it moves to the machine position X170
Z=120)

...
X120 Z100 D0 (it moves to the machine position X120 Z100)

The command
G49

will switch the tool length compensation off on all the axes either by motion if axis address is also
programmed in the block, or by transformation, if motion is not programmed in the block.

131

15 Tool Compensation

At power-on, at reset or after the program end, the bits #5 G43 és #6 G44 of the parameter N1300
DefaultG1 determine code G43.7 is valid. If both bits are 0, then code G49 is valid.

132

15 Tool Compensation

Fig. 15.6-1

Fig. 15.6-2

15.6 Tool Nose Radius Compensation (G40, G41, G42)

It will not be possible to turn exact conical
surface or circle arc if tool length
compensation only is applied. In the case of
using tool length compensation, the imaginary
nose of the tool is guided by the control along
the programmed path. Since the nose of every
tool has a smaller or bigger fillet, accurate
machined surface can only be achieved when
motions are parallel with the axes, as it is
shown in the figure. In the case of conical or
curved surfaces, the diameter of the
workpiece will be greater than the
programmed value, in every point. The
difference is illustrated with dashed line in the
figure.

In order that an optional contour can be turned
accurately, and the contour points corresponding to the drawing can be given in the program
independently of the radius of the tool nose circle, the center point of the tool nose circle has to
be guided by the control parallelly with the programmed contour in a distance of the radius
from it. The distance of the center point of the tool nose circle from the programmed contour
during guidance is determined by the control according to value of the tool nose radius
compensation entered on the compensation number called at the address T or D.

The position of the imaginary tool nose is registered by the control before moving to the contour.
The code of imaginary tool tip
given in the tool offset table at the
address Q is necessary to decide,
in which direction is the center
point of the tool nose circle in
comparison with the imaginary
nose. In accordance with the code
of imaginary tool tip, the value of
the tool nose radius (R) will be
added/subtracted by the control
to/from the position of the
imaginary nose in the directions
X and Z (position A in the
figure). Then, the control guides
the center point of the tool nose
circle to the endpoint of the R-long compensation vector placed perpendicularly on the starting
point of the programmed path (position B in the figure). After that, the control guides the center
point of the tool nose circle parallelly with the programmed contour in the distance R from it.

The compensation vector is a two-dimensional vector recalculated by the control in each block,
and the programmed displacements are modified by the control with the compensation vectors

133

15 Tool Compensation

Fig. 15.6-3

effective at the beginning and at the end of the block. The length and the direction of the
compensation vectors obtained depends on the compensation value called at the address T and
the geometry of the transition between the two blocks.

The control computes the compensation vectors in the plane selected by the commands G17,
G18 and G19.This is the plane of tool nose radius compensation. Motions out of this plane are
not affected by the radius compensation. For example: if, in the state G18, the plane X, Z is
selected, the compensation vectors will be computed in the plane X, Z.
It is not permitted to change compensation plane while tool nose radius compensation is being
computed. Should it is tried, the control will send an error message.
In the case of defining the compensation plane not along the axes being in the main plane,
secondary axes have to be defined in the parameter field as parallel axes. For example, if U is
defined as parallel axis and tool nose radius compensation should be used in the plane Z, U, the
plane will have to be assigned by specification G18 U__ Z__ .

Computing the tool nose radius compensation can be switched on and off from the program:
G40: cancelling calculation of the tool nose radius compensation
G41: calculation of the tool nose radius compensation to the left according to the

motion direction
G42: calculation of the tool nose radius compensation to the right according to the

motion direction
The commands G40, G41, G42 are modal ones. After power-on, at the program end and due to
reset the control comes to the state G40.

The command G41 or G42 starts the compensation
calculation. The programmed contour is tracked by
the tool from the left in the state G41, and from the
right in the state G42, according to the motion
direction. The applied values of tool nose radius
compensation must be given at the address T or D.
Compensation calculation is carried out for the
interpolation motions G00, G01, G02, G03.

The findings mentioned above are valid in the case
of positive tool nose radius compensation. However,
the value of tool nose radius compensation can be
negative, too. It has practical meaning, for example,
in the case when the same subprogram is to be used
for contouring a female workpiece and then a male
workpiece fitting together. Another way of doing
this is that G41 is used for machining the female
workpiece and G42 is used for machining the male
workpiece. But this changeover will not have to be
edited into the program if the female one is
machined with positive radius compensation and the male one is machined with negative radius
compensation, for example. In this case, the path of the tool center point will be reversed by the
programmed G41 or G42:

134

15 Tool Compensation

Fig. 15.6-4

Radius compensation:
positive

Radius compensation:
negative

G41 from the left from the right

G42 from the right from the left

L Note: For the sake of simplicity, hereafter, positive tool nose radius compensation is always
assumed in descriptions and figures.

The commands G40 or Tnn00, T0, D0 cancel the compensation calculation. The difference
between the two commands is that the command T0 uses only compensation vector of 0 length,
and leaves the state G41 or G42 unchanged. If, after that, a new address Tnnmm (mm�0), D is
referred to, the compensation vector will be calculated using the new tool nose radius, depending
on the state G41 or G42.
But, if the command G40 is used, the control will stop calculation of compensation vectors.
There are specific rules for starting or cancelling the tool nose radius compensation; they will be
detailed in the following.

Radius compensation commands are executed by the control in automatic or manual data input
mode only. In manual mode, it is not effective in case of single blocks. The reason for this is as
follows. In order that the control can calculate the compensation vector in the endpoint of a block,
it is necessary for the control to read in the next block containing the motion in the selected plane.
The compensation vector depends on the transition between the two blocks. It is apparent that
preliminary processing of several blocks is required for calculation of the compensation vector.

Before dealing with details of the
compensation calculation, an auxiliary
data is to be introduced. It is the angle á
between the tangent lines drawn to the
meeting point of two curve segments,
i.e. to blocks. The direction of the angle
á depends on whether the contour is
compassed from the left or from the
right.
The control selects the strategy of
deflecting at the intersection points
according to the angle á. If á>180°, i.e.
the tool works inside, the control will
compute an intersection point between the two segments. If á<180°, i.e. the tool moves outside,
the control will insert additional straight segments for moving.

Hereafter, this manual deals with cases of calculation of tool nose radius compensation mainly
from the point of view of turning operations. For milling operations, cases of calculation of
radius compensation are dealt with in the book NCT2xxM Control for Milling Machines and
Machining Centers Programmer's Manual.

135

15 Tool Compensation

Fig. 15.6.1-1

15.6.1 Start up of the Tool Nose Radius Compensation. Moving to the Contour

Due to the command G41 or G42, the control enters in the mode of tool nose radius compensation
 from the state G40. It takes the value of compensation from the compensation cell specified at
the address T.
The control comes to the state G41 or G42 in the block of positioning G0 or in the block of linear
positioning G1 only.
If start up of compensation calculation is attempted in circular interpolation (G2, G3), the control
will send an error message.
The strategy of moving to the contour is chosen by the control in the only case of change over
from the state G40 to the state G41 or G42.
The basic cases of starting up the compensation according to the angle á and the possible
transitions (linear - linear and linear - circular) are illustrated below. The figures are drawn for
the case of G42 and positive radius compensation is assumed.
 L Note: Here and hereafter, meanings of the marks in the figures are the following:

r: value of radius compensation;
L: linear segment;
C: circle arc;
S: in the block by block mode, the point of stop;
dash line: the path of the center point of the tool nose;
continuous line: the programmed path.

The basic cases of starting up the tool nose radius compensation:
G40 G40
G42 G1 X_ Z_ G42 G1 X_ Z_
X_ Z_ G2 X_ Z_ R_

Positioning to an inner corner: 180E<á<360E

136

15 Tool Compensation

Fig. 15.6.1-2

Fig. 15.6.1-3

Positioning to an outer corner at an obtuse angle: 90E#á#180E

Positioning to an outer corner at an acute angle: 0E#á<90E

137

15 Tool Compensation

An example:
The program below is an example for correct
starting up of tool nose radius compensation
at the code of imaginary tool tip Q3.
The tool nose radius compensation is started
up by the block N110. The control positions
to the beginning of the block N110 with the
imaginary nose of the tool, and then, at the
end of the block, it contacts the circle of the
tool nose with the starting point of the block
N120:

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42 Z0
N120 X100
N130 X110 Z-5
N140 Z-25
N150 G2 X130 Z-35 R10
N160 G1 X140
N170 Z-45
N180 G40 X160
N190 G0 X200 Z50
...

Starting up the tool nose radius compensation without programming of motion:
If tool nose radius compensation is started up (G41, G42) in a block in which there are none of
the addresses of the axes belonging to the selected plane (as in the example below, neither the
address X nor the address Z is given in the block N110), motion in the block N110 will not be
executed. Motion to the endpoint of the block N120 will be executed in such a way that the
control calculates intersection point between the blocks N120 and N130.
It is not good, because the point X90 Z0 will
not be machined! Correction can be done by
merging the blocks N100 and N120.

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42

Fig. 15.6.1-4

Fig. 15.6.1-5

138

15 Tool Compensation

N120 Z0
N130 X100
N140 X110 Z-5
N150 Z-25
N160 G2 X130 Z-35 R10
N170 G1 X140
N180 Z-45
N190 G40
N200 X160
N210 G0 X200 Z50
...

If tool nose radius compensation is started up (G41, G42) in a block in which there is no
displacement along none of the axes belonging to the selected plane (as in the example below,
in the block N110 the address Z is filled, but because of the incremental 0 belonging to it there
is no motion), there will be displacement with a value of tool nose radius in the block N110.
In this case, the control guides the center point
of the tool nose while calculating intersection
point between the blocks N120 and N130.It is
not good, because the corner X90 Z0 will not
be machined! Correction can be done by
merging the blocks N110 and N120.

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42 G91 Z0
N120 G90 Z0
N130 X100
N140 X110 Z-5
N150 Z-25
N160 G2 X130 Z-35 R10
N170 G1 X140
N180 Z-45
N190 G91 G40 X0
N200 G90 X160
N210 G0 X200 Z50
...

There is no displacement in the block succeeding the start up of the tool nose radius
compensation

If, in the block succeeding the start up of the tool nose radius compensation, there is displacement
0 in the selected plane, as in the block N120 of the program below, the control will guide the
circle of the tool nose to the endpoint of the block carrying out the start up (N110). Then it guides

Fig. 15.6.1-6

139

15 Tool Compensation

Fig. 15.6.1-8

the circle of the tool nose to the starting point of the block carrying out the succeeding motion
(N130), it moves on up to this point, and then moves the tool onward, in parallel.
This can cause overcutting on the workpiece, so these cases have to be avoided! Correction can
be done by cancelling the block N120.

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42 Z0
N120 Z0
N130 X100
N140 X110 Z-5
N150 Z-25
N160 G2 X130 Z-35 R10
N170 G1 X140
N180 Z-45
N190 G91 G40 X0
N200 G90 X160
N210 G0 X200 Z50
...

Starting up the tool nose radius compensation with calculation of intersection point

If, in the block carrying out start up (G41 or
G42), a value is assigned to I, J and K, but
only to those that are in the selected plane (for
example, to I and K in the case of G18), the
control will move to the intersection point
defined by the succeeding block and by I, J and
K, taking the tool nose radius compensation
into account. The value of I, J and K is always
incremental, and the vector defined by them
points at the endpoint of the that block in
which it was programmed. It is a useful thing
in the case of positioning to an inner corner,
for example.

Fig. 15.6.1-7

140

15 Tool Compensation

Fig. 15.6.1-10

An example:

A hexagon with side length of 100 mm is to
be milled internally. The tool has to be
positioned to the corner point with the
coordinates of X100 Y0.The block N50 of the
program below positions to the contour using
calculation of intersection point, with
specification of I and J. The coordinates of I
and J were calculated on the basis of the
displacement executed in the block N110 of
the program.

N10 G54 G17 M3 S300
N20 G0 X0 Y0 Z100
N30 Z5
N40 G1 Z-5 F1000
N50 G41 G0 X100 Y0 I50 J86.603 D1
N60 G1 X50 Y86.603
N70 X-50
N80 X-100 Y0
N90 X-50 Y-86.603
N100 X50
N110 X100 Y0
N120 G40 G0 X0 I-50 J86.603
N130 M30

Cases of positioning using intersection point
In the case of specification I, J and K, the control always
calculates intersection point regardless of whether inner or
outer corner is to be machined.

Fig. 15.6.1-9

141

15 Tool Compensation

Fig. 15.6.1-11

If the control does not find intersection point, it will
position to the starting point of the succeeding block at
right angles.

142

15 Tool Compensation

Fig. 15.6.2-1

15.6.2 Calculation of Tool Nose Radius Compensation in Offset Mode

In the course of calculation of tool nose radius compensation in offset mode, the compensation
vectors will be calculated continuously between the blocks G0, G1, G2 and G3. In order that these
vectors can be calculated, the blocks have to be continuously read ahead.
The control reads ahead + 2 blocks, the number of which is given in the parameter N1404 BK No.
Interf. This means, that the compensation calculation will remain continuous yet if between two
motion blocks belonging to the selected plane there is an other block numbered in parameter, for
example function, dwell, motion outside of the plane etc.
Continuance may be interrupted by those codes G and functions which enforce buffer emptying,
i.e. suspend reading ahead of the blocks.

The basic cases of calculation of tool nose radius compensation in offset mode:

Calculation of intersection point in the case of inner corners: 180E<á<360E

143

15 Tool Compensation

Fig. 15.6.2-2

Going around outer corners having obtuse angle: 90E#á#180E

144

15 Tool Compensation

Fig. 15.6.2-3

Going around outer corners having acute angle: 0E#á<90E

145

15 Tool Compensation

Fig. 15.6.2-4

Fig. 15.6.2-6

Fig. 15.6.2-5

There is no intersection point in case of inner corners

It can happen, that there will not be
intersection point at certain values of tool
radius. In this case, the control will stop during
execution of the previous block and will send
error message ‘2047 No intersection G41,
G42'.

Zero displacement in the selected plane takes place
If, when G41 or G42 is effective, zero displacement in the selected plane is programmed in one
of the blocks or zero displacement takes place as in the the block N120 of the example below, the
following will happen. The control lets fall perpendicular vectors to the endpoint of the previous
block (N110) and to the starting point of the succeeding block (N130) the length of which is equal
to the tool nose radius compensation, and then it connects these two vectors by linear
interpolation. In these cases, increased attention is required because unintended overcutting or,
in case of circle, distortion can be caused.

For example:
... G91 G18 G42 ...
N110 G1 X100 Z40
N120 Z0
N130 Z90
N140 X–40 Z50
...

Tool nose radius compensation for a spiral or a circle with variable radius

If tool nose radius compensation is used for a
spiral or a circle with variable radius, the
control calculates compensation vector(s) in
the starting point of the circle for an imaginary
circle, the radius of which is equal to the
starting point radius of the programmed circle
(in the figure R1=50) and the center point of
which coincides with the center point
programmed (X0, Z0). The control calculates
compensation vector(s) in the endpoint of the
circle for an imaginary circle, the radius of
which is equal to the endpoint radius of the

146

15 Tool Compensation

Fig. 15.6.2-7

programmed circle (R2=20) and the center point of which coincides with the center point of the
circle programmed.
An example:

G0 G18 G41
G1 Z50
G3 Z-20 K-50 L1
G1 Z-30
...

Omitting the corner movements
When moving around acute-angled or obtuse-
angled corners, two or more compensation
vectors can be produced. If their endpoints
almost coincide with each other, there barely
will be motion between the two point.
In the case, when the distance between the two
vectors on both axes is less than the value set
in the parameter N1405 DELTV, the vector
shown in the figure will be omitted and the
path of the tool will be changed as it is
illustrated in the figure.

 L Note: If the value of the parameter DELTV
is unduly great while moving around outer acute-angled corners, the corner can be
damaged by the tool!

In the selected plane, there is no motion command in several consecutive blocks
In order that the control will manages tool nose radius compensation in a proper way, for
example, it can be able to calculate intersection point between the endpoint of the block read in
and the starting point of the succeeding contour block, the blocks have to be read ahead and
preprocessed. The preprocessed blocks get into the block buffer.
In practice, it could be necessary to program a block not containing motion or a block containing
motion performed not in the selected plane, in between two block of planar motion. These, for
example, can be the following:

functions: M, S, T
dwell: G4 P
motion performed outside of the selected plane: (G18) G1 Y
subprogram call: M98 P, etc.

This means, that if there are any other blocks between two motion blocks belonging to the
selected plane, for example, functions, dwell motion outside of the plane etc., the compensation
calculation will remain continuous yet until the block buffer will become full.
When the buffer becomes full, the control will send the error message

‘2090 Unable to continue radius compensation. Buffer full’
 at the beginning of the last motion block belonging to the selected plane.

147

15 Tool Compensation

Fig. 15.6.2-8

Buffer emptying function is programmed when G41 or G42 is effective
Continuance of compensation calculation, i.e. reading ahead of the blocks will be interrupted
by those codes G and functions (for example certain functions M etc.) which enforce buffer
emptying.
When in the course of reading ahead the control reads in such a code, it suspends reading ahead
of further blocks and waits until the block buffer becomes empty, i.e. until all the blocks in the
buffer are executed. It results in suspending calculation of tool nose radius compensation by
the control. Then, the control executes the function, and after that it begins reading in and
buffering the succeeding block.
The codes G suspending calculation of tool nose radius compensation are the following:

G22, G23,
G54-G59, G54.1, ...,
G52, G92,
G53,
G28, G30

The function T, being related either to tool change or to calling the compensation, also
suspends compensation calculation:

Tnnkk, Tnn00, Tkk
The functions M suspending calculation of tool nose radius compensation are the following:

M0, M1, M2, M30
In addition to the functions M above, functions M and groups of codes M executing buffer
emptying can be assigned in parameters, too. Functions S and auxiliary functions (A, B, C, U, V,
W) besides functions M can also be assigned for buffer emptying.
The functions executing buffer emptying are determined by the the builder of the machine tool,
and they are contained in the manual of the machine!

In the case, when G41 or G42 is effective, and the abovementioned codes G or functions are
programmed between two motion block, the control cancels the compensation vector at the
endpoint of the previous block, executes the command and then restores the vector at the endpoint
of the succeeding motion block.
For example:

...G91 G18 G41...
N110 G1 X–100 Z80
N120 G92 X0 Z0
N130 X100 Z80
...

In the example above, the control
empties the buffer. The situation is
similar to the cases of the other
buffer emptying codes, too.

Conditional block skip is programmed when G41 or G42 is effective
At the bit state #4 CBB=0 of the parameter N1337 Execution Config, the conditional block
command (blocks beginning with slash /) suppresses reading the block ahead. In this case, when
the G41, G42 is effective, the contour will be distorted, however, for effectiveness, it is enough
to turn the conditional block switch during execution of the previous block.

148

15 Tool Compensation

At the bit state #4 CBB=1 of the parameter N1337 Execution Config, the conditional block
command (blocks beginning with slash /) does not suppress reading the block ahead. In this case,
when the G41, G42 is effective, the contour will not be distorted, however, for sure effectiveness,
the conditional block switch has to be set before execution of the program.
For the effect of the parameter setting, please see the subchapter Conditional block skip.
An example:

...G91 G18 G41...
N110 G1 X–100 Z80
/ N120 S2500
N130 X100 Z80
...

In the example above, the block
N120 is conditional.
If CBB=0, the control will cancel
compensation at the end of the
block N110 and will recover it in
the block N130.
If CBB=1, the control will not
suspend the reading ahead, the
calculation of compensation will
be continuous.

In the state of G41, G42 it is
r ec o m m e n d e d t o a v o i d
programming a conditional block. Fig. 15.6.2-9

149

15 Tool Compensation

Fig. 15.6.3-1

Fig. 15.6.3-2

15.6.3 Cancelling the Tool Nose Radius Compensation. Leaving the Contour

The command G40 cancels calculation of tool nose radius compensation. The command G40 can
be issued by linear interpolation only. If G40 is programmed in circular block, the control will
send the error message ‘2043 G40 in circle interpolation’.

The basic cases of cancelling the tool nose radius compensation:

(G42) (G42)
G01 X_ Z_ G02 X_ Z_ R_
G40 X_ Z_ G40 G1 X_ Z_

Leaving an inner corner: 180E<á<360E

Leaving an outer corner at an obtuse angle: 90E#á#180E

150

15 Tool Compensation

Fig. 15.6.3-3

Leaving an outer corner at an acute angle: 0E#á<90E

An example:
The program below is an example for correct
cancelling the tool nose radius compensation at
the code of imaginary tool tip Q3.
The tool nose radius compensation is cancelled
by the block N180. The control positions to the
end of the block 170 with the tool nose radius,
the imaginary nose of the tool overhangs the
endpoint, and then, at the end of the block
N180, the imaginary tool nose will be at the
endpoint coordinate:

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42 Z0
N120 X100
N130 X110 Z-5
N140 Z-25
N150 G2 X130 Z-35 R10
N160 G1 X140
N170 Z-45
N180 G40 X160
N190 G0 X200 Z50
...

Fig. 15.6.3-4

151

15 Tool Compensation

Cancelling the tool nose radius compensation without programming of motion:
If tool nose radius compensation is cancelled (G40) in a block in which there are none of the
addresses of the axes belonging to the selected plane (as in the example below, neither the
address X nor the address Z is given in the block N190), motion in the block N190 will not be
executed. First, in the block N180, the control guides the tool radius to the endpoint , and then,
retracting the tool, it moves the distance of tool nose radius.
Correction can be done by merging the
blocks N190 and N200.

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42
N120 Z0
N130 X100
N140 X110 Z-5
N150 Z-25
N160 G2 X130 Z-35 R10
N170 G1 X140
N180 Z-45
N190 G40
N200 X160
N210 G0 X200 Z50
...

If tool nose radius compensation is cancelled (G40) in a block in which there is no
displacement along none of the axes belonging to the selected plane (as in the example below,
in the block N190 the address X is filled, but because of the incremental 0 belonging to it, there
is no motion), the situation will be the same as in the case above, when axis address was not
programmed.

G54 G18
...
N50 G0 X200 Z50
N60 G92 S3000
N70 G96 S600
N80 T101 M3
N90 X160 Z3
N100 X90
N110 G1 G42 G91 Z0
N120 G90 Z0
N130 X100
N140 X110 Z-5
N150 Z-25
N160 G2 X130 Z-35 R10

Fig. 15.6.3-5

152

15 Tool Compensation

Fig. 15.6.3-6

N170 G1 X140
N180 Z-45
N190 G91 G40 X0
N200 G90 X160
N210 G0 X200 Z50
...

Cancelling tool nose radius compensation with calculation of intersection point
If, in the block carrying out cancelling (G40), a
value is assigned to I, J and K, but only to those
that are in the selected plane (for example, to I
and K in the case of G18), the control will move
to the intersection point defined by the previous
block and by I, J and K. The value of I, J and K
is always incremental, and the vector defined by
them points from the endpoint of the previous
block.
It is a useful thing in the case of leaving an inner
corner, for example.

An example:
A hexagon with side length of 100 mm is to
be milled internally. The tool has to be left
from the corner point with the coordinates of
X100 Y0.The block N120 of the program
below leaves from the contour using
calculation of intersection point, with
specification of I and J. The coordinates of I
and J were calculated on the basis of the
displacement executed in the block N60 of the
program.

N10 G54 G17 M3 S300
N20 G0 X0 Y0 Z100
N30 G43 Z5 H1
N40 G1 Z-5 F1000
N50 G41 G0 X100 Y0 I50 J86.603 D1
N60 G1 X50 Y86.603
N70 X-50
N80 X-100 Y0
N90 X-50 Y-86.603
N100 X50
N110 X100 Y0
N120 G40 G0 X0 I-50 J86.603
N130 M30

Fig. 15.6.3-7

153

15 Tool Compensation

Fig. 15.6.3-8

Fig. 15.6.3-9

Cases of leaving using intersection point
In the case of specification I, J and K, the control always
calculates intersection point regardless of whether inner or
outer corner is to be machined.

If the control does not find intersection point, it will
position to the endpoint of the previous block at right
angles.

154

15 Tool Compensation

Fig. 15.6.4-1

15.6.4 Reversal in Calculation of Tool Nose Radius Compensation

The following table shows the direction of calculation of tool nose radius compensation, i.e. the
direction of tracking the contour:

Tool radius compensation: positive Tool radius compensation: negative

G41 from the left from the right

G42 from the right from the left

The direction of tracking the contour can also be reversed when the calculation of tool nose radius
compensation is started up. It can be carried out by programming G41 or G42. When the direction
of tracking the contour is being changed, the control will not check whether the position is
‘outside’ or ‘inside’, but it will always calculate intersection point first. In the examples illustrated
below, positive tool nose radius and change over from G42 to G41 are assumed:

155

15 Tool Compensation

Fig. 15.6.4-3

An example:
Positioning to a circle with radius of R50 is
executed in the blocks N30 and N40, along a
straight line from the left, using G41. Then,
the circle is tracked in the block N50, from
the right, using G42. Leaving is also executed
along a straight line from the left, using G41.

...
N10 G17 G0 X100 Y0
N20 T101 M3 S500
N30 G41 X80
N40 G1 X50
N50 G42 G3 I-50
N60 G41 G1 X80
N70 G40 X100
...

Programming reversal along full circle
Programming full circle with reversal G41-G42, several cases can occur, when the path covered
by the tool will be longer than the length of the full circle.
The example above illustrates this case.
The center point of the tool covers a full circle from the point P1 up to the point P1, and then a
circle arc from the point P1 up to the point P2.

There is no intersection point in the case of linear - linear transition
If, in the case of linear - linear transition, no
intersection point is resulted, the path of the
tool will be as it is illustrated in the figure.
According to the figure, reversal will occur
from G42 to G41.
In this case, in the endpoint of the block
preceding the reversal, the endpoint will be the
vector with the length of tool radius which is
put perpendicularly to the starting point of the
succeeding straight line.

The upper figure shows the case when the
direction of the path does not change, the
lower figure illustrates the case of the path
reversal of 180°.

Fig. 15.6.4-2

156

15 Tool Compensation

Fig. 15.6.4-4

Fig. 15.6.4-5

There is no intersection point in the case of linear - circular transition
If, in the case of linear - circular transition, no
intersection point is resulted, the path of the
tool will be as it is illustrated in the figure.
According to the figure, reversal will occur
from G41 to G42.
In this case, in the endpoint of the straight line
preceding the reversal, the endpoint will be the
vector with the length of tool radius which is
put perpendicularly to the starting point of the
succeeding straight line.

There is no intersection point in the case of circular - linear or circular - circular transition
If, in the case of circular - linear or circular -
circular transition, no intersection point is
resulted, the control will interconnect the
endpoint of the compensation vector resulted
in the starting point of the first circular block
and the endpoint of the compensation vector
put perpendicularly to the starting point of the
second block using an uncorrected
programmed circle arc with radius R. In this
case, the center point of the interconnecting
circle arc will not coincide with the center
point of the programmed circle arc. If reversal
cannot be executed even with this change over
of center point of circle, the control will send
an error message.

157

15 Tool Compensation

Fig. 15.6.5-1

Fig. 15.6.5-2

15.6.5 Programming Vector Preservation (G38)

Due to the command
G38 v,

in started up state of calculation of planar tool
nose radius compensation, the control
preserves the last compensation vector
between the preceding block and the block of
G38, and validates it at the end of the block
of G38, irrespective of transition between the
block of G38 and the succeeding block.
The code is a one-shot code, i.e. it is not a
modal one. If it is necessary to preserve the
vector in several consecutive blocks, the code
G38 has to be programmed again.

An example:
Grooving is to be programmed without
cancelling the contour tracking:

...G18 G42 G91...
N110 G1 Z40
N120 G38 Z50
N130 G38 X140
N140 G38 X-140
N150 Z60
...

158

15 Tool Compensation

Fig. 15.6.6-1

Fig. 15.6.6-2

15.6.6 Programming Corner Arc (G39)

When programming a block
G39 (I J K)

in the started up state of calculation of planar tool nose radius compensation, it can be reached,
that in the case of going around an outer corner the control will not calculate intersection point
automatically or will not insert straight line segments for going around; instead, the center point
of the tool will move along a circle arc with radius equal to the tool nose radius.
The control inserts a circle arc with radius equal to the tool nose radius; the direction of the
circle arc is G02 in the state G41, and G03 in the state G42.
The starting point of the circle arc is defined
by the vector perpendicular to the endpoint of
the preceding block and length of which is
equal to the tool nose radius, while the
endpoint of the circle arc is defined by the
vector perpendicular to the starting point of the
succeeding block and length of which is equal
to the tool nose radius. G39 must be
programmed in separate block:

...G18 G91 G41...
N110 G1 Z100
N120 G39
N130 G3 X–160 Z80 K80
...

If I, J or K is programmed in the block of G39
in accordance with the selected plane, the
endpoint of the circle arc will be defined by the
vector which is perpendicular in the endpoint
of the preceding block to the vector defined by
I, J or K and length of which is equal to tool
nose radius:

...G18 G91 G41...
N110 G1 Z100
N120 G39 I–60 K50
N130 G40 X60 Z110
...

Commands on mirroring or rotation set previously are valid for the vector defined by I, J or K.
Direction, certainly, is not affected by scaling command.
In the block of G39, no motion command of any kind can be programmed.

159

15 Tool Compensation

An example:
A triangular slot is to be milled with fillet at
the corners.
In order that the contour will be closed, J is
used for giving G39 in the block N110. Data
of I and J are specified from displacement of
the block N60.

...
N20 G0 G17 G40 G54
N30 X-30 Y150 Z5 M3 S300
N40 G42 X0 Y86.603 D1
N50 Z-2
N60 G1 X-50 Y0 F1000
N70 G39
N80 X50
N90 G39
N100 X0 Y86.603
N110 G39 I-50 J-86.603
N120 Z5
N130 X-40
N140 G40 Y120
...

Fig. 15.6.6-3

160

15 Tool Compensation

Fig. 15.6.7-1

Fig. 15.6.7-2

15.6.7 Troubles in Tracking the Contour. Interference Check

During execution of contour tracking, it occurs in many
cases that the tool path will be opposite of the programmed
path. In this case, the tool can cut into the workpiece but
that is not the intention of the programmer. This
phenomenon is called trouble in tracking the contour or
interference.
In the case illustrated in the figure, after calculation of the
intersection points, during execution of the block N2, a
tool path (dash line) opposite to the programmed path
(continuous line) will be generated. The tool will cut into
the workpiece.

In order to avoid such cases, the control executes interference check at the bit position #0 IEN=1
of the parameter N1403 Interference. In this case, the control checks whether the angle ö
between the programmed displacement and the displacement corrected by the radius
compensation satisfies the condition -90E#n#+90E.
In other words, the controls checks whether the compensated displacement vector has a
component opposite to the programmed displacement vector.

If the control detects interference, it will either indicate the error or try to correct the error,
according to the bit position #1 AAL of the parameter N1403 Interference.
If AAL=1, the control will always send the error message ‘2049 Interference alarm’ at the end
of the block preceding the block which causes the interference.
If AAL=0, the control will try to correct the error automatically, and it will send an error
message in the only case, if the automatic correction gives no result.

For monitoring interference and automatic correction, the control normally reads 3 blocks in
ahead. If the value of the parameter N1404 BK No. Interf is greater than 0, the control will
read in blocks quantity of which is a parameter value 3+ and will execute interference check.

161

15 Tool Compensation

Fig. 15.6.7-3

Automatic correction of interference

If AAL=0, the control will not indicate error, but it will try to correct the contour automatically
in order to avoid overcuttings. The course of the correction is as follows:
The tool nose radius compensation (G41) is started up in the blocks N1, N2 and N3.

1 2 3 4The calculated compensation vectors between the blocks N1 and N2: v , v , v és v .

5 6 7 8The calculated compensation vectors between the blocks N2 and N3: v , v , v és v .

4 5If there is interference between the vectors v and v (a displacement opposite to the displacement
of N2 is generated), the control will calculate intersection point between the straight line

2 3 6 7defined by the vectors v and v and the straight line defined by the vectors v and v , and
it will skip the circle arc N2.

3 6If there is interference between the vectors v and v (a displacement opposite to the displacement
of N2 is generated), the control will calculate intersection point between the straight line

2 3 6 7defined by the vectors v and v and the straight line defined by the vectors v and v , and
it will skip motions between them (the figure above shows this case).

2 7If there is interference between the vectors v and v (a displacement opposite to the displacement
of N2 is generated), the control will calculate intersection point between the straight line

1 2 7 8defined by the vectors v and v and the straight line defined by the vectors v and v , and
it will skip motions between them.

1 8If there is interference between the vectors v and v , the control will try to calculate an
intersection point between the blocks N1 and N3.
It is evident from the example above, that execution of the block N1 will start only after the
interference check for the block N2 is carried out by the control. For this, however, the control

162

15 Tool Compensation

Fig. 15.6.7-5

had to read the block N3 into the buffer too, and to calculate the compensation vectors at the
transition N2 - N3.

If, in the block N2, in the case of
AAL=0, the control cannot
eliminate interference by
calculation of an intersection
point between the compassing
segments, it will try to calculate
an intersection point between the
blocks N1 and N3. If there is an
intersection point, the control will
go on, otherwise it will send the
error message ‘2049 Interference
alarm’.

Monitoring the interference several blocks in advance
In the examples above, 3 blocks are checked by the controller. Namely, the transition between N1
and N2, and the transition between N2 and N3. It is adequate to the parameter value N1404 BK
No. Interf=0.
The maximum value of the parameter N1404 BK No. Interf can be 8. In this case, the control
executes the checks above

for the blocks (displacements) between N1 and N2, and, N2 and N3;
for the blocks (displacements) between N1 and N2, and, N3 and N4;
...
for the blocks (displacements) between N1 and N2, and, N [BK No. Interf+2] and N [BK

No. Interf+3]. Then, depending on the
position of the parameter AAL, in the block
N1 the control will indicate error, or it will try
carry out correction.

It can be used in the case when the tool enters
into a hollow and it has to be checked whether
there is enough room within for the tool with
its diameter.
If the hollow illustrated in the figure is to be
checked by the control, the value N1404 BK
No. Interf=7 will have to be set.

Fig. 15.6.7-4

163

15 Tool Compensation

Fig. 15.6.7-6

Fig. 15.6.7-7

Fig. 15.6.7-8

Typical interferences
There are described below some typical cases when the control detects interference.

Producing a step with height smaller
than the radius of the tool.
In the case of IEN=0: the control cuts
into the workpiece.
In the case of IEN=1:
if AAL=0, the control will avoid cutting
into the workpiece by calculating an
intersection point between the blocks N1
and N3;
if AAL=1, the control will send the error
message ‘2049 Interference alarm’,
because it would cut into the workpiece.

Producing an inner corner with a radius
smaller than the radius of the tool.
In the case of AAL=1, the control will
send the error message ‘2049
Interference alarm’.
In the case of AAL=0, the control,
skipping the circle and calculating an
intersection point between the two
straight lines, will correct the error.

Producing a step with height smaller
than the radius of the tool, along a
circle arc.
If AAL=0, the control will calculate an
intersection point between the straight
line L1, and the straight line

1 3interconnecting the vectors v és a v , in
order to avoid the cutting in.
If AAL=1, the control will send the
error message ‘2049 Interference alarm’
and it will stop in the previous block.

164

15 Tool Compensation

In the case of the path shown in the figure, in the
block N2 the displacement along the compensated
path is opposite to the programmed path.
The control cannot correct if the value of the
parameter N1404 BK No. Interf is 0, because there
is no intersection point between the blocks N1 and
N3, so it will indicate error in both cases of AAL=0
and AAL=1.
If the value of the parameter N1404 BK No. Interf
is greater than 0, the control will continue reading
the blocks, therefore it will correct interference by
creating an intersection point between the blocks N1
and N4, skipping the blocks N2 and N3.

In the case of the path shown in the figure, in
the block N2 the displacement along the
compensated path is opposite to the
programmed path.
In the case of AAL=1, the control will
indicate error at the starting point of the block
N1.
In the case of AAL=0, the control will
calculate an intersection point between the
blocks N1 and N3, and moves up to this
intersection point. If it proceeded from this
intersection point, a motion opposite to the
block N3 would be created along the
corrected path, therefore the control will
indicate error if the value of the parameter
N1404 BK No. Interf is 0.
If the value of the parameter N1404 BK No. Interf is greater than 0, the control will continue
reading the blocks, therefore it will correct interference by creating an intersection point between
the blocks N1 and N4, skipping the blocks N2 and N3.

Indication of interference, but no cutting into the workpiece
There are cases, when the interference check indicates error, but the control would not cut into
the workpiece.

Fig. 15.6.7-9

Fig. 15.6.7-10

165

15 Tool Compensation

Fig. 15.6.7-11

Fig. 15.6.7-12

If producing a recess with depth smaller than
the radius compensation is to be produced,
maybe there will not be cutting into the
workpiece in reality, as it is shown in the
figure, but the control will send the error
message ‘2049 Interference alarm’ in the case
of AAL=1, because in the block N3 the
direction of the displacement along the
corrected path is opposite to the programmed
one.
In the case of AAL=0, the control continues
machining, skipping the blocks N2, N3 and N4
and interconnecting the blocks N1 and N5, as it is illustrated in the figure.

In the example shown in the figure, the control
also indicate interference, because in the block
N3 the displacement along the corrected path
is opposite to the programmed one.

166

15 Tool Compensation

There is cutting into the workpiece despite the monitoring interference
There are cases from the geometry of the path, when the control cuts into the workpiece, despite
the monitoring interface. Some cases are shown below.

In the case illustrated in the figure, in the
block N3, the displacement occurs in the
direction opposite to the programmed one,
and for this reason, the control will indicate
interference at the starting point of block N2
and it will stop if the value of the parameter
N1404 BK No. Interf is 0. Because of the
geometry (G2) of the N4, the control will cut
into the workpiece .
If the value of the parameter N1404 BK No.
Interf is greater than 0, the control will
continue reading the blocks, and for this
reason, it will correct the interference by the
intersection point between the blocks N1 and
N4, skipping the blocks N2 and N3 in the case
of AAL=0, otherwise it will indicate error at
the beginning of the blockN1.

In the case shown in the figure, no displacement occurs in
the direction opposite to the programmed one in none of
the blocks N1, N2 and N3, and for this reason, the control
will not indicate interference if the value of the parameter
N1404 BK No. Interf is 0, but even so, it will cut into the
workpiece because of the geometry of the path.
If the value of the parameter N1404 BK No. Interf is
greater than 0, the control will continue reading the
blocks, and for this reason, it will correct the interference
by the intersection point between the blocks N1 and N4,
skipping the blocks N2 and N3 in the case of AAL=0,
otherwise it will indicate error.

Fig. 15.6.7-13

Fig. 15.6.7-14

167

15 Tool Compensation

In the case of the path illustrated in the figure,
in the block N2, the displacement along the
corrected path would be opposite to the
programmed one.
In the case of AAL=1, the control indicates
error at the starting point of the block N1.
If AAL=0, the control will calculate an
intersection point between the blocks N1 and
N3 and it will continue the motion up to this
intersection point. If the control continued the
motion from this intersection point, a motion
opposite to the block N3 would occur, and for
this reason the control indicates error.
However, at the end of the block, cutting into
the workpiece will already occur if the value
of the parameter N1404 BK No. Interf is 0.
If the value of the parameter N1404 BK No. Interf is 1, the control will indicate interference.
If the value of the parameter N1404 BK No. Interf is 2, the control will correct the interference
by calculation of an intersection point between the blocks N1 and N5.

Fig. 15.6.7-15

168

16 Special Transformations

Fig. 16.1-1

Fig. 16.1-2

16 Special Transformations

16.1 Rotating a Shape Around a Given Point (G68, G69)

By the use of the command
G68 p q R

a programmed shape can be rotated in the plane selected by G17, G18 and G19.

The coordinates of the center of rotation are
specified at the addresses

p and q.
The only values written at the coordinates p
and q of the selected plane are interpreted by
the control.
The entered coordinate data p and q will be
interpreted by the control in the orthogonal
coordinate system, even if polar coordinate
data specification is valid.
The coordinates p and q can be specified as
either absolute or incremental data by the use
of G90, G91 or the operator I. The incremental
data has to be interpreted from the last
programmed axis position (not from the
rotated one).
If value is not assigned to one of the p and the q or both of them, the instantaneous axis position
will be interpreted as the center of rotation.
The equation of rotation of a shape in the plane XY, in the case of G17 is the following:

where: p, q: the center of rotation;
R: the angle of rotation;
X, Y : the coordinates of the programmed point;
X’, Y’: the coordinates of the rotated point.

It is the address
R,

at which the angle of rotation is specified. A positive or
negative value entered at the address represents counter-
clockwise or clockwise direction, respectively, to be
interpreted in the selected plane.
The value assigned to the R can be either absolute or
incremental. If incremental angel of rotation is specified,
the value of R will be added to the angles of rotation
programmed previously.

169

16 Special Transformations

Fig. 16.1-3

The command
G69

cancels rotation. It deletes the coordinates of of the center of rotation and the angle of rotation,
too. This command can also accompany other commands, too.

An example:

Three squares positioned in relation to
one another at the angle of 120° is to be
milled into the face of a workpiece,
using polar interpolation. The square is
described by the subprogram O0001.
The workpiece will shape by calling the
subprogram three times with incremental
rotation of 120° at the end of the
subprogram.
In the picture, the order of execution is
marked with the numbers 1, 2 and 3.

Main program:

G17 G59 G94 G0 X100 Z20 C1=0
M3 S2=500
G12.1
G68 X0 C1=0 R120
M98 P1 L3
G69
G13.1

Subprogram:

O0001
G42 G0 X60 C1=0
G1 Z-2
C1=10
X40
C1=0
X70
G40 G0 X100 C1=0
Z20
G68 X0 C1=0 RI120
M99

170

16 Special Transformations

Fig. 16.2-1

16.2 Scaling a Shape in Relation to a Given Point (G50, G51)

Scaling can be activated by the code G51. Two ways are available for scaling specification: one
of them is, when a common magnification rate is valid for each axis; the other is, when different
rates of magnification are applied to the axes X, Y and Z.
Both ways of specification can be cancelled by the command G50.

Scaling by the use of a magnification rate valid for each axis (P)
Using the command

G51 v P,
a programmed shape can be reduced or magnified.
At the coordinates

v ,
the position of the center point of
scaling can be specified. The axes that
can be used are the axes X, Y and Z, and
the parallel axes.
The entered coordinate data v will be
interpreted by the control in the
orthogonal coordinate system, even if
polar coordinate data specification is
valid.
The coordinates v of the center point of
scaling can be specified as either
absolute or incremental data by the use
of G90, G91 or the operator I.
If value is not assigned to one of the axis addresses or each of them, the instantaneous axis
position will be interpreted as the center of scaling.
It is the address

P,
at which the magnification rate is specified.
There will be reduction if P<1, and if P>1, magnification will occur.
The equation of the scaling of a shape in the space XYZ is the following:

0 0 0where: X , Y , Z : the coordinates v of the center of scaling;
P: the magnification rate of scaling;
X, Y, Z: the coordinates of the programmed point;
X’, Y’, Z’: the coordinates after scaling.

The command
G50

cancels the scaling.

171

16 Special Transformations

Fig. 16.2-2

Fig. 16.2-3

L Note:
The magnification rate of scaling (P) does not affect the value of radius compensation
applied.

An example:
If the zero point of the workpiece in the
direction Z is on the contact surface of
the chuck, it will be easy to turn smaller
or bigger workpieces by the use of G51.

G90 G0 X100 Z120
G51 X0 Z0 P0.5
G1 X0 Z100 F150
X80
Z0
G50
G0 X100 Z120

Scaling by the use of a scaling rate different for each of the axes X, Y and Z (I J K)
Using the command

G51 X Y Z I J K
a programmed shape can be reduced or
magnified.
At the coordinates

X Y Z
the position of the center point of
scaling can be specified. The axes that
can be used are the main axes X, Y and
Z.
The entered coordinate data v will be
interpreted by the control in the
orthogonal coordinate system, even if
polar coordinate data specification is
valid.
The coordinates X, Y and Z of the center
point of scaling can be specified as either absolute or incremental data by the use of G90, G91
or the operator I.
If value is not assigned to one of the axis addresses or each of them, the instantaneous axis
position will be interpreted as the center of scaling.
At the address
 I J K
the magnification rate for the axes I-X, J-Y and K-Z, respectively can be specified.
There will be reduction if I J K<1, and if I J K>1, magnification will occur.
The equation of the scaling of a shape in the space XYZ is the following:

172

16 Special Transformations

0 0 0where: X , Y , Z : the coordinates v of the center of scaling;
I J K: the magnification rate of scaling;
X, Y, Z: the coordinates of the programmed point;
X’, Y’, Z’: the coordinates after scaling.

The command
G50

cancels the scaling.

L Notes:
 – The magnification rates of scaling (I, J and K) do not affect the value of radius compensation

applied.
 – The values of I, J and K can also be negative. In this case, not only scaling, but mirroring too

will be executed by the control, along the given axis. If the values of I, J and K are -1,
only mirroring will be executed, along the given axis.

 – If the values of I, J and K are different, the circular interpolation (G1, G3) and the arc radius
R will be modified as follows::
G17
G51 X0 Y0 Z0 I0.5 J0.75 K1.25
G1 X100 ,R10 (R=,R*(I+J)/2)
Y100
X10
G3 X0 Y90 R10 (R=R*I)
G1 Y0
G50
The control will multiply the arc radius by the average of I and J, and in the block G3 the
circle radius by I.

173

16 Special Transformations

16.3 Mirroring a Shape through One or More Straight Lines (G50.1, G51.1)

By the use of the command
G51.1 v

a programmed shape can be mirrored by the control through the coordinates selected in v.
In the coordinates

v
there can be specified that axis, the straight
line or lines parallel with which will be used
for mirroring.
The v can be the axis address X, Y and Z, and
other axis addresses.
The position of the straight line has to be
determined as follows: If the straight line the
mirroring is to be done is parallel with the
axis X, the position will have to be specified
at the axis Y; if the straight line the mirroring
is to be done is parallel with the axis Y, the
position will have to be specified at the axis
X,; and so on.
The entered coordinate data v will be
interpreted by the control in the orthogonal
coordinate system, even if polar coordinate
data specification is valid.
The coordinates vof the axes of mirroring can be specified as either absolute or incremental data
by the use of G90, G91 or the operator I.
If no value is assigned to any of the axis addresses, the control will not execute mirroring in
that one.

The equation of the scaling of a shape in the space XYZ is the following:

0 0 0where: X , Y , Z : the coordinates v of the center point of mirroring;
X, Y, Z: the coordinates of the programmed point;
X’, Y’, Z’: the coordinates after mirroring.

Mirroring through the axes of odd number will change the direction of motion around the shape.
As a result of this, the circle directions (G2-G3), the direction of tool radius compensation (G41-
G42) and the angle of rotation (G68R) also will change, and this change will automatically be
taken into account by the control.

The command
G50.1 v

cancels mirroring through coordinate axis (axes) specified in v. In the coordinates, any data can
be written, the effect will be only recording the fact of cancellation.

Fig. 16.3-1

174

16 Special Transformations

When activating or cancelling the mirroring, neither rotation (G68) nor scaling (G51) has to be
in effect. Otherwise, the control sends the error message ‘2001 Unable to turn on or off mirroring
under G51 or G68'.

Mirroring in the case of double tool holder
If, on the lathe, there are two tool changers, one of them is
in the upper half space X+ and the another is in the lower
half space X!, then the mirroring through the axis Z

G51.1 X0
can be used in the course of machining performed with the
tools being in the lower tool changer.
If the machining is to be performed by the use of the tools
of the tool changer being in the lower half space X!, the
program can be written for the half space X+, and then the
program part can be mirrored through the axis Z.

An example:
Finishing the workpiece is to be executed by the use of the tool T2 being in the lower tool
changer. The program has to be written in the way as if the tool was in the upper tool changer and
then the path has to be mirrored through the axis Z.

G0 X140 Z50
T202 M3 (finishing tool, Q2)
G51.1 X0
N1 G0 G42 X20 Z10
Z0
X40
Z-20
G2 X60 Z-30 R10
G1 X80
Z-40
X100 Z-50
X140
N2 G40 G0 Z50
G50.1 X0
N3 X140

Fig. 16.3-2

Fig. 16.3-3

175

16 Special Transformations

Fig. 16.4-1

16.4 Programming Rules for Specific Transformations

The sequence of the rotation G68 and the scaling G51 is optional.
However, attention should be payed if rotation is done first and scaling follows, because the
command of rotation will be valid for the coordinates of the center point of scaling. But, if
scaling is done first and rotation follows, the command of scaling will be valid for the
coordinates of the center point of rotation.
The starting and cancelling commands of both operations have to be nested into one another;
overlapping one another is not permitted:

Rotation–scaling

N1 G90 G17 G0 X0 Y0
N2 G68 X80 Y20 R75
N3 G51 X130 Y50 P0.5
N4 X180 Y20
N5 G1 Y80 F200
N6 X80
N7 Y20
N8 X180
N9 G50
N10 G69 G0 X0 Y0

Scaling–rotation

N1 G90 G17 G0 X0 Y0
N2 G51 X130 Y50 P0.5
N3 G68 X80 Y20 R75
N4 X180 Y20
N5 G1 Y80 F200
N6 X80
N7 Y20
N8 X180
N9 G69
N10 G50 G0 X0 Y0

It can be seen from the figure, that application sequence of several transformations cannot be
disregarded.

Mirroring is quite a different matter. Starting up the mirroring is allowed in states G50 and G69
only, i.e. when there is neither scaling nor rotation states.

176

16 Special Transformations

However, either scaling or rotation can be started up in the started up state of the mirroring.
It is valid for mirroring too, that overlapping of mirroring with either scaling or rotation is not
allowed, so first the rotation and the scaling have to be cancelled in proper sequence, and the
mirroring only after that.

G51.1 ... (starting up of the mirroring)
G51 ... (starting up of the scaling)
G68 ... (starting up of the rotation)
...
G69 ... (cancelling of the rotation)
G50 ... (cancelling of the scaling)
G50.1 ... (cancelling of the mirroring)

177

17 Automatic Geometric Calculations

Fig. 17.1-1

Fig. 17.1-2

17 Automatic Geometric Calculations

17.1 Programming Chamfer and Corner Rounding

The control can insert chamfer or corner rounding automatically in the selected plane between
two blocks containing linear interpolation (G01) or circular interpolation (G02, G03).

An isosceles chamfer, the side
length of which is specified at
the address

,C
(comma and C) is inserted by the
control between the endpoint of
the block containing the address
,C and the starting point of the
succeeding block.

For example:
N1 G18 G1 G91 Z30 ,C10
N2 X80 Z10

The value specified at the address ,C shows the distance, with which the chamfer starts and ends
from the supposed intersection point of the two sequence blocks. Chamfer can also be inserted
between circles or circle and straight line. In this case, the value of ,C is the length of the chord
drawn from the intersection point.

A corner rounding, the radius of which is specified at the address
,R

(comma and R) is inserted by the control between the endpoint of the block containing the
address ,R and the starting point of the succeeding block.
For example:

N1 G18 G91 G01 Z30 ,R8
N2 G03 X60 Z-30 R30

178

17 Automatic Geometric Calculations

Fig. 17.1-3

The control inserts the circle arc with the radius of ,R between the two blocks in such a way, that
the circle osculates tangentially to the both path elements.
A command containing chamfer or corner rounding
can also be written at the end of several succeeding
blocks, as it is illustrated by the example below:

...
G18 G1 X80 ,C10
Z60 ,R22
G3 X160 Z20 R40 ,C10
G1 X220
...

L Notes:
 – Chamfer or corner rounding can only be programmed between elements being in the selected

plane (G17, G18, G19), otherwise the control sends error message ‘2085 Illegal ,C or ,R’.
 – If the side length of the chamfer or the radius of the corner rounding is so great that it cannot

be suited to the programmed blocks, the control will send the error message ‘2083 ,C or
,R’ is too high.

 – If both ,C and ,R is programmed within one block, the control will send the error message
‘2082 Whether chamfer or rounding’.

 – In single block mode, the control stops and gets into the stop state after execution of
chamfering or corner rounding.

17.2 Specification of a Straight Line Using its Angle of Inclination

A straight line in the plane defined by the commands G17, G18, G19 can be specified by one of
the coordinates of the selected plane and by its angle of inclination given at the address ,A.

179

17 Automatic Geometric Calculations

Fig. 17.2-1

Fig. 17.2-2

p p pIn the formulas above, X , Y and Z are the endpoint coordinates of the straight line along the
axes X, Y and Z or along the axes parallel with them; q indicates one or more arbitrary axes being
out of the selected plane.
Specification at the address ,A can also be used in addition to the codes G0 and G1.
The angle ,A is measured from the first axis of the selected plane, and the positive direction is
opposite to the clockwise direction.
 The value of ,A can be either positive or negative, and it can also be greater than 360°or smaller
than !360E.

For example:

(G18 G90) G1 X60 Z120 ...
Z70 ,A150
(this specification is equivalent to the
specification X117.735 Z70)

X180 ,A135
(this specification is equivalent to the
specification X180 Z38.868)

L Notes:
 – Straight line with its angle of inclination and chamfer or corner rounding can also be specified

in one block. For example:
Z100 ,A30 ,C5
X100 ,A120 ,R10
Z-100 ,A210

 – Specification of the angle of inclination at the address ,A can be used in drilling cycles, too.
In this case, it is taken into account by the control during execution of positioning in the
selected plane in the way described above. For example, the block

G81 G91 X100 ,A30 R-2 Z-25
is equivalent to the following block:

G81 G91 X100 Y57.735 R-2 Z-25

180

17 Automatic Geometric Calculations

Fig. 17.3.1-1

17.3 Calculations of Intersection Point in the Plane

The calculations described here are executed by the control in the only case, when the calculation
of tool radius compensation (G41 or G42 offset mode) is on. If tool radius compensation is not
to be taken into account in the program, even this case it has to be switched on and the value of
adequate tool radius compensation has to be deleted.

17.3.1 Linear-Linear Intersection

If there are two succeeding blocks
executing linear interpolation, and the
second straight line is defined by
specification the endpoint of the line
on both axes in the selected plain and
the angle of inclination of the line too,
the control will calculate the
intersection point of the straight line
assigned in the first block and the
straight line specified in the second
block.
Hereafter, the straight line specified in
the second block in such a way is called
overdetermined straight line.
The endpoint of the first block and the starting point of the second block will be the calculated
intersection point.

G17 G41 (G42)

1N1 G1 ,A or

1 1X Y

2 2 2N2 G1G90 X Y ,A

G18 G41 (G42)

1N1 G1 ,A or

1 1X Z

2 2 2N2 G1G90 X Z ,A

G19 G41 (G42)

1N1 G1 ,A or

1 1Y Z

2 2 2N2 G1G90 Y Z ,A

The intersection point is always calculated in the plane selected by the G17, G18 and G19.
The first block (N1) is specified either by its angle of inclination (,A) only, and in this case the
control draws a straight line from the starting point up to the intersection point at the appropriate

1 1 1 1 1 1angle of inclination; or, an arbitrary point of the straight line (X , Y ; X , Z ; or Y , Z) different
from the starting point is specified, and in this case the control calculates the intersection point
using the straight line passing through these two points.
The coordinates specified in the second block (N2) are always interpreted by the control as
absolute data (G90).

181

17 Automatic Geometric Calculations

Fig. 17.3.1-2

Fig. 17.3.1-3 Fig. 17.3.1-4

For example:
(G18) G90 G41 ...
G0 X20 Z90
N10 G1 ,A150
N20 X40 Z10 ,A225
G0 Z0
...

The block N10 can also be given using
the coordinates of a point of the straight
line:

(G18) G90 G41 ...
G0 X20 Z90
N10 G1 X66.188 Z50
N20 X40 Z10 ,A225
G0 X0 Y20
...

It can be noted, that in this case the coordinates X and Z (X66.18 Z50) given in the block N10 are
not considered by the control to be endpoint, but as a transition point only between the starting
point of the straight line and the point given.

Calculation of intersection point can also be combined with specification of chamfer or corner
rounding. For example:

(G18) G90 G41 ...
G0 X20 Z90
N10 G1 X66.188 Z50 ,C10
N20 X40 Z10 ,A225
G0 X0 Y20
...

(G18) G90 G41 ...
G0 X20 Z90
N10 G1 X66.188 Z50 ,R10
N20 X40 Z10 ,A225
G0 X0 Y20
...

In the examples above, the control measures the length of chamfer from the calculated
intersection point and fits the corner rounding to the calculated intersection point, respectively.

182

17 Automatic Geometric Calculations

Fig. 17.3.2-1
Fig. 17.3.2-2

17.3.2 Linear-Circular Intersection

If a circular block is given after a linear block in a way that the coordinates of the end point and
the center point as well as the radius of the circle are specified, i.e. the circle is overdetermined,
the control will calculate intersection point between the straight line and the circle. The
calculated intersection point is the end point of the first block and the start point of the second
one.

G17 G41 (G42)
N1 G1 ,A or

1 1X Y

2 2N2 G2 (G3) G90 X Y I J
R Q

G18 G41 (G42)

1N1 G ,A or

1 1 X Z

2 2N2 G2 (G3) G90 X Z I K
R Q

G19 G41 (G42)
N1 G1 ,A or

1 1Y Z

2 2N2 G2 (G3) G90 Y Z J K
R Q

The intersection point is always calculated by the control in the plane selected by G17, G18 and
G19.
The first block (N1) is specified either by its angle of inclination (,A) only, and in this case the
control draws a straight line from the starting point up to the intersection point at the appropriate

1 1 1 1 1 1angle of inclination; or, an arbitrary point of the straight line (X , Y ; X , Z ; or Y , Z) different
from the starting point is specified, and in this case the control calculates the intersection point
using the straight line passing through these two points.
The coordinates specified in the second block (N2), thus the coordinates I, J and K defining the
center point of the circle are also always interpreted by the control as absolute data (G90).
It can be specified at the address Q, which one between the two resulting intersection points is
to be calculated by the control. If the value of the address is smaller than zero (Q<0), the control
will calculate the nearer intersection point in the direction of the straight line, however, if the
value of the address is greater than zero (Q>0), the farther one will be calculated. The direction
of movement along the straight line is determined by the angle of inclination.

183

17 Automatic Geometric Calculations

Fig. 17.3.2-3 Fig. 17.3.2-4

Let us see the following example:

O9981
N10 (G18) G42 G0 X40 Z100
N20 G1 X-40 Z-30
N30 G3 X80 Z20 I-10K20 R50 Q-1
N40 G40 G0 X120
N50 Z120

O9982
N10 (G18) G42 G0 X40 Z100
N20 G1 X-40 Z-30
N30 G3 X80 Z20 I-10 K20 R50 Q1
N40 G40 G0 X120
N50 Z120

The circular block N30 G3 is an overdetermined one since the coordinates of the center point of
the circle (I–10 K20 in absolute value) as well as the radius of the circle (R50) are specified; the
intersection point of the straight line specified in the block N20 and the circle specified in the
block N30 will be calculated by the control.
In the program O9981, the control calculates the nearer intersection point in the direction of the
straight line, because Q–1 is programmed in the circle block N30.
However, in the program O9982, the control calculates the farther intersection point in the
direction of the straight line, because Q1 is programmed in the circle block N30.
The linear-circle intersection calculation can also be combined with specification of chamfer or
corner rounding. For example:

N10 (G18) G42 G0 X40 Z100 S200 M3
N20 G1 X-40 Z-30 ,R15
N30 G3 X80 Z20 I-10 K20 R50 Q-1
N40 G40 G0 X120
N50 Z120

The control calculates the intersection point of the blocks N20 and N30, and then, due to the ,R15
given in the blockN20, it fits a corner rounds with radius of 15 mm to the intersection point.

184

17 Automatic Geometric Calculations

Fig. 17.3.3-1 Fig. 17.3.3-2

17.3.3 Circular-Linear Intersection

If a linear block is given after a circular block in a way that the straight line is overdetermined,
i.e. the coordinate of the endpoint as well as the angle of inclination of the straight line are
specified, the control will calculate intersection point between the circle and the straight line. The
calculated intersection point is the end point of the first block and the start point of the second
one.
G17 G41 (G42)

1 1N1 G2 (G3) X Y I J
or R

2 2N2 G1 G90 X Y ,A Q

G18 G41 (G42)

1 1N1 G2 (G3) X Z I K
 or R

2 2N2 G1 G90 X Z ,A Q

G19 G41 (G42)

1 1N1 G2 (G3) Y Z J K
or R

2 2N2 G1 G90 Y Z ,A Q

The intersection point is always calculated by the control in the plane selected by G17, G18 and
G19.

1 1 1 1The first block (N1), i.e. the circle is specified either by one arbitrary pont of it (X , Y ; X , Z ;

1 1or Y , Z) as well as the coordinates of its center point (I J; I K; or J K), or instead of the
coordinates of the center point, the radius (R) of the circle also can be specified.

2In the second block (N2), the straight line is overdetermined, i.e. its endpoint coordinates (X

2 2 2 2 2Y ; X Z ; orY Z) and its angle of inclination (,A) are specified. The endpoint coordinates of
the straight line are always interpreted by the control as absolute data (G90). It is always the
angle of inclination of the straight vector pointing from the resulting intersection point to the
given endpoint has to be specified at the address ,A; otherwise motions opposite to the intended
ones will occur.
It can be specified at the address Q, which one between the two resulting intersection points is
to be calculated by the control. If the value of the address is smaller than zero (Q<0, for
example Q–1), the control will calculate the nearer intersection point in the direction of the
straight line; however, if the value of the address is greater than zero (Q>0, for example Q1),
the farther one will be calculated. The direction of movement along the straight line is
determined by the angle of inclination.
Let us see the following example:

185

17 Automatic Geometric Calculations

Fig. 17.3.3-3 Fig. 17.3.3-4

O9983
N10 (G18) G0 X0 Z90
N20 G42 G1 Z50
N30 G3 X0 Z-50 R50
N40 G1 X85.714 Z-50 ,A171.87
Q-1
N50 G40 G0 X140
N60 Z90

O9984
N10 (G18) G0 X0 Z90 M3 S200
N20 G42 G1 Z50
N30 G3 X0 Z-50 R50
N40 G1 X85.714 Z-50 ,A171.87
Q1
N50 G40 G0 X140
N60 Z90

The linear block N40 is an overdetermined one, since the endpoint coordinates of the straight line
(X85.714 Z–50) as well as its angle of inclination (,A171.87) are specified. For this reason, the
coordinates X0 Z–50 of the circle programmed in the previous block N30 are not considered by
the control to be endpoint values but as a point only through which the circle passes, and the
endpoint will be the calculated intersection point.
In the program O9983, the nearer intersection point (Q–1) in the direction of motion is given,
while in the program O9984 the farther one (Q1) is given.
The circle-linear intersection calculation can also be combined with specification of chamfer or
corner rounding. For example:

O9983
N10 (G18) G0 X0 Z90 M3 S200
N20 G42 G1 Z50
N30 G3 X0 Z-50 R50 ,R15
N40 G1 X85.714 Z-50 ,A171.87 Q-1
N50 G40 G0 X140
N60 Z90

In this example, a corner rounding with radius of 15 mm (,R15) is specified in the block N30. The
control calculates the intersection point of the blocks N30 and N40, and fits the programmed
corner rounding to the resulting contour.

186

17 Automatic Geometric Calculations

Fig. 17.3.4-1 Fig. 17.3.4-2

17.3.4 Circular-Circular Intersection

If two succeeding circular blocks are given by specification of the endpoint and the center point
coordinates as well as the radius of the second circle, i.e. the second circle is overdetermined,
the control will calculate intersection point between the two circles. The calculated intersection
point is the end point of the first block and the start point of the second one.

G17 G41 (G42)

1 1 1 1N1 G2 (G3) X Y I J

1 1 1or X Y R

2 2 2N2 G2 (G3) G90 X Y I

2 2J R Q

G18 G41 (G42)

1 1 1 1N1 G2 (G3) X Z I K

1 1 1or X Z R

2 2 2N2 G2 (G3) G90 X Z I

2 2K R Q

G19 G41 (G42)

1 1 1 1N1 G2 (G3) Y Z J K

1 1 1or Y Z R

2 2 2N2 G2 (G3) G90 Y Z J

2 2K R Q

The intersection point is always calculated by the control in the plane selected by G17, G18 and
G19.

1 1The first block (N1) is specified either by the coordinates of the center point of the circle (I J ;

1 1 1 1 1I K ; J K) or by its radius (R). In this block, the coordinates are interpreted as the relative
distance measured from the starting point, like specification of a circle.
The coordinates specified in the second block (N2), thus the coordinates I, J and K defining the
center point of the circle are also always interpreted by the control as absolute data (G90).
It can be specified at the address Q, which one between the two resulting intersection points is
to be calculated by the control. If the value of the address is smaller than zero (Q<0, for
example Q–1), the control will calculate the first intersection point; however, if the value of
the address is greater than zero (Q>0, for example Q1), the second one will be calculated.
The first intersection point is that one being passed through at first, going clockwise
(independently of the programmed direction G2, G3).

187

17 Automatic Geometric Calculations

Let us see the following example:

O9985
N10 (G18) G0 X20 Z200
N20 G42 G1 Z180
N30 G3 X-80 Z130 R-50
N40 X174.892 Z90 I30 K50 R70
Q–1
N50 G40 G0 X200
N60 Z200

O9986
N10 (G18) G0 X20 Z200
N20 G42 G1 Z180
N30 G3 X-80 Z130 R-50
N40 X174.892 Z90 I30 K50 R70
Q1
N50 G40 G0 X200
N60 Z200

The circular block N40 is an overdetermined block since the coordinates of the center point (I30
K50 as absolute value, and I as radius) as well as the radius (R70) is specified. For this reason,
the coordinates X-80 Z130 of the circle programmed in the previous block N30 are not considered
by the control to be endpoint values but as a point only through which the circle passes, and the
endpoint will be the calculated intersection point.
In the program O9985, the nearer intersection point (Q–1) in the clockwise direction, while in the
program O9986 the farther one (Q1) is given.
The circle-circle intersection calculation can also be combined with specification of chamfer or
corner rounding. For example:

O9986
N10 (G18) G0 X20 Z200 M3 S200
N20 G42 G1 Z180
N30 G3 X-80 Z130 R-50 ,R20
N40 X174.892 Z90 I30 K50 R70 Q1
N50 G40 G0 X200
N60 Z200

In this example, a corner rounding with radius of 20 mm (,R20) is specified in the block N30. The
control calculates the intersection point of the blocks N30 and N40, and fits the programmed
corner rounding to the resulting contour.

Fig. 17.3.4-3 Fig. 17.3.4-4

188

17 Automatic Geometric Calculations

Fig. 17.3.5-1

17.3.5 Chaining the Intersection Calculations

Blocks of intersection point calculation can be chained, i.e. several succeeding blocks can be
selected for intersection point calculation. The control calculates intersection point until it
finds overdetermined straight lines or circles.
Let us see the following example:

N10 (G18) G0 G42 X40 Z230 F300
N20 G1 X100 Z170
N30 G3 X20 Z110 I40 K150 R50 Q-1
N40 X140 Z60 I70 K100 R40 Q1
N50 G1 X120 Z80 ,A135 Q1
N60 X216 Z10 ,A180
N70 G40 G0 X260
N80 Z240

The blocks N30, N40, N50 and N60 are overdetermined ones.
The straight line N20 is not guided by the control up to its programmed endpoint (X100 Z170)
because the block N30 is overdetermined, i.e. all the addresses I K and R are filled and the
intersection point to be found is specified at the address Q.
Neither the circle block N30 is guided up to the programmed endpoint (X20 Z110) because the
circular N40 is overdetermined, too.
The last overdetermined block in the program is the straight line N60. Since the succeeding linear
block is not overdetermined, thus the coordinates X216 Z10 programmed in the block N60 are
considered by the control not to be a transit point of the straight line, but as the endpoint
coordinates of the block N60.
In general, those coordinate points of the overdetermined linear and circular blocks which are
in the plane selected will only be considered by the control to be an endpoint coordinate if they
are not followed by an overdetermined block.

189

18.1.1 Longitudinal Turning Cycle (G77)

Fig. 18.1.1-1 Fig. 18.1.1-2

18 Canned Cycles for Turning

18.1 Single Cycles

The single cycles are the longitudinal turning cycle G77, the simple thread turning cycle G78 and
the face turning cycle G79.

18.1.1 Longitudinal Turning Cycle (G77)

The straight turning cycle can be defined in the following way:

G18 (plane Z-X)

p pG77 X (U)__ Z (W)__ F__

G19 (plane Y-Z)

p pG77 Y (V)__ Z (W)__ F__

G17 (plane X-Y)

p pG77 X (U)__ Y (V)__ F__

The tool always executes infeed motion along the axis No. 2 of the selected plane and cutting
motion along the axis No. 1 of the selected plane.
Incremental data specification can be done using operator I, by programming G91, and by
specification of the addresses U, V and W, too.
In the case of incremental data specification, the sign of the data determines the direction of the
paths Nos. 1 and 2. In the figure above that shows longitudinal turning in the plane G18, the sign
of both U and W is negative.

190

18.1.1 Longitudinal Turning Cycle (G77)

Fig. 18.1.1-3

The tool moves along the paths Nos. 2 and 3 at a feed rate programmed at the address F in the
block or being modal one; and along the paths Nos. 1 and 4 at rapid traverse rate.

The taper turning cycle can be defined in the following way:

G18 (plane Z-X)

p pG77 X (U)__ Z (W)__ R(I)__ F__

G19 (plane Y-Z)

p pG77 Y (V)__ Z (W)__ R(K)__ F__

G17 (plane X-Y)

p pG77 X (U)__ Y (V)__ R(J)__ F__

The amount of taper can be specified either at the address R or at the addresses I, J and K
depending on plane selected. In both cases, the data interpretation is the same. The data specified
at the address R (I, J, K) is always incremental; it is to be interpreted from the position specified
at the address of the axis No. 2 of the plane and given in radius. The direction of the taper is
determined by the sign of the address R (I, J, K).
Interpretation of the other addresses is of the same as it was in the case of the straight turning
cycle.
The code G77 and the data programmed in the block G77 are modal.
In the block by block mode, the tool stops at the end of all the four (1, 2, 3 and 4) actions.

In the case of incremental programming, the signs of the addresses U, W and R(I) affect the
motion direction in the state G18 as follows:

191

18.1.2 Simple Thread Turning Cycle (G78)

Fig. 18.1.2-1 Fig. 18.1.2-2

18.1.2 Simple Thread Turning Cycle (G78)

The straight thread turning cycle can be defined in the following way:

G18 (plane Z-X)

p pG78 X (U)__ Z (W)__ Q__ F(E)__

G19 (plane Y-Z)

p pG78 Y (V)__ Z (W)__ Q__ F(E)__

G17 (plane X-Y)

p pG78 X (U)__ Y (V)__ Q__ F(E)__

The tool always executes infeed motion along the axis No. 2 of the selected plane and thread
cutting motion along the axis No. 1 of the selected plane.
Incremental data specification can be done using operator I, by programming G91, and by
specification of the addresses U, V and W, too.
In the case of incremental data specification, the sign of the data determines the direction of the
paths Nos. 1 and 2. In the figure above that shows thread turning in the plane G18, the sign of
both U and W is negative.
In the block, the tread lead is programmed at the address F or the number of threads per inch is
programmed at the address E, and the angle of the thread start from the zero pulse of the encoder
given in degree (°) is programmed at the address Q, as it is written in the block G33.
The motions 1, 3 and 4 are executed at a rapid traverse rate.
At the end of the path a chamfer with an angle set at the parameter N1607 Chmfr Ang is shaped.

192

18.1.2 Simple Thread Turning Cycle (G78)

Fig. 18.1.2-3

The length of the chamfered section is determined by the parameter N1606 ThrdChmfr marked
by r in the figure. The length of the section:

r@L/10
where: r: the value of the parameterN1606 ThrdChmfr;

L: the programmed thread lead.
If the value of the parameter is, for example 4, and the programmed thread lead is F2, the length
of the chamfer section will be:
 2*(4/10)=0.8 mm

The taper thread turning cycle can be defined in the following way:

G18 (plane Z-X)

p pG78 X (U)__ Z (W)__ R(I)__ Q__ F(E)__

G19 (plane Y-Z)

p pG78 Y (V)__ Z (W)__ R(K)__ Q__ F(E)__

G17 (plane X-Y)

p pG78 X (U)__ Y (V)__ R(J)__ Q__ F(E)__

The amount of taper can be specified either at the address R or at the addresses I, J and K
depending on plane selected. In both cases, the data interpretation is the same. The data specified
at the address R (I, J, K) is always incremental; it is to be interpreted from the position specified
at the address of the axis No. 2 of the plane and given in radius. The direction of the taper is
determined by the sign of the address R (I, J, K).
Interpretation of the other addresses is of the same as it was in the case of the straight thread
turning cycle.
The angle of the chamfer is 45° in this case too, and the length of the chamfer r is measured along
the straight line parallel with the axis.
The code G78 and the data programmed in the block G78 are modal.
In the block by block mode, the tool stops at the end of all the four (1, 2, 3 and 4) actions.

The effect produced by pushing the button STOP in the action 2 of the cycle
It is possible to stop the actions 1, 3 and 4 of
the cycle any time using the button STOP, and
the slides stop as they do in the case of the
normal interpolation G0.
Pushing the button STOP is effective in the
thread turning section too, however, in this
case the control cuts such a chamfer at first it
made at the end of the action 2, then it retracts
at a rapid traverse rate along the axis X, after
that it moves along the axis Z to the starting
point. The button STOP is not effective
already along the escape path.

193

18.1.3 Face Turning Cycle (G79)

Fig. 18.1.3-1

18.1.3 Face Turning Cycle (G79)

The straight face turning cycle can be defined in the following way

G18 (plane Z-X)

p pG79 X (U)__ Z (W)__ F__

G19 (plane Y-Z)

p pG79 Y (V)__ Z (W)__ F__

G17 (plane X-Y)

p pG79 X (U)__ Y (V)__ F__

The tool always executes infeed motion along the axis No. 1 of the selected plane and cutting
motion along the axis No. 2 of the selected plane.
Incremental data specification can be done using operator I, by programming G91, and by
specification of the addresses U, V and W, too.
In the case of incremental data specification, the sign of the data determines the direction of the
paths Nos. 1 and 2. In the figure above that shows face turning in the plane G18, the sign of both
U and W is negative.
The tool moves along the paths Nos. 2 and 3 at a feed rate programmed at the address F in the
block or being modal one; and along the paths Nos. 1 and 4 at rapid traverse rate.

Fig. 18.1.3-2

194

18.1.3 Face Turning Cycle (G79)

Fig. 18.1.3-3

The taper face turning cycle can be defined in the following way:

G18 (plane Z-X)

p pG79 X (U)__ Z (W)__ R(K)__ F__

G19 (plane Y-Z)

p pG79 Y (V)__ Z (W)__ R(J)__ F__

G17 (plane X-Y)

p pG79 X (U)__ Y (V)__ R(I)__ F__

The amount of taper can be specified either at the address R or at the addresses I, J and K
depending on plane selected. In both cases, the data interpretation is the same. The data specified
at the address R (I, J, K) is always incremental; it is to be interpreted from the position specified
at the address of the axis No. 1 of the plane and given in radius. The direction of the taper is
determined by the sign of the address R (I, J, K).
Interpretation of the other addresses is of the same as it was in the case of the straight face turning
cycle.
The code G79 and the data programmed in the block G79 are modal.
In the block by block mode, the tool stops at the end of all the four (1, 2, 3 and 4) actions.
In the case of incremental programming, the signs of the addresses U, W and R(K) affect the
motion direction in the state G18 as follows:

195

18.1.4 Az egyszerû ciklusok használata

Fig. 18.1.4-1

18.1.4 Application of Single Cycles

Both the code G and the input parameters of the cycles are modal. This means, that if the
variables X(Z, Y), U(W V), Z(Y, X), W(V, U), or R(I, J or K) are already given and their values
are unchanged, they should not be written in the program again. For example:

G91 G18...
G77 X–20 Z–50 F0.5

 X–30
X–40
X–50
G0... (cycle is deleted)
...

In the example above, it is only the cutting
depth the value of which (X) does not change,
so only this address has to be filled, the value
of the other ones remains unchanged.
In the switched-on state of the cycle, it will be
executed in the only case if one of the motion-related variables X(U), Y(V), Z(W) is also filled.
For example, if in cycle state a function is being executed in a separate block, the cycle state will
remain switched on, but the cycle will not be repeated:

G18...
G77 U–20 W–50 F0.5 (it switches on and executes the cycle)
T202 (the cycle is switched on, but it does

not executes it)
U–30 (it executes the cycle)
G1... (the cycle is deleted)
...

The interpolation codes G belonging to the group 1 are those that delete the cycle and the
modal variables.
Function M, S and T can also be written in the blocks containing single cycles. Functions are
always executed in the action 1 of the cycle, either parallelly with the motion or at the end of the
motion. If, in certain cases, it is not good, the function will have to be written in a separate block.

196

18.2.1 Roughing Cycle (G71)

18.2 Multiple Repetitive Cycles

The multiple repetitive cycles simplify the writing of part program. For example, the contour of
the finished workpiece has to be described for finishing. This contour at the same time,
determines the basis of the cycles of workpiece roughing (G71, G72 and G73). In addition to the
roughing cycles, a finishing cycle (G70), a threading cycle (G76) and two grooving cycles (G74
and G75) are also available.

18.2.1 Roughing Cycle (G71)

Two types of roughing cycle can be distinguished: the type 1 and the type 2.

Type 1 Roughing Cycle
If the finished workpiece contour marked in the figure with the points A)A’)B is given, the
roughing of the unmachined workpiece will be executed by the cycle G71 with depth of cut Äd
and leaving the finishing allowances Äu/2 and Äw.

Fig. 18.2.1-1

197

18.2.1 Roughing Cycle (G71)

Method 1 of specification:
Specification of the roughing cycle is done by filling the parameters of two succeeding blocks.

G18 (plane Z-X)
G71 U(Äd) R (e)

s fG71 P (n) Q (n) U(Äu) W(Äw) F(f) S(s) T(t)

sN(n) X(U) ...
...

fN(n)...

G19 (plane Y-Z)
G71 W(Äd) R (e)

s fG71 P (n) Q (n) W(Äu) V(Äw) F(f) S(s) T(t)

sN(n) Z(W) ...
...

fN(n)...

G17 (plane X-Y)
G71 V(Äd) R (e)

s fG71 P (n) Q (n) V(Äu) U(Äw) F(f) S(s) T(t)

sN(n) Y(V) ...
...

fN(n)...

where:
Äd: depth of cut. It is a positive number to be always interpreted in radius. If the value of the

depth of cut is not given in the program, the control will have it from the parameter N1600
Depth of Cut.

e: escaping. It is a positive number to be always interpreted in radius. If the value of the
escaping is not given in the program, the control will have it from the parameter N1601
Escape.

sn : starting block number of the program part describing the finishing (A)A’)B course).

fn : final block number of the program part describing the finishing (A)A’)B course).
Äu: value and direction of the finishing allowance along the second axis of the selected

plane. It is a signed number to be interpreted in diameter or radius, depending on
interpretation of the second axis.

Äw: value and direction of the finishing allowance along the first axis of the selected plane.
It is a signed number to be interpreted in diameter or radius, depending on interpretation
of the first axis.

f, s, t: in the course of the cycle, the F, S and T functions programmed in the program part from

s fn to n describing the finishing (A)A’)B course) are ignored by the control, but the
control validates the values f, s and t given in the block G71 or which are modal.

The value given at the address U (W, V) can mean Äd or Äu depending on whether P and Q are
programmed or not. If not, the address U (W, V) will mean Äd; if yes, the address U (W, V) will
mean Äu.
The roughing cycle will be executed by the block in which P and Q are given.

198

18.2.1 Roughing Cycle (G71)

Fig. 18.2.1-2

Motion between the points A)A’ must be specified in the block given at the address P and

snumbered by n , by obligatory programming the G0 or G1. The code given here determines
whether, in the course of roughing, infeed (motion in the direction A)A’) is executed at rapid
traverse rate (in the case of programming the G0) or at feed rate (in the case of programming the

sG1). In this block P(n), the following motions must always be specified: in the case of G18 -
motion in direction X, in the case of G19 - motion in direction Z, and in the case of G17 -
motion in direction Y; referring to other axis is not allowed.

The course A’)B is the real contour
composed of straight lines and circle
arcs. In the case of type 1 roughing
cycle, the contour has to be
monotonously increasing or
decreasing both in the directions X (Z,
Y) and Z (Y, X), which means that
regression is not possible in any
directions. The cycle can be used in all
the four plane quadrants. In the figure
the sign of the finish allowance is also
shown.
The control ignores the F, S and T
functions programmed in the program

s fpart between the blocks n and n , and
it validates those that were programmed
in the block G71 (f, s, t) or previously. This also concerns the constant surface speed programmed

s fbetween the blocks n and n , i.e. the control validates the state G96 or G97, and constant surface
speed that were valid before the block G71.

s fSubprogram call in the blocks from n to n is not allowed.

199

18.2.1 Roughing Cycle (G71)

Calculation of tool nose radius compensation (G41 and G42) can be switched on in the course
of cycle execution with the restriction that the switch on (G41 or G42) and the switch off (G40)

s fhas to be done between the blocks n and n :

CORRECT
sN(n) X(U) G41 ...
 (G41)...
 ...

 (G40)

fN(n) G40 ...

or
 G41

sN(n) X(U) ...
 ...
 ...

fN(n) ...
 G40

WRONG
 G41

sN(n) X(U) ...
 ...
 ...
 G40

fN(n) ...
or

sN(n) G41 X(U) ...
 ...
 ...

fN(n) ...
 G40

Method 2 of specification:

G18 (plane Z-X)

s fG71 P (n) Q (n) U(Äu) W(Äw) D(Äd) F(f) S(s) T(t)

sN(n) X(U) ...
...

fN(n)...

G19 (plane Y-Z)

s fG71 P (n) Q (n) W(Äu) V(Äw) D(Äd) F(f) S(s) T(t)

sN(n) Z(W) ...
...

fN(n)...

G17 (plane X-Y)

s fG71 P (n) Q (n) V(Äu) U(Äw) D(Äd) F(f) S(s) T(t)

sN(n) Y(V) ...
...

fN(n)...

Input parameters of both methods are the same.

200

18.2.1 Roughing Cycle (G71)

Fig. 18.2.1-4

Fig. 18.2.1-3

Type 2 Roughing Cycle

The way of specification of the type 2 roughing cycle is the same as it was in the case of the
type 1 roughing cycle; its code is G71, and it has the same input parameters .
The difference is in specification of the starting block of

sthe contour (the block numbered by n). While in the case
of calling the type 1 roughing cycle it is not allowed to
refer to the first axis, the address Z (Y, X) in this block,
i.e. the motion of the course A)A’ must be perpendicular
to the first axis Z (Y, X); in the case of calling the type 2
roughing cycle it is obligatory to refer to the address Z (Y,
X). So, the course A)A’ does not have to be perpendicular
to the first axis Z (Y, X).

Specification of the type 1
G18
G71 U8 R1
G71 P100 Q200 U0.5 W0.2
N100 X(U)___
...
...
...
N200

Specification of the type 2
G18
G71 U8 R1
G71 P100 Q200 U0.5 W0.2
N100 X(U)___ Z(W)__
...
...
...
N200

In the case, when type 2 cycle has to be used, but in the block starting the contour, motion has to
be executed in the direction X (Z, Y) only, i.e. perpendicularly to the axis Z (Y, X), incremental
displacement 0 along the axis Z (Y, X) has to be programmed, i.e. Z (Y, X) I0 or W (V, U).

In the case of type 2 roughing cycle, the contour does not have to be monotonously increasing
or decreasing in the direction of the second axis X (Z, Y), i.e. the contour can be regressive and
can have pockets. Programming the finishing allowance (Äw) in the direction of the first axis
is not allowed, W (V, U) has to be 0, otherwise the tool could cut into one of the sides of the
pocket.

201

18.2.1 Roughing Cycle (G71)

Fig. 18.2.1-6

Fig. 18.2.1-5

Fig. 18.2.1-7

However, in the direction of the
first axis Z (Y, X) the contour has
to remain monotonic, it cannot
be regressive.

In the case of the type 2 roughing cycle, the escaping is
executed perpendicularly to the axis Z with a valid
escaping value e.

According to the bit position #2 FPT of the parameter
N1611 Turning Cyc. Config., the type 2 roughing cycle can cut the pockets in two different ways.
If FPT:

=0: the cycle will be started by cutting the last pocket in the direction of contour
following;

=1: the cycle will be started by cutting the first pocket in the direction of contour
following.

202

18.2.1 Roughing Cycle (G71)

The following applies both to the type 1 and type 2 roughing cycles.

Continuing the program after execution of a roughing cycle
After execution of a roughing cycle, machining will continue either by execution of the blocks
succeeding the block G71 P Q or after the block having the number specified at the address Q.
In the first case, if the starting block of the contour succeeds the block G71 P Q, the execution
will move to the contour following, and finishing of the workpiece will be done.
In the second case, the program execution will continue by the block succeeding the contour final
block specified at the address Q, and for this reason finishing cycle G70 has to be programmed
for finishing. It is useful in the case, when several roughing or facing cycles are carried out by the
use of the same roughing tool, and then having changed a finishing tool these several will be
finished using the finishing cycle G70.
Selection between the two options above can be made on the basis of the bit #1 SKP of the
parameter N1611 Turning Cyc. Config.. If SKP:

=0: the program will continue by the block succeeding the command G71, G72, G73;
=1: the program will continue by the block succeeding the block specified at the address

Q in the command G71, G72, G73.

SKP=0
G18
G71 U8 R1
G71 P100 Q200 U0.5 W0.2
(the program continues here)
N100
...
N200
(finishing is completed)

SKP=1
G18
G71 U8 R1
G71 P100 Q200 U0.5 W0.2

N100
...
N200
(the program continues here)
...
G70 P100 Q200 (finishing)

Path monotonicity test
Both in type 1 and type 2 roughing cycles, the contour
must be monotonic along the roughing axis, i.e.
regressive element is not allowed along the path. If the
path is not monotonic, the control will send the error
message ‘The contour is not monotonic’.
It is possible to set a tolerance for monotonicity in the
parameter N1613 Tolerance Along Roughing Axis which
will be taken into account by the control for the cycles
G71 and G72, too. In the case, when the degree of
regression is smaller than the value given in the parameter,
the control will not send an error message.

Fig. 18.2.1-8

203

18.2.1 Roughing Cycle (G71)

The type 1 roughing cycle must also be monotonic along
the cutting (infeed) axis, i.e. pocket is not allowed along
the path. If the path is not monotonic, the control will send
the error message ‘The contour is not monotonic’.
It is possible to set a tolerance for monotonicity in the
parameter N1614 Tolerance Along Cutting Axis which
will be taken into account by the control for the type 1
cycles G71 and G72, too. In the case, when the degree of
regression is smaller than the value given in the parameter,
the control will not send an error message.

Both in type 1 and type 2 roughing cycles, the
path can be regressive in the moment of
switching on (G41, G42) and switching off
(G40) the tool nose radius compensation
even in the case, when the programmed
contour is monotonic.
The reason for this is that in the state G40 the
imaginary tip of the tool is guided by the
control along the path, while in the state G41,
G42 the tool nose circle is guided parallelly
with the contour.
There can be set the monotonicity test of the
contour passed between the blocks numbered
at the address P and Q in the roughing cycles
G71, G72; using the bit #3 FCK of the parameter N1611 Turning Cyc. Config. . If the value of
the parameter:

=0: the test is carried out for the path modified with radius compensation;
=1: the test is carried out for the original path not modified with radius compensation.

Examples
The following bit states of the parameter N1611 Turning Cyc. Config. are assumed in the
examples below:

#1 SKP=1
#3 FCK=1

An example for the type 1 cycle G71:

G18...
N10 G54 G0 X200 Z50
N20 G92 S3000
N30 G96 S400
N40 T101 M3 (ROUGHING TOOL, Q3)
N50 G0 X160 Z2
/N60 G71 U4 R1
/N70 G71 P80 Q160 U1 W0.5 F0.5 (D4) (ROUGHING)
N80 G0 X100
N90 G1 G42 Z0

Fig. 18.2.1-9

Fig. 18.2.1-10

204

18.2.1 Roughing Cycle (G71)

N100 X110 ,C2
N110 Z-25
N120 G2 X130 Z-35 R10
N130 G1 X140 ,R2
N140 Z-45 ,C3
N150 X155
N160 G40 X160
N170 G0 X200 Z50
N180 T202 (FINISHING TOOL, Q3)
N190 G0 X160 Z2
/N200 G70 P80 Q160 (FINISHING)
N210 G0 X200 Z50
...

An example for the type 2 cycle G71:

G18...
N10 G54 G0 X200 Z50
N20 G92 S3000
N30 G96 S400
N40 T606 M3 (ROUGHING TOOL, Q8)
N50 G0 X180 Z2
/N60 G71 U6 R4
/N70 G71 P80 Q210 U1 (D6) (ROUGHING)
N80 G42 G0 X98 Z2
N90 G1 Z-10
N100 X100
N110 ,A150 (intersection point between N110-N120)
N120 X110 Z-40 ,A225
N130 Z-50
N140 ,A150 (intersection point between N140-N150)
N150 G3 X110 Z-110 I55 K-80 R30 Q1 (intersection point

between N150-N160)
N160 G1 X100 Z-130 ,A210 Q1 (intersection point between

N160-N170)
N170 G2 X100 Z-150 R10 Q-1 (intersection point between

N170-N180)
N180 X110 Z-180 I55 K-160 R20 Q-1
N190 G1 X170
N200 Z-190
N210 G40 G0 X180
N220 G0 X200 Z50
N230 T707 (FINISHING TOOL Q8)
/N240 G70 P80 Q210 (FINISHING)
N250 G0 X200 Z50
...

205

18.2.1 Roughing Cycle (G71)

Type 3 Roughing Cycle

The type 3 roughing cycle can be used when the recurving contour, which is not monotonous in
the X-axis direction, is to be produced with two different tools. In such a case, two G71 calls must
be programmed for the two different tools, but the contour description is the same for both
G71s, i.e. the contour description does not need to be split into two parts.
In such case, the first cycle produces the non-recurving part of the contour by the use of the first
tool, and then, after changing over the second tool, the second cycle produces the recurving part
of the contour, i.e. the pockets.

Programming the Type 3 Roughing Cycle
The type 3 roughing cycle must be programmed in the same way as the type 2. The only
difference is that type 3 cycle is identified by the H address.

G71 ... H
Interpretation of the H address:

H1: if the value of H is positive, the only non-recurving parts will be produced by the
cycle,
H-1: if the value of H is negative, the only recurving parts will be produced by the cycle
along the contour.

In the program, in both G71s, the same initial (P address) and completion (Q address) block
numbers will be specified for the blocks descripting the contour:

G71 Pp Qq ... H1 (producing the non-recurving parts)
...
G71 Pp Qq ...H-1 (producing the recurving parts)
...
Np X Z (initial block of the contour)
...
Nq (completion block of the contour)

206

18.2.1 Roughing Cycle (G71)

A sample program of the application of the Type 3 Roughing Cycle
Attention: In the following sample program, the #1 SKP=0 state of the parameter N1611

Turning Cyc. Config. is assumed!

...
N90 G54 G0 X200 Z50
N100 G92 S3000
N110 G96 S400
N120 T303 M4 (roughing tool, Q3)
N130 G0 X180 Z2
/N140 G71 U6 R4
/N150 G71 P240 Q370 U3 H1 (roughing the monotonous parts)
N160 G0 X200 Z50
N170 T606 M4 (roughing tool, Q8)
/N180 G71 P240 Q370 U3 H-1 (roughing the pockets)
N190 G0 X200 Z50
N200 T101 M4 (finishing tool, Q8)
N210 G70 P240 Q370 (finishing)
N220 Z50
N230 M30 (end of the program)
N240 G42 G0 X98 Z2 (start of the contour)
N250 G1 Z-10
N260X100
N270 ,A150
N280 X110 Z-40 ,A225
N290 Z-50
N300 ,A150 (X161.962; Z-95.)
N310 G3 X110 Z-110 I55 K-80 R30 Q1
N320 G1 X100 Z-130 ,A210 Q1
N330 G2 X100 Z-150 R10 Q-1
N340 X110 Z-180 I55 K-160 R20 Q-1
N350 G1 X170
N360 Z-190
N370 G40 G0 X180 (end of the contour)

207

18.2.2 Face Roughing Cycle (G72)

Fig. 18.2.2-1

18.2.2 Face Roughing Cycle (G72)

The face roughing cycle (G72) is the same as the roughing cycle G71 with the exception that
cutting is executed parallelly with the second axis of the plane. Everything described for the
cycle G71 are also valid for the cycle G72, so they are not detailed herein.

Type 1 Face Roughing Cycle

208

18.2.2 Face Roughing Cycle (G72)

Method 1 of specification:

G18 (plane Z-X)
G72 W(Äd) R (e)

s fG72 P (n) Q (n) U(Äu) W(Äw) F(f) S(s) T(t)

sN(n) Z(W) ...
...

fN(n)...

G19 (plane Y-Z)
G72 V(Äd) R (e)

s fG72 P (n) Q (n) W(Äu) V(Äw) F(f) S(s) T(t)

sN(n) Y(V) ...
...

fN(n)...

G78 (plane X-Y)
G72 U(Äd) R (e)

s fG72 P (n) Q (n) V(Äu) U(Äw) F(f) S(s) T(t)

sN(n) X(U) ...
...

fN(n)...

Meaning of the parameters is the same as it was in the case of the cycle G71.

Method 2 of specification:

G18 (plane Z-X)

s fG72 P (n) Q (n) U(Äu) W(Äw) D(Äd) F(f) S(s) T(t)

sN(n) Z(W) ...
...

fN(n)...

G19 (plane Y-Z)

s fG72 P (n) Q (n) W(Äu) U(Äw) D(Äd) F(f) S(s) T(t)

sN(n) Y(V) ...
...

fN(n)...

G78 (plane X-Y)

s fG72 P (n) Q (n) V(Äu) U(Äw) D(Äd) F(f) S(s) T(t)

sN(n) X(U) ...
...

fN(n)...

209

18.2.2 Face Roughing Cycle (G72)

Fig. 18.2.2-2

Motion between the points A)A’ must
be specified in the block given at the

saddress P and numbered by n . In this

sblock P(n), the following motions must
always be specified: in the case of G18
- motion in direction Z, in the case of
G19 - motion in direction Y, and in the
case of G17 - motion in direction X;
referring to other axis is not allowed.

The cycle can be used in all the four
plane quadrants. In the figure the sign
of the finish allowance is also shown
for all the four cases.

Type 1 Face Roughing Cycle

Specification of the type 2 face roughing cycle should be done in the same way as it was done
in the case of the type 1 face roughing cycle, its code is G72, and its input parameters are the
same, too.

The difference is in specification of the starting block of the contour (the block numbered by

sn). While in the case of calling the type 1 face roughing cycle it is not allowed to refer to the
second axis, the address X (Z, Y) in this block, i.e. the motion of the course A)A’ must be
perpendicular to the second axis X (Z, Y) ; in the case of calling the type 2 face roughing cycle
it is obligatory to refer to the address X (Z, Y). So, the course A)A’ does not have to be
perpendicular to the second axis X (Z, Y).

Examples

The following bit states of the parameter N1611 Turning Cyc. are assumed in the examples
below:

#1 SKP=1
#3 FCK=1

An example for the type 1 cycle G72:

G18...
N10 G54 G0 X200 Z50
N20 G92 S3000
N30 G96 S600

210

18.2.2 Face Roughing Cycle (G72)

N40 T101 M3 (ROUGHING TOOL, Q3)
N50 G0 X161 Z2
/N60 G72 W5 R1
/N70 G72 P80 Q140 U1 W0.5 (D5) F0.5 (ROUGHING)
N80 G41 G0 Z-25
N90 G1 X120 ,C3
N100 Z-17 ,R2
N110 G3 X100 Z-7 R10
N120 G1 Z-3 ,C1
N130 X80
N140 G40 Z2
N150 G0 X200 Z50
N160 T202 (FINISHING TOOL Q3)
N170 X161 Z2
/N180 G70 P80 Q140 (FINISHING)
N190 G0 X200 Z50
...

An example for the type 2 cycle G72:

G18...
N10 T505 (ROUGHING TOOL, Q7)
N20 G54 G0 X200 Z50
N30 G92 S3000
N40 G96 S200 M3
N50 G0 X160 Z5
/N60 G72 W4 R1
/N70 G72 P80 Q150 W0.5 (D4) (ROUGHING)
N80 G41 G0 X160 Z-25
N90 G1 X145 ,R4
N100 X125 Z-10 ,R3
N110 X105 Z-25 ,R4
N120 X95
N130 G2 X15 Z-25 R20 ,R5
N140 G1 X0
N150 G40 Z5
N160 G0 X200 Z50
N170 T202 (FINISHING TOOL Q7)
N180 X160 Z5
/N190 G70 P80 Q150 (FINISHING)
N200 G0 X200 Z50
...

Type 3 Face Roughing Cycle

The type 3 face roughing cycle can be used when the recurving contour, which is not monotonous
in the Z-axis direction, is to be produced with two different tools. In such a case, two G72 calls
must be programmed for the two different tools, but the contour description is the same for both
G72s, i.e. the contour description does not need to be split into two parts.

211

18.2.2 Face Roughing Cycle (G72)

In such case, the first cycle produces the non-recurving part of the contour by the use of the first
tool, and then, after changing over the second tool, the second cycle produces the recurving part
of the contour, i.e. the pockets.

Programming the Type 3 Face Roughing Cycle
The type 3 face roughing cycle must be programmed in the same way as the type 2. The only
difference is that type 3 cycle is identified by the H address.

G72 ... H
Interpretation of the H address:

H1: if the value of H is positive, the only non-recurving parts will be produced by the
cycle,
H-1: if the value of H is negative, the only recurving parts will be produced by the cycle
along the contour.

In the program, in both G72s, the same initial (P address) and completion (Q address) block
numbers will be specified for the blocks descripting the contour:

G72 Pp Qq ... H1 (producing the non-recurving parts)
...
G72 Pp Qq ...H-1 (producing the recurving parts)
...
Np X Z (initial block of the contour)
...
Nq (completion block of the contour)

212

18.2.2 Face Roughing Cycle (G72)

A sample program of the application of the Type 3 Face Roughing Cycle
Attention: In the following sample program, the #1 SKP=0 state of the parameter N1611

Turning Cyc. Config. is assumed!

...
N80 G54 G0 X200 Z50
N90 G92 S3000
N100 G96 S200
N110 T303 M4 (roughing tool, Q3)
N120 G0 X160 Z5
/N130 G72 W5 R3
/N140 G72 P230 Q300 W2 H1 (roughing the monotonous parts)
N150 G0 X200 Z50
N160 T404 S1=500 M4 (roughing tool, Q7)
/N170 G72 P230 Q300 W2 H-1 (roughing the pockets)
N180 G0 X200 Z50
N190 T505 S1=500 M4 (finishing tool, Q7)
N200 G70 P230 Q300 (finishing)
N210 G0 X200 Z50
N220 M30 (end of the program)
N230 G41 G0 X160 Z-25 (start of the contour)
N240 G1 X145 ,R4
N250 X125 Z-10 ,R3
N260 X105 Z-25 ,R4
N270 X95
N280 G2 X15 Z-25 R20 ,R5
N290 G1 X0 (Z-30)
N300 G40 (X-2) Z5 (end of the contour)

213

18.2.3 Pattern Repeating Cycle (G73)

Fig. 18.2.3-1

18.2.3 Pattern Repeating Cycle (G73)

This cycle can be used for roughing pre-forged, cast or pre-roughed workpieces having the
outline of the final shape already. The cycle repeats pass by pass a contour written in the program.

Method 1 of specification:

G18 (plane Z-X)
G73 U(Äi) W(Äk) R (d)

s fG73 P (n) Q (n) U(Äu) W(Äw) F(f) S(s) T(t)

sN(n) ...
...

fN(n) ...

G19 (plane Y-Z)
G73 W(Äi) V(Äk) R (d)

s fG73 P (n) Q (n) W(Äu) V(Äw) F(f) S(s) T(t)

sN(n) ...
...

fN(n) ...

G17 (plane X-Y)
G73 V(Äi) U(Äk) R (d)

s fG73 P (n) Q (n) V(Äu) U(Äw) F(f) S(s) T(t)

sN(n) ...
...

fN(n) ...

214

18.2.3 Pattern Repeating Cycle (G73)

series of commands is used, where:

Äi: value and direction of the roughing allowance along the second axis of the selected plane.
It is a signed number to be always interpreted in radius. If the value of the roughing
allowance is not given in the program, the control will have it from the parameter N1603
Relief Ax2.

Äk: value and direction of the roughing allowance along the first axis of the selected plane.
It is a signed number to be always interpreted in radius. If the value of the roughing
allowance is not given in the program, the control will have it from the parameter N1602
Relief Ax1.

d: number of divisions. If the number of passes is not given in the program, the control will
have it from the parameter N1604 Numb of Div.

sn : starting block number of the program part describing the finishing (A)A’)B course).

fn : final block number of the program part describing the finishing (A)A’)B course).

Äu: value and direction of the finishing allowance along the second axis of the selected plane.
It is a signed number to be interpreted in diameter or radius, depending on interpretation
of the coordinate.

Äw: value and direction of the finishing allowance along the first axis of the selected plane.
It is a signed number to be interpreted in diameter or radius, depending on interpretation
of the coordinate.

The addresses U (W, V) and W (V, U) given in the block G73 can mean Äi and Äk, or Äu and Äw
depending on whether P and Q are programmed in the given block. In other words, if P and Q are
programmed, U and W will mean Äu and Äw, respectively; if they are not programmed, U and
W will mean Äi and Äk, respectively.
The cycle will be executed in the block containing P and Q. The cycle can be executed in all the
four plane quadrants depending on the sign of the values Äi, Äk, Äu and Äw. After each pass and
at the end of the cycle, the tool returns to the point ‘A’.

The control ignores the F, S and T functions programmed in the program part between the

s fblocks n and n , and it validates those that were programmed in the block G73 (f, s, t) or

spreviously. This also concerns the constant surface speed programmed between the blocks n and

fn , i.e. the control validates the state G96 or G97, and constant surface speed that were valid
before the block G73.

s fSubprogram call in the blocks from n to n is not allowed.
Calculation of tool nose radius compensation can be given in the blocks describing the cycle with
the restrictions relating to the function G71.

Continuing the program after execution of a pattern repeating cycle
After execution the cycle, machining will continue either by execution of the blocks succeeding
the block G73 P Q, or after the block numbered at the address Q. In the latter case, the workpiece
can be finished using the finishing cycle G70.
Selection between the two options above can be made on the basis of the bit #1 SKP of the
parameter N1611 Turning Cyc. Config.. If SKP:

=0: the program will continue by the block succeeding the command G71, G72, G73;

215

18.2.3 Pattern Repeating Cycle (G73)

=1: the program will continue by the block succeeding the block specified at the address
Q in the command G71, G72, G73.

Method 2 of specification:

G18 (plane Z-X)

s fG73 P (n) Q (n) U(Äu) W(Äw) I(Äi) K(Äk) D(d) F(f) S(s) T(t)

sN(n) ...
...

fN(n) ...

G19 (plane Y-Z)

s fG73 P (n) Q (n) W(Äu) V(Äw) K(Äi) J(Äk) D(d) F(f) S(s) T(t)

sN(n) ...
...

fN(n) ...

G17 (plane X-Y)

s fG73 P (n) Q (n) V(Äu) U(Äw) J(Äi) I(Äk) D(d) F(f) S(s) T(t)

sN(n) ...
...

fN(n) ...

Input parameters of both methods are the same.

Example

The bit state #1 SKP=1 of the parameter N1611 Turning Cyc. Config. are assumed in the
examples below:

G18...
N10 G96 S200
N20 G92 S3000
N30 G54 G0 X70 Z20
N40 T111 M3(ROUGHING TOOL Q3)
/N50 G73 U10 W4 R4
/N60 G73 P70 Q130 U1 W0.5 (I10 K4 D4)
N70 G42 X10 Z5 F1.4
N80 G1 Z0
N90 X20 ,C1
N100 Z-10
N110 G2 X40 Z-20 R10
N120 G1 Z-30
N130 G40 G0 X42
N140 G0 X70 Z20
N150 T212 (FINISHING TOOL Q3)
/N160 G70 P70 Q130
N170 G0 X70 Z20
...

216

18.2.4 Finishing Cycle (G70)

18.2.4 Finishing Cycle (G70)

s fAfter roughing the contour described by the blocks from n to n using the commands G71, G72
or G73, finishing the contour can be executed using the command G70. Finishing can be given
by the command

s fG70 P (n) Q (n)

where

sn : starting block number of the program part describing the finishing ;

fn : final block number of the program part describing the finishing.

s fDuring the cycle, the functions F, S and T programmed in the program part from n to n and the
commands related to the calculation of the constant cutting speed will be executed in contrast
with the cycles G71, G72 and G73.
At the end of the finishing cycle, the block following the G70 will be read in.
In the course of the finishing cycle, calculation of tool nose radius compensation will be going
on.

s fSubprogram call is not allowed in the blocks from n to n .

Examples for the use of finishing cycles can be found at the cycles G71, G72 and G73.

217

18.2.5 Face Grooving Cycle (G74)

Fig. 18.2.5-1

18.2.5 Face Grooving Cycle (G74)

The figure below illustrates motion of the G74-type face grooving cycle. The grooving is
executed along the first axis of the selected plane.

Method 1 of specification:

G18 (plane Z-X)
G74 R (e)

p pG74 X (U) Z (W) P (Äi) Q (Äk) R (Äd) F

G19 (plane Y-Z)
G74 R (e)

p pG74 Y (V) Z (W) P (Äi) Q (Äk) R (Äd) F

G17 (plane X-Y)
G74 R (e)

p pG74 X (U) Y (V) P (Äi) Q (Äk) R (Äd) F

series of commands is used, where:

e: escaping. It is a modal positive number given in radius. It remains unchanged until it is
rewritten. If the value of the escaping is not given in the program, the control will have
it from the parameter N1605 Retr G74 G75.

X(Z, Y): absolute coordinate of the point ‘B’ given along the second axis of the plane.

U(W, V): incremental distance from the point A to the point B.

218

18.2.5 Face Grooving Cycle (G74)

 Z(Y, X): absolute coordinate of the point ‘C’ given along the first axis of the plane.

W(V, U): incremental distance from the point A to the point C.

Äi: infeed along the second axis of the plane. It is a positive number given in radius.

Äk: infeed along the first axis of the plane. It is a positive number given in radius.

Äd: relief of the tool at the cutting bottom. It is a number given in radius. The motion
direction is always contrary to the sign of the vector AB. At the end of the first grooving
the displacement Äd is omitted.

F: feed.

In the figure, the distances covered at feed rate are marked with the letter F, and the distances
covered at rapid traverse rate are marked with the letter R.
Filling the address Z(Y, X) or W(V, U) will determines whether filling the address R in the block
G74 defines e or Äd. If the address is filled, the address R will mean Äd.
If filling the address X(Z, Y) or U(W, V) is omitted, and filling the address P(Äi) is also emitted,
then motion will be executed along the axis Z only, i.e. a drilling cycle will occur.

Method 2 of specification:

G18 (plane Z-X)

p pG74 X (U) Z (W) I (Äi) K (Äk) D (Äd) F

G19 (plane Y-Z)

p pG74 Y (V) Z (W) K (Äi) J (Äk) D (Äd) F

G17 (plane X-Y)

p pG74 X (U) Y (V) J (Äi) I (Äk) D (Äd) F

The input parameters of the method 2 of specification have to interpreted as those of the method
1 of specification.

Example

G18...
G0 X100 Z5 S1=1500 M3 F1
G74 R6
G74 X70 Z-100 P6 (I6) Q25 (K25) R2 (D2) F1
G0 X120 Z10
...

219

18.2.6 Grooving Cycle (G75)

Fig. 18.2.6-1

18.2.6 Grooving Cycle (G75)

The figure below illustrates motion of the G75-type grooving cycle. The grooving is executed
along the second axis of the selected plane.

Method 1 of specification:

G18 (plane Z-X)
G75 R (e)

p pG75 X (U) Z (W) P (Äi) Q (Äk) R (Äd) F

G19 (plane Y-Z)
G75 R (e)

p pG75 Y (V) Z (W) P (Äi) Q (Äk) R (Äd) F

G17 (plane X-Y)
G75 R (e)

p pG75 X (U) Y (V) P (Äi) Q (Äk) R (Äd) F

Variables of the cycle have to be interpreted as those of the cycle G74 with the exception that the
grooving is executed in the direction X (Z, Y); for this reason, interpretation of the addresses X(Z,
Y) U(W, V) and Z(Y, X) W(V, U) interchanges.

220

18.2.6 Grooving Cycle (G75)

Method 2 of specification:

G18 (plane Z-X)

p pG75 X (U) Z (W) I (Äi) K (Äk) D (Äd) F

G19 (plane Y-Z)

p pG75 Y (V) Z (W) K (Äi) J (Äk) D (Äd) F

G17 (plane X-Y)

p pG75 X (U) Y (V) J (Äi) I (Äk) D (Äd) F

The input parameters of the method 2 of specification have to interpreted as those of the method
1 of specification.

Example

G18 ...
G0 X105 Z-15 S1=1500 M3 F1
G75 R6
G75 X20 Z-30 P15 (I15) Q6 (K6) R2 (D2) F1
G0 X120 Z10
...

221

18.2.7 Multiple Threading Cycle (G76)

Fig. 18.2.7-1

Fig. 18.2.7-2

18.2.7 Multiple Threading Cycle (G76)

The figure below illustrates motion of the G76-type multiple threading cycle.

222

18.2.7 Multiple Threading Cycle (G76)

Method 1 of specification:

G18 (plane Z-X)

minG76 P (n) (r) (á) Q (Äd) R (d)

p pG76 X (U) Z (W) P (k) Q (Äd) R (i) F(E)(L)

G19 (plane Y-Z)

minG76 P (n) (r) (á) Q (Äd) R (d)

p pG76 Y (V) Z (W) P (k) Q (Äd) R (i) F(E)(L)

G17 (plane X-Y)

minG76 P (n) (r) (á) Q (Äd) R (d)

p pG76 X (U) Y (V) P (k) Q (Äd) R (i) F(E)(L)

series of commands is used.

minThe following parameters are the input data of the first block G76 P (n) (r) (á) Q (Äd) R (d).

n: repetitive count in finishing (n=01...99)

This value is modal, and it remains unchanged until it is rewritten. If the repetitive count
in finishing is not given in the program, the control will have it from the parameter N1608
Count Fin.

r: chamfering (r=01...99)
When leaving the thread, the control pulls out the tool at an angle given in the parameter
N1607 Chmfr Ang. The ‘r’ is used to give the length of pull out chamfer depending on
the lead. The length is

r@L/10
where L is the programmed lead.
This value is modal, and it remains unchanged until it is rewritten. If the chamfer is not
given in the program, the control will have it from the parameter N1606 ThrdChmfr.

á: angle of the tool nose in degree (á=01...99)
This value is modal, and it remains unchanged until it is rewritten. If the angle of the tool
nose is not given in the program, the control will have it from the parameter N1612 Tool
Tip Angle.

The values of n, r and á can be specified at the address P all at once. Since each of the values is
a two-digit number, a 6-digit number should be written at the address P. For example, if the
repetitive count in finishing is n=2, the chamfering is 1.5L (r=15) and the angle of the threading
tool nose is 60°, the value of P will be P021560.

minÄd : minimum depth of cut (to be always interpreted in radius; it is a positive number).

n n–1If, in the course of threading, in the cycle ‘n’ the value of the depth of cut is d – d <

min minÄd , the value of the depth of cut will always be limited to the value Äd by the control.
This value is modal, and it remains unchanged until it is rewritten. If the minimum depth
of cut is not given in the program, the control will have it from the parameter N1609 Min
Thrd Cut.

223

18.2.7 Multiple Threading Cycle (G76)

d: Finishing allowance (to be always interpreted in radius; it is a positive number).
This value is modal, and it remains unchanged until it is rewritten. If the finishing
allowance is not given in the program, the control will have it from the parameter N1610
Fin Allow.

By the code G76, the control will receive the parameters listed above if neither the address X(Z,
Y) U(W, V) nor the address Z(Y, X) W(V, U) is filled in the block G76.

The following parameters are the input data of the second block G76 X(U) Z(W) R (i) P (k)
Q (Äd) F(E)(L).

p ppX (Z , Y): absolute coordinate of the point ‘D’ given along the second axis of the plane.

U(W, V): incremental distance from the point A to the point D.

p ppZ (Y , X): absolute coordinate of the point ‘D’ given along the first axis of the plane.

W(V, U): incremental distance from the point A to the point D.

i: amount of taper (to be always interpreted in radius).
If i=0 or the address R is not filled, straight thread will be cut.

k: height of thread (to be always interpreted in radius, it is a positive number).

Äd: depth of first cut (to be always interpreted in radius, it is a positive number).

L: lead of thread.
It has to be programmed in the way that was valid for G33. The value written at the
address F indicates lead of thread, while the value written at the address E indicates
threads per inch.

Cutting thread will be executed only by the block filled in the manner above, which means that
the addresses X(Z, Y) U(W, V) and Z(Y, X) W(V, U) must be filled. If none of the coordinate
addresses are filled, the block will be interpreted by the control as parameter setting block.

During execution of the cycle, infeed will be done using rapid traverse if the code G0 is valid in
the course of the cycle, or using modal feed if the code G1 is valid in the course of the cycle.
Feed motion is executed between the points C and D in accordance with the lead of thread L
given at the address F (E). Other sections will be covered using rapid traverse.

The tread is always cut on one side in the manner illustrated in the figure according to the
formula

so that the cross-section area of cutting is constant.

At the end of the thread, chamfer is always cut according to the preset parameters.

Direction of infeed and direction of threading are determined by the motion direction
programmed at the addresses X(Z, Y) U(W, V), Z(Y, X) W(V, U), respectively; while direction
of the taper is determined by the sign of the address R.

224

18.2.7 Multiple Threading Cycle (G76)

In case of pushing button STOP, the control retracts the tool in accordance with the programmed
chamfering and then positions to the initial point A, as it was described at the code G78. When
the button START is pushed, the control begins the interrupted infeed again.

Method 2 of specification:

G18 (plane Z-X)

p pG76 X (U) Z (W) I(i) K(k) D(Äd) A(á) F(E)(L) Q P

G19 (plane Y-Z)

p pG76 Y (V) Z (W) K(i) J(k) D(Äd) A(á) F(E)(L) Q P

G17 (plane X-Y)

p pG76 X (U) Y (V) J(i) I(k) D(Äd) A(á) F(E)(L) Q P

The block specification will be considered by the control to be being made according to the
method 2 if the address K(I,J) is filled.

minThe input parameters n, r, á, Äd és d are also taken into account by the control in the case of
thread specification made by the method 2 as it is done by the method 1: either by the parameter

minsetting block G76 P (n) (r) (á) Q (Äd) R (d) or from parameter.

At the address ‘A’, the angle of the threading tool nose can be given, similarly to the method 1.
The difference is that while the angle can be given with the resolution of 1° using integer number
in the case of the method 1, in the case of the method 2 fractional number can also be used for
it. If the address ‘A’ is not filled, the control will have the value of á from the parameter N1612
Tool Tip Angle.

The data i, k, Äd, L have to be interpreted as it was described at the method 1 of specification.
Interpretation of other addresses is as follows:

Q: angle of tread start counted from the zero pulse of the encoder given in degree.

Interpretation of the address is the same as it was at the G33.

P: method of threading.
The following four types of infeed illustrated in the figures below are available:
P1: cross-section area of cutting is constant, one of the tool edges cuts;
P2, P5: cross-section area of cutting is constant, both tool edges cut;
P3: infeed is constant, one of the tool edges cuts;
P4: infeed is constant, both tool edges cut.

Example

G18...
G97 S1000 M3
G0 X36 Z4
G76 P010560 Q0.3 R0.2
G76 X24 Z-50 P3 Q1 R-4 F3 (method 1 of specification)

225

18.2.7 Multiple Threading Cycle (G76)

Fig. 18.2.7-3

Fig. 18.2.7-4

or
G76 X24 Z-50 K3 D1 I-4 A60 F3 P2 (method 2 of specification)
G0 X100 Z50
...

226

18.2.7 Multiple Threading Cycle (G76)

Fig. 18.2.7-6

Fig. 18.2.7-5

227

19 Canned Cycles for Drilling

Fig. 19-1

19 Canned Cycles for Drilling

A canned cycle for drilling can consist of the following operations:
Operation 1: Positioning in the selected plane
Operation 2: Activity after positioning
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: Activity at the point R
Operation 5: Drilling to the bottom point of the hole
Operation 6: Activity at the bottom point of the hole
Operation 7: Retracting to the point R
Operation 8: Activity at the point R
Operation 9: Rapid traverse retracting to the initial point
Operation 10: Activity at the initial point

Point R, point of approaching: The point to which the tool approaches the workpiece at rapid
traverse rate.

Initial point: The position to which the drilling axis moves before starting the cycle.

The operations above describe drilling cycles generally; some of them can be omitted in specific
cases.
The drilling cycles have positioning plane and drilling axis. The drilling axis is designated by
the plane selecting commands G17, G18 and G19. All the other axes are moved in the positioning
plane.

228

19 Canned Cycles for Drilling

Fig. 19-2

Code G Positioning plane Drilling axis

p p pG17 Plane X Y Z

p p pG18 Plane Z X Y

p p pG19 Plane Y Z X

pwhere: X : the axis X or an axis parallel with it

pY : the axis Y or an axis parallel with it

pZ : the axis Z or an axis parallel with it
The axes U, V and W will be considered to be parallel axes if they are defined as parallel ones
in the parameter N0103 Axis to Plane.
If face drilling is to be programmed where the drilling axis is the axis Z, the plane G17 will
have to be selected; but if side drilling is to be programmed where the drilling axis is the axis
X, the plane G19 will have to be selected.

Drilling cycles can be configured using commands G98 and G99:
G98: in the course of the drilling cycle, the tool is retracted up to the initial point. It is a default

position the control gets to after switching on, reset or deletion of the cycle mode.
G99: in the course of the drilling cycle, the tool is retracted up to the point R, therefore the

operations 9 and 10 will be omitted.

The codes of the drilling cycles are: G83.1, G84.1, G86.1, G81, ..., G89
These codes set up the cycle mode enabling the cycle variables to be modal.
The code G80 cancels the cycle mode and deletes the stored cycle variables.

229

19 Canned Cycles for Drilling

Addresses used in the drilling cycles and their meaning:

The code of drilling:
Interpretation of the codes will be given later.
The codes will be modal until command G80 or a code belonging to the group 1 of the codes G
(interpolation group: G01, G02, G03, G33) is programmed, or they will be deleted in case of
mode change.
So long as the cycle state is on by the commands G83.1, G84.1, G86.1, G81, ..., G89, the modal
cycle variable will also be modal between the drilling cycles of various type.

The initial point:
The initial point is the position of the axis selected for drilling, and it will be recorded:
 – when the cycle mode is set up. For example, in the following case:

N1 G17 G90 G0 Z200
N2 G81 X0 C0 Z50 R150
N3 X100 C30 Z80

the position of the initial point will be Z=200 in either of the blocks N2 and N3.
 – or, when a new drilling axis is selected. For example, in the following case:

N1 G17 G90 G0 Z200 W50
N2 G81 X0 C0 Z50 R150
N3 X100 C30 W20 R25

the position of the initial point is Z=200 in the block N2
the position of the initial point is W=50 in the block N3

In the case of changing the drilling axis, it is mandatory to program R otherwise the control will
send the error message ‘2053 No bottom or R point’.

p p pPosition of the hole: X , Y , Z q
The entered coordinate values, excluding the drilling axis, will be considered by the control to
be the position of the hole. They can be the main axes of selected plane, the axes parallel with
them, or other axis not selected for drilling (q: for example C).
The entered values can be incremental or absolute ones given as orthogonal or polar coordinates
with metric or inch dimension.
The mirroring, rotating and scaling commands are applicable to the entered coordinate values.
The control moves to the position of the hole at rapid traverse rate independently of which of the
code of the group 1 is valid.

p p pG17 G_ X _ Y _ q_ I_ J_ Z _ R_ Q_ E_ P_ F_ S_ L_

p p pG18 G_ Z _ X _ q_ K_ I_ Y _ R_ Q_ E_ P_ F_ S_ L_

p p pG19 G_ Y _ Z _ q_ J_ K_ X _ R_ Q_ E_ P_ F_ S_ L_

repetition number
data of drilling

displacement after orientation
position of the hole
code of drilling

230

19 Canned Cycles for Drilling

Fig. 19-3

Fig. 19-4

Displacement after orientation of the spindle: I, J, K

If the spindle can be oriented on a given
machine, in the boring cycles G76 and
G87 the tool can be retracted from the
hole being shifted away from the surface
in order not to scratch it. In this case, the
direction of shifting can be specified at
the addresses I, J and K. The addresses
are interpreted by the control according
to the selected plane:

G17: I, J
G18: K, I
G19: J, K

The addresses are always interpreted as
incremental orthogonal data. The
address can be given in metric unit or in
inch.
The mirroring, rotating and scaling
command are not applicable to the data
I, J and K. The I, J and K are modal values. The code G80 or the codes of the interpolation group
delete their values. The shifting is executed at rapid traverse rate.

Data of drilling:

p p pBottom point of the hole: X , Y , Z
The bottom point of the hole has to be specified at the address of the drilling axis. The coordinate
of the bottom point of the hole is always interpreted as orthogonal data. It can be absolute or
incremental given in metric unit or in inch. If the value of the bottom point is given as
incremental one, the displacement will be calculated from the point R.

231

19 Canned Cycles for Drilling

The mirroring and scaling commands are applicable to the data of the bottom point. The data of
the bottom point is a modal value. The code G80 or the codes of the interpolation group delete
its value. The bottom point is always approached by the control at the actual feed rate being valid.

Point of approaching: R
The point of approaching has to be specified at the address R. The address R is always interpreted
as orthogonal data. It can be absolute or incremental given in metric unit or in inch. If the address
R is given as incremental data, its value will be calculated from the initial point. The mirroring
and scaling data are applicable to the data of the point R. The data of the point R is a modal value.
 The code G80 or the codes of the interpolation group delete its value. The point R is always
approached by the control at rapid traverse rate.

Depth of cut: Q
It is the value of the depth of cut in the cycles G83.1 and G83. It is always a positive incremental
orthogonal data. The value of the depth of cut is a modal data. The code G80 or the codes of the
interpolation group delete its value. The scaling command is not applicable to the depth of cut.

Auxiliary data: E
It is the extent of retraction in the cycle G83.1, and, in the cycle G83, it is the value motion to
which executed at rapid traverse rate before infeed. It is always a positive incremental orthogonal
data. The scaling command is not applicable to the auxiliary data. The value of the auxiliary data
is a modal data. The code G80 or the codes of the interpolation group delete its value. If it not
programmed, the control will have the required value from the parameters N1500 Return Val G73
and N1501 Clearance Val G83.

Dwell: P
It specifies the time of wait at the bottom of the hole. For specification of it, the rules described
at G04 are valid. The value of dwell is a modal one. The code G80 or the codes of the
interpolation group delete its value.

Feed: F
It specifies the feed. Its value is modal. Only programming another data F rewrites it. The code
G80 or another code does not delete it.

Extraction override: I (%)
In the cycles G85, G89, G84.2, G84.3, extraction is generally executed at a feed rate programmed
at the address F. At the address I, the extraction override can be specified as a percental value. If
it is not programmed, the control will have the value of override from parameter.

Spindle speed: S
Its value is modal. Only programming another data S rewrites it. The code G80 or another code
does not delete it.

Repetition number: L
It defines the number as many times the cycle is repeated throughout the range of 1–99999999.
If L is not filled, the value L=1 will be taken into account by the control. In the case of L=0, the
data of the cycle will be stored but will not be executed. The value of L is valid only in the block
where it is specified.

232

19 Canned Cycles for Drilling

Fig. 19-5

Examples on modality of drilling codes and cycle variables:
N1 G17 G0 Z_ M3
N2 G81 X_ C_ Z_ R_ F_

At the beginning of the cycle mode, it is mandatory to specify the drilling data (Z, R).
N3 X_

Since the drilling data were specified in the block N2 and the same ones are required in the block
N3, it is not necessary to fill them, i.e. G81, Z_, R_, F_ can be omitted. The position of the hole
changes in the direction X only, the drill bit moves in this direction, and then it drills such a hole
just like one was drilled in the block N2.

N4 G82 C_ Z_ P_
The position of the hole is shifted in the direction C. The method of drilling complies with the
G82, the bottom point Z takes on a new value, the point of approaching and the feed (R and F)
are taken from the block N2.

N5 G80 M5
The cycle mode and the modal cycle variables will be deleted excluding F.

N6 G85 C_ Z_ R_ P_ M3
Since the drilling data were deleted due to the command G80 in the block N5, the values Z, R and
P have to be specified again.

N7 G0 X_ C_
The cycle mode and the modal cycle variables will be deleted excluding F.

Examples on using the cycle repetition:
If holes of the same kind with equal spacing between them are to be drilled using the same
parameters, the repetition number can be specified at the address L. The L is valid only in the
block in which it is specified.

N1 G90 G19 G0 X300 Z40 C0 M3
N2 G91 G81 X–40 Z100 R–20 F50 L5
Due to the commands above, the control drills 5
holes of the same kind along the axis Z with
spacing of 100 mm between them. The position of
the first hole is Z=140 and C=0. Since this is side
drilling (drilling in the direction of the axis X),
the plane G19 was selected.

233

19 Canned Cycles for Drilling

Fig. 19-6

Due to the G91, the position of the hole is given incrementally.

N1 G90 G17 G0 X200 C–60 Z50
N2 G81 CI60 Z–40 R3 F50 L6

In accordance with the commands above, the
control drills 6 holes along the bolt hole with the
diameter of 100 mm, with spacing of 60° between
them. The position of the first hole is X=200 and
C=0. Since this is face drilling (drilling in the
direction of the axis Z), the plane G17 was
selected.

234

19 Canned Cycles for Drilling

Fig. 19.1.1-1

19.1 Detailed Description of the Drilling Cycles

19.1.1 High-speed Peck Drilling Cycle (G83.1)

The variables used in the cycle are the following:

p p pG17 G83.1 X __ Y __ Z __ R__ Q__ E__ F__ L__

p p pG18 G83.1 Z __ X __ Y __ R__ Q__ E__ F__ L__

p p pG19 G83.1 Y __ Z __ X __ R__ Q__ E__ F__ L__
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Drilling to the bottom point at the feed rate F
Operation 6: –
Operation 7: In the case of G99: Retracting to the point R at rapid traverse rate
Operation 8: –
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

Execution of the Operation 5 of drilling is as follows:
– drilling the depth of cut specified at the address Q into the workpiece at the feed rate;
– retracting with a value specified at the address E or in the parameter N1500 Return Val
G73, at rapid traverse rate;
– drilling the depth of cut Q again into the workpiece from the bottom point of the
previous drilling;
– retracting with a value specified at the address E at rapid traverse rate.

The drilling proceeds up to the bottom point specified at the address Z.

235

19 Canned Cycles for Drilling

Fig. 19.1.2-1

19.1.2 Left-Handed Tapping Cycle Using Spring Tap (G84.1)

Using this cycle is allowed when spring tap is applied.

The variables used in the cycle are the following:

p p pG17 G84.1 X __ Y __ Z __ R__ P__ F__ L__

p p pG18 G84.1 Z __ X __ Y __ R__ P__ F__ L__

p p pG19 G84.1 Y __ Z __ X __ R__ P__ F__ L__
Prior to starting the cycle, the direction of spindle rotation M4 (counter-clockwise) must be
switched on and programmed.
The value of feed has to be specified according to the lead of the tap:
 – in the state G94 (feed per minute):

F=P×S
where: P: the lead of the thread in mm/rev or inch/rev;

S: the spindle speed in rev/min.
 – in the state G95 (feed per revolution):

F=P
where: P: the lead of the thread in mm/rev or inch/rev.

The operations of the cycle are the following:
Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Drilling to the bottom point at the feed rate F, override and stop are

disabled
Operation 6: Dwell for the value specified at the address P

Reversal of spindle rotation: M3
Operation 7: Retracting to the point R at feed rate F, override and stop are disabled
Operation 8: Reversal of spindle rotation: M4
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

236

19 Canned Cycles for Drilling

Fig. 19.1.3-1

19.1.3 Boring Cycle with Automatic Tool Shift (G86.1)

The cycle G86.1 can only be used if spindle orientation is built in the machine tool. It is the state
1 of the bit ORI of the parameter N0607 Spindle Config which indicates this capability to the
control. Otherwise, the control will send the error message ‘2137 G76, G87 error’.
Since spindle orientation and tool shift specified at the addresses I, J and K are executed by the
cycle after the boring, the surface will not be scratched during tool retraction.
The variables used in the cycle are the following:

p p pG17 G86.1 X __ Y __ I__ J__ Z __ R__ P__ F__ L__

p p pG18 G86.1 Z __ X __ K__ I__ Y __ R__ P__ F__ L__

p p pG19 G86.1 Y __ Z __ J__ K__ X __ R__ P__ F__ L__
Prior to starting the cycle, the command M3 has to be issued.
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Boring to the bottom point at the feed rate F
Operation 6: Dwell for the value specified at the address P

Spindle orientation: M19
In the selected plane, tool shift with the values specified at the addresses
I, J and K, at rapid traverse rate

Operation 7: In the case of G99: Retracting to the point R at rapid traverse rate
Operation 8: In the case of G99:

In the selected plane, tool reset with the values specified at the
addresses I, J and K, at rapid traverse rate
Restarting the spindle in the direction M3

Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: In the case of G98:

In the selected plane, tool reset with the values specified at the
addresses I, J and K, at rapid traverse rate
Restarting the spindle in the direction M3

237

19 Canned Cycles for Drilling

Fig. 19.1.5-1

19.1.4 Cancelling the Cycle State (G80)

Due to this code, the cycle state will be cancelled, and the cycle variables will be deleted.
The Z and the R take on incremental 0, all the rest variables take on 0.
If coordinates are programmed in the block G80 and any other command is nott issued, the
motion will be executed according to the interpolation code (the group 1 of the codes G or the
interpolation group) that was valid prior to activating the cycle.

19.1.5 Drilling Cycle with Retraction at Rapid Traverse Rate (G81)

The variables used in the cycle are the following:

p p pG17 G81 X __ Y __ Z __ R__ F__ L__

p p pG18 G81 Z __ X __ Y __ R__ F__ L__

p p pG19 G81 Y __ Z __ X __ R__ F__ L__
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Drilling to the bottom point at the feed rate F
Operation 6: –
Operation 7: In the case of G99: Retracting to the point R at rapid traverse rate
Operation 8: –
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

238

19 Canned Cycles for Drilling

Fig. 19.1.6-1

19.1.6 Drilling Cycle with Dwell and with Retraction at Rapid Traverse (G82)

The variables used in the cycle are the following:

p p pG17 G82 X __ Y __ Z __ R__ P__ F__ L__

p p pG18 G82 Z __ X __ Y __ R__ P__ F__ L__

p p pG19 G82 Y __ Z __ X __ R__ P__ F__ L__
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Drilling to the bottom point at the feed rate F
Operation 6: Dwell for the value specified at the address P
Operation 7: In the case of G99: Retracting to the point R at rapid traverse rate
Operation 8: –
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

239

19 Canned Cycles for Drilling

Fig. 19.1.7-1

19.1.7 Peck Drilling Cycle (G83)

The variables used in the cycle are the following:

p p pG17 G83 X __ Y __ Z __ R__ Q__ E__ F__ L__

p p pG18 G83 Z __ X __ Y __ R__ Q__ E__ F__ L__

p p pG19 G83 Y __ Z __ X __ R__ Q__ E__ F__ L__
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Drilling to the bottom point at the feed rate F
Operation 6: –
Operation 7: In the case of G99: Retracting to the point R at rapid traverse rate
Operation 8: –
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

Execution of the Operation 5 of drilling is as follows:
– drilling the depth of cut specified at the address Q into the workpiece at the feed rate;
– retracting to the point R, at rapid traverse rate;
– approaching the previous depth to a distance E;
– drilling the depth Q again into the workpiece from the bottom point of the previous
drilling, at the feed rate (displacement is E+Q);
– retracting to the point R, at rapid traverse rate.

The drilling proceeds up to the bottom point specified at the address Z.
The distance E is taken from the address E or from the parameter N1501 Clearance Val G83.

240

19 Canned Cycles for Drilling

Fig. 19.1.8-1

19.1.8 Right-Handed Tapping Cycle Using Spring Tap (G84)

Using this cycle is allowed when spring tap is applied.

The variables used in the cycle are the following:

p p pG17 G84 X __ Y __ Z __ R__ P__ F__ L__

p p pG18 G84 Z __ X __ Y __ R__ P__ F__ L__

p p pG19 G84 Y __ Z __ X __ R__ P__ F__ L__
Prior to starting the cycle, the direction of spindle rotation M3 (clockwise) must be switched on.
The value of feed has to be specified according to the lead of the tap:
 – in the state G94 (feed per minute):

F=P×S
where: P: the lead of the thread in mm/rev or inch/rev;

S: the spindle speed in rev/min.
 – in the state G95 (feed per revolution):

F=P
where: P: the lead of the thread in mm/rev or inch/rev.

The operations of the cycle are the following:
Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Drilling to the bottom point at the feed rate F, override and stop are

disabled
Operation 6: Dwell for the value specified at the address P

Reversal of spindle rotation: M4
Operation 7: Retracting to the point R at feed rate F, override and stop are disabled
Operation 8: Reversal of spindle rotation: M3
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

241

19 Canned Cycles for Drilling

19.1.9 Rigid Tapping Cycle (G84.2, G84.3)

Cycles of rigid tapping thread can be applied only on the machines the spindle of which is
equipped with an encoder for positioning, and the spindle drive can be fed back for position
control (the value of the bit INX of the parameter N0607 Spindle Config is 1). Otherwise, the
control will send the error message ‘2138 Spindle can not be indexed’.

In the case of rigid tapping, the quotient of the feed of the drill axis and the spindle speed must
be equal to the thread lead of the tap. In other words, under ideal conditions of rigid tapping, the
quotient F=P/S must be constant from moment to moment,

where: P: the lead of the thread in mm/rev or inch/rev;
F: the feed in mm/min or inch/min;
S: the spindle speed in rev/min.

In the cycles G84.1 and G84 (cycle of tapping left-hand thread using spring tap and cycle of
tapping left-hand thread using spring tap, respectively), the spindle speed and the feed of the drill
axis are controlled independently of each other. Accordingly, the requirement mentioned above
cannot be met to the full. It is particularly true at the bottom of the hole where the feed of the drill
axis and the spindle speed should be decreased up to zero and then, in the opposite direction, they
should be increased, in synchronism with each other. In the case above, as far as the control
technique is concerned, complying with this condition is not possible at all. This problem can be
avoided by inserting the tap into a spring balancing adapter to be set in the spindle; this adapter
compensates fluctuation of the value of the quotient F/S.

The principle of control is different in the case of the cycles G84.2 and G84.3 that make it
possible to avoid the use of spring tap. In these cycles, the control continuously maintains the
constant value of the quotient F/S from moment to moment.
As far as the control technique is concerned, in the former case the control regulates only the
spindle speed, while in the latter case, it regulates the spindle position too. In the cycles G84.2
and G84.3, the motions of the drill axis and the spindle are connected with each other using linear
interpolation. With this method, the constant value of the quotient F/S is maintained in the phases
of acceleration and deceleration too.

G84.2: right-handed rigid tapping cycle
G84.3: left-handed rigid tapping cycle

The variables used in the cycle are the following:

p p pG17 G84._ X __ Y __ Z __ R__ P__ F__ I__ S__ L__

p p pG18 G84._ Z __ X __ Y __ R__ P__ F__ I__ S__ L__

p p pG19 G84._ Y __ Z __ X __ R__ P__ F__ I__ S__ L__
At the end of the cycle, the spindle remains in the indexed state (the position control loop is
closed); it is the programmer who has to restart it, if necessary.

The value of feed has to be specified according to the lead of the tap:
 – in the state G94 (feed per minute):

F=P×S
where: P: the lead of the thread in mm/rev or inch/rev;

S: the spindle speed in rev/min.

242

19 Canned Cycles for Drilling

Fig. 19.1.9-1

 – in the state G95 (feed per revolution):
F=P

where: P: the lead of the thread in mm/rev or inch/rev.

The operations of the cycle in the case of G84.2 are the following:
Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: If the value of the bit TSC of the parameter N1503 Drilling Cycles Config.

=0, the control will not orientate the spindle and will only close the
position control loop. The code of closing the loop is determined by the
parameter N0823 M Code for Closing S Loop. This code will be
transmitted by the control to the PLC (faster execution).
=1, the control will orientate the spindle prior to tapping and will transmit
the command M19 to the PLC (finding the way back into the thread).

Operation 5: Linear interpolation between the drill axis and the spindle in the clockwise
direction of rotation (+) in the case of G84.2, and in the counter-clockwise
direction of rotation (–) in the case of G84.3.

Operation 6: Dwell for the value specified at the address P
Operation 7: Linear interpolation between the drill axis and the spindle in the counter-

clockwise direction of rotation (–) in the case of G84.2, and in the
clockwise direction of rotation (+) in the case of G84.3.

Extraction override I (%)
The extraction feed override being either programmed at the address I or
taken from parameter will be effective in the only case if it is enabled by
writing the value 1 at the bit #4 EOE of the parameter N1503 Drilling
Cycles Config.
If value is not given at the address I in the block, the extraction feed
override in the operation 7 will be the value of the parameter N1506
Extraction Override in Tapping given in %.The feed override button also
produces effect on speed calculated in such a way, so the value of feed will
be calculated according to the following formula:

243

19 Canned Cycles for Drilling

Fextraction=Fprogrammed×Feed override×Extraction Override in Tapping/100

Acceleration during extraction
During extraction, a value different from (smaller than) the acceleration
value set for the spindle can be specified in the parameter N1507+n Rn
Acc in Tapping if it is enabled by writing the value 1 at the bit #6 EAE of
the parameter N1503 Drilling Cycles Config.. In this case, the acceleration
value will be taken from the parameters N1523+n Rn Acc in Extract being
different range by range (n=1 ... 8).

Operation 8: –
Operation 9: In the case of G98, retracting to the initial point at rapid traverse rate
Operation 10: –

19.1.10 Peck Rigid Tapping Cycle (G84.2, G84.3)

The code of the cycle is as follows:
G84.2 Q__: right-handed peck rigid tapping cycle
G84.3 Q__: left-handed peck rigid tapping cycle

In the cycle, the control will apply chip breaking in the case if depth of cut is programmed at the
address Q.

The variables used in the cycle are the following:

p p pG17 G84._ X __ Y __ Z __ R__ Q__ E__ P__ F__ S__ I__ L__

p p pG18 G84._ Z __ X __ Y __ R__ Q__ E__ P__ F__ S__ I__ L__

p p pG19 G84._ Y __ Z __ X __ R__ Q__ E__ P__ F__ S__ I__ L__
At the end of the cycle, the spindle remains in the indexed state (the position control loop is
closed); it is the programmer who has to restart it, if necessary. The meaning of the codes G98
and G99 is the same as it was in the case of all the other drilling cycles.

It is the bit #3 PTC of the parameter N1503 Drilling Cycles Config. that determines the manner
of chip breaking. If the value of the bit #3 PTC is:

=0, fast chip breaking (according to the G83.1) will be applied;
=1, normal chip breaking (according to the G83) will be applied, and extraction will be

executed to the point R.

244

19 Canned Cycles for Drilling

Interpretation of the address E
In the case of the fast chip breaking (PTC=0), it is the address E where the value of the
returning the tool can be specified. If the address E is not filled, the control will have the distance
from the parameter N1504 Return Val in Tapping.
In the case of the normal chip breaking (PTC=1), it is the address E where the value of the
approaching distance after return can be specified. If the address E is not filled, the control will
have the distance from the parameter N1505 Clearance Val in Tapping.

Extraction override I (%)
In all the extraction phases, the extraction feed override, being either programmed at the address
I or taken from parameter, will be effective in the only case if it is enabled by writing the value
1 at the bit #4 EOE of the parameter N1503 Drilling Cycles Config.
If value is not given at the address I in the block, the extraction feed override will be the value of
the parameter N1506 Extraction Override in Tapping given in %.The feed override button also
produces effect on speed calculated in such a way, so the value of feed will be calculated
according to the following formula:

Fextraction=Fprogrammed×Feed override×Extraction Override in Tapping/100

Acceleration during extraction
During extraction, a value different from (smaller than) the acceleration value set for the spindle
can be specified in the parameter N1507+n Rn Acc in Tapping if it is enabled by writing the value
1 at the bit #6 EAE of the parameter N1503 Drilling Cycles Config.. In this case, the acceleration
value will be taken from the parameters N1523+n Rn Acc in Extract being different range by
range (n=1 ... 8).

Fig. 19.1.10-1

245

19 Canned Cycles for Drilling

Return override (%) in the case of normal chip breaking
In the case of normal chip breaking (the bit #3 PTC of the
parameter N1503 Drilling Cycles Config. is 1), in the course of
returning, application of an override different from 100% for the
programmed F will be allowed if it is enabled by writing the value
1 at the bit #5 ROE of the parameter N1503 Drilling Cycles
Config..
Thus, the control will have the value of override from the value in
% of the parameter N1507 Return Override in Tapping.

The subject-matter mentioned in the previous subchapter apply to the other input parameters of
the cycle.

Fig. 19.1.10-2

Fig. 19.1.10-3

246

19 Canned Cycles for Drilling

Fig. 19.1.11-1

19.1.11 Boring Cycle with Retraction at Feed Rate (G85)

The variables used in the cycle are the following:

p p pG17 G85 X __ Y __ Z __ R__ F__ I__ L__

p p pG18 G85 Z __ X __ Y __ R__ F__ I__ L__

p p pG19 G85 Y __ Z __ X __ R__ F__ I__ L__
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Boring to the bottom point at the feed rate F
Operation 6: –
Operation 7: Retracting to the point R at the feed rate F×I/100

Extraction override I (%)
If value is not given at the address I in the block, the extraction feed
override in the operation 7 will be the value of the parameter N1502
Extraction Override in G85, G89 .The feed override button also produces
effect on speed calculated in such a way, so the value of feed will be
calculated according to the following formula:

Fextraction=Fprogrammed×Feed override×Extraction Override in G85, G89/100
Operation 8: –
Operation 9: In the case of G98, retracting to the initial point at rapid traverse rate
Operation 10: –

247

19 Canned Cycles for Drilling

Fig. 19.1.12-1

19.1.12 Boring Cycle with Retraction with Spindle in Standstill (G86)

The variables used in the cycle are the following:

p p pG17 G86 X __ Y __ Z __ R__ F__ L__

p p pG18 G86 Z __ X __ Y __ R__ F__ L__

p p pG19 G86 Y __ Z __ X __ R__ F__ L__
During starting the cycle, the direction of rotation M3 has to be specified for the spindle.
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Boring to the bottom point at the feed rate F
Operation 6: Stopping the spindle: M5
Operation 7: In the case of G99: Retracting to the point R at rapid traverse rate
Operation 8: In the case of G99: Restarting the spindle in the direction M3
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: In the case of G98: Restarting the spindle in the direction M3

248

19 Canned Cycles for Drilling

Fig. 19.1.13-1

19.1.13 Manual Control/Back Boring Cycle (G87)

The cycle is executed by the control in two different ways.

A. Drilling cycle with manual control at the bottom point
In the case, if spindle orientation is not built in the machine tool, i.e. the bit #1 ORI of the
parameter N0607 Spindle Config is 0, the the control will operate according to the case A.

The variables used in the cycle are the following:

p p pG17 G87 X __ Y __ Z __ R__ F__ L__

p p pG18 G87 Z __ X __ Y __ R__ F__ L__

p p pG19 G87 Y __ Z __ X __ R__ F__ L__
During starting the cycle, the direction of rotation M3 has to be specified for the spindle.
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Boring to the bottom point at the feed rate F
Operation 6: Stopping the spindle: M5

The control gets to the state STOP (M0), from where, having transferred
to one of the manual modes (JOG, INCREMENTAL JOG,
HANDWHEEL), the operator can operate the machine manually, i.e. he
can shift the tool tip from the surface of the hole and extract the tool from
the hole. Then, having returned to the AUTO mode, machining can be
continued by start.

Operation 7: In the case of G99: After START, retracting to the point R at rapid traverse
rate

Operation 8: In the case of G99: Restarting the spindle in the direction M3
Operation 9: In the case of G98: After START, retracting to the initial point at rapid

traverse rate
Operation 10: In the case of G98: Restarting the spindle in the direction M3

249

19 Canned Cycles for Drilling

Fig. 19.1.13-2

B. Back boring with automatic shifting the tool
In the case, if spindle orientation is built in the machine tool, i.e. the bit #1 ORI of the parameter
N0607 Spindle Config is 1, the the control will operate according to the case B.

The variables used in the cycle are the following:

p p pG17 G87 X __ Y __ I__ J__ Z __ R__ F__ L__

p p pG18 G87 Z __ X __ K__ I__ Y __ R__ F__ L__

p p pG19 G87 Y __ Z __ J__ K__ X __ R__ F__ L__
During starting the cycle, the direction of rotation M3 has to be specified for the spindle.
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: Orientating the spindle.

In the selected plane, tool shift with the values specified at the addresses
I, J and K, at rapid traverse rate

Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: In the selected plane, tool reset with the values specified at the

addresses I, J and K, at rapid traverse rate.
Restarting the spindle in the direction M3

Operation 5: Boring to the bottom point at the feed rate F
Operation 6: Orientating the spindle: M19.

In the selected plane, tool shift with the values specified at the addresses
I, J and K, at rapid traverse rate

Operation 7: –
Operation 8: –
Operation 9: Retracting to the initial point at rapid traverse rate
Operation 10: In the selected plane, tool reset with the values specified at the

addresses I, J and K, at rapid traverse rate.
Restarting the spindle in the direction M3

250

19 Canned Cycles for Drilling

Fig. 19.1.14-1

It follows from the nature of the cycle, that, in contrast with the foregoing, the point of
approaching, i.e. the point R is located lower than the bottom point. This has to be taken into
account in programming the addresses of the drill axis and R.
Since spindle orientation and tool shift specified at the addresses I, J and K are executed by the
cycle prior to the boring, the tool break can be avoided during entering the hole.

19.1.14 Boring Cycle with Dwell and Manual Operation at the Bottom (G88)

The variables used in the cycle are the following:

p p pG17 G88 X __ Y __ Z __ R__ P__ F__ L__

p p pG18 G88 Z __ X __ Y __ R__ P__ F__ L__

p p pG19 G88 Y __ Z __ X __ R__ P__ F__ L__
During starting the cycle, the direction of rotation M3 has to be specified for the spindle.
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Boring to the bottom point at the feed rate F
Operation 6: Dwell for the value specified at the address P

Stopping the spindle: M5
The control gets to the state STOP (M0), from where, having transferred
to one of the manual modes (JOG, INCREMENTAL JOG,
HANDWHEEL), the operator can operate the machine manually, i.e. he
can shift the tool tip from the surface of the hole and extract the tool from
the hole. Then, having returned to the AUTO mode, machining can be
continued by start.

Operation 7: In the case of G99: After START, retracting to the point R at rapid traverse
rate

Operation 8: In the case of G99: Restarting the spindle in the direction M3
Operation 9: In the case of G98: After START, retracting to the initial point at rapid

traverse rate
Operation 10: In the case of G98: Restarting the spindle in the direction M3

251

19 Canned Cycles for Drilling

Fig. 19.1.15-1

The cycle is the same as the case A of the G87, but there is dwell prior to stopping the spindle.

19.1.15 Boring Cycle with Dwell and with Retraction at Feed Rate (G89)

The variables used in the cycle are the following:

p p pG17 G89 X __ Y __ Z __ R__ P__ F__ I__ L__

p p pG18 G89 Z __ X __ Y __ R__ P__ F__ I__ L__

p p pG19 G89 Y __ Z __ X __ R__ P__ F__ I__ L__
The operations of the cycle are the following:

Operation 1: Positioning in the selected plane at rapid traverse rate
Operation 2: –
Operation 3: Rapid traverse to the point R (point of approaching)
Operation 4: –
Operation 5: Boring to the bottom point at the feed rate F
Operation 6: Dwell for the value specified at the address P
Operation 7: Retracting to the point R at the feed rate F×I/100

Extraction override I (%)
If value is not given at the address I in the block, the extraction feed
override in the operation 7 will be the value of the parameter N1502
Extraction Override in G85, G89 .The feed override button also produces
effect on speed calculated in such a way, so the value of feed will be
calculated according to the following formula:

Fextraction=Fprogrammed×Feed override×Extraction Override in G85, G89/100
Operation 8: –
Operation 9: In the case of G98: Retracting to the initial point at rapid traverse rate
Operation 10: –

The cycle is equal to the G85, excluding dwell.

252

19 Canned Cycles for Drilling

19.2 Remarks on the Use of the Drilling Cycles

 – In cycle mode, the drilling cycle will be executed if a block without code G contains any of the
following addresses:

p p pX , Y , Z or q
where q is an optional axis, but not a drill axis.
Otherwise, the drilling cycle will not be executed.

 – In cycle mode, if dwell block G04 P is programmed, the command will be executed according
to the P, but the cycle variable related to dwell will not be deleted and rewritten.

 – The value of I, J, K, Q, E, Phas to be given in the blocks where drilling also occurs, otherwise
the values will not be stored.

An example to illustrate the foregoing:
 G81 X_ C_ Z_ R_ F (the drilling cycle will be executed)

X (the drilling cycle will be executed)
F_ (the drilling cycle will not be

executed, the F will be rewritten)
M S_ (the drilling cycle will not be

executed, the code M will be executed)
 G4 P_ (the drilling cycle will not be

executed, the dwell will be executed,
the dwell variable of the cycle will
not be rewritten)

I Q (the drilling cycle will not be
executed, the programmed values will
not be recorded as cycle variables)

 – If a function is also programmed together with the drilling cycle, the function will be executed
at the end of the first operation, after completion of positioning. If L is also programmed
in the cycle, the function will be executed only in the first pass.

 – The repetition number L is not modal.
 – In the block by block mode, the control stops after the operations 1, 3 and 10 within the cycle.
 – The button STOP does not produces effect in the operations 5, 6 and 7 of the cycles G74 and

G84. If the button STOP is pushed during these operations, the control will continue its
functioning, and it can be stopped at the end of the operation 7.

 – In the operations 5, 6 and 7 of the cycles G84.1 and G84, the feed override and the spindle
override is always 100% independently of the position of the switch.

 – If Tnnmm is programmed in the cycle block, the new length compensation will be taken into
account either during planar positioning or during drilling.

253

20 Functions to Control Axes

Fig. 20.1-1

Fig. 20.1.1-1

20 Functions to Control Axes

20.1 Polygonal Turning

In the case of polygonal turning, both the tool and the workpiece
are rotated in relation to each other by a specified revolution
ratio. Changing the revolution ratio and the number of cutting
edges of the rotating tool, polygons with different number of
sides can be produced. The product of the revolution ratio and
the number of sides gives the number of sides of the polygon
generated. For example, if the ratio between revolutions of the
tool and the workpiece is 2:1 and the number of cutting edges is
3, a hexagon will be turned. Hexagon bolt or nut can simply be
produced in this way by turning, for example. This method of
machining is much faster than milling the polygon using polar
coordinate interpolation, but the resulting side surfaces are not
exact planes.

20.1.1 Principle of Poligonal Turning

Let the rotational axis of the workpiece be on the
coordinates X=0, Y=0.

0Let the rotational axis of the tool be the point P
with the coordinates X=A, Y=0 which means that
the distance between the rotational axis of the tool
and the rotational axis of the workpiece is A.
Let the radius of the rotating tool be B. The nose of

tthe tool is marked by P . In the moment t=0, the
coordinates of the nose of the tool are X=A–B, Y=0.
Let the angular velocities of the workpiece rotation
and the tool rotation be á and â, respectively.

At the moment of time t, the coordinates of the tool

t t tnose P (x ; y) will be the following:

tx = Acosát – Bcos(â–á)t

ty = Asinát + Bsin(â–á)t
Assuming that the ratio between revolutions of the
tool and the workpiece is 2:1, then â=2á.
Substituting this into the equations above yields:

tx = Acosát – Bcosát = (A – B)cosát

ty = Asinát + Bsinát = (A + B)sinát
These are the equations of an ellipse, the length of

Fig. 20.1.1-2

254

20 Functions to Control Axes

Fig. 20.1.1-4Fig. 20.1.1-3

Fig. 20.1.1-5

the major axis of which is A+B and the length of the minor axis of which is A–B.

If the tools are located at 180°or 120° from each other, a square or a hexagon, respectively will
be turned provided that the ratio between revolutions of the tool and the workpiece is 2:1.

In the cases of other revolution
ratio, the curves produced will be
different from ellipse, but even
they will approximate the sides of
the polygon well enough.

255

20 Functions to Control Axes

20.1.2 Programming the Polygonal Turning (G51.2, G50.2)

The command
G51.2 P_ Q_ R__

switches the function of the polygonal turning on.

The addresses
P and the Q
are those ones, at which the ratio between revolutions of the workpiece and the tool can be set:

P/Q = revolutions of the workpiece / revolutions of the tool
If, for example, the ratio 1:2 is to be applied,

G51.2 P1 Q2-t
will have to be programmed
At the address P always positive integer number must be given.
At the address Q either positive or negative integer number can be given. In the case of giving

negative number, the tool will rotate in the direction opposite to the direction of
workpiece rotation.

The addresses P and Q must always be given.

Filling the address
R (phase shift in degree)

is optional. At the address R the phase shift, i.e. the phase shift of the zero pulse of the tool
spindle relative to the zero pulse of the workpiece spindle can be given in degree. If the address
R is not programmed, the zero pulses of the tool spindle and the workpiece spindle will coincide
in each revolution Q/P of the tool spindle. The command G51.2 can be issued in the course of
polygonal turning too, if the zero pulse of the tool spindle is to be shifted:

G51.2 R_
If, for example, a square is to be turned using a single-edged tool, two opposite sides will be
machined as first step using the command

G51.2 P1 Q2.
The distance between the zero pulses of the two spindles is 0. If, after this, the command

G51.2 R90
is programmed, machining the other two opposite sides will be possible, rotating the edge of the
tool by 90° relative to the workpiece.

In the case of polygonal turning, both the workpiece spindle and the tool spindle must be
equipped with an encoder, and the position control loop must be closable on the both spindles.
During polygonal turning, the maximum speed of the spindles is limited by the rapid traverse
rate set for the spindle axis. Generally, this value is smaller than the maximum spindle speed.
In the case of polygonal turning, the master spindle rotating the workpiece is distinguished from
the slave spindle rotating the tool. Always the slave spindle has to be synchronized to the
master spindle.

The master spindle of the polygonal turning is always the spindle designated as the main
spindle in the channel. The method of selection of the main spindle is determined by the builder
of the machine tool, and it is contained in the manual of the given machine.

256

20 Functions to Control Axes

The slave spindle of the polygonal turning can be selected from the program by referencing the
spindle and by function M for example; this is determined by the builder of the machine tool, and
it is contained in the manual of the machine.

When polygonal turning is to be done, the process of synchronization is as follows:
 – if the speed of the master spindle higher than its rapid traverse speed or if the resultant slave

speed (S*Q/P) higher than the rapid traverse speed of the slave, deceleration to the
appropriate speed will be executed;

 – the position control loop will be closed by the control;
 – the slave spindle will run up to the master speed multiplied by the ratio Q/P (S*Q/P) in the

direction of rotation similar or opposite to that of the master spindle;
 – the position control loop will be closed by the slave spindle;
 – then, the control moves the zero pulse of the slave spindle to the zero pulse of the master

spindle, or to a distance from the zero pulse of the master spindle equal to the phase shift
given at the address R in degree.

The command
G50.2

Switches the polygonal turning off.
The command G51.2 and the command G50.2 have to always be given in separate blocks.

The effect of synchronization is similar to that of the spindle zero pulse in the case of threading.
So long as the workpiece is not removed from the chuck and the angle position of the cutting tool
in the tool spindle is not changed, the motion of the workpiece and the motion of the tool remains
synchronous and the same surface can be passed many times for the purpose of roughing and then
finishing, for example. Likewise, synchronization can be switched off by the command G50.2 and

Fig. 20.1.2-1

257

20 Functions to Control Axes

then the polygon surface turned previously can be passed in the same way, provided that the
programmed ratio between revolutions is the same as it was before.

L Attention!
When programming polygonal turning, take care that the speed resulting for the tool spindle

tool spindlen = S@(Q/P) never exceeds the maximum value permitted for it.

Synchronous run can be switched off
 – by emergency stop;
 – by servo loop errors.

Example
A hexagon is to be turned. The workpiece is clamped in the spindle S1, the tool is rotated by the
spindle S3. The functions M given in the example below are occasional, they can be different
from machine to machine.

Machining using three-edged tool:
...
M31 (DESIGNATING THE SPINDLE S1 AS MAIN SPINDLE)
S1=1000 M3
S3=0 M23 (STARTING THE SPINDLE S3 FOR POLYGONAL TURNING)
G0 X20 Z1
G51.2 P1 Q-2 (SWITCHING THE POLYGONAL TURNING ON)
X15
G1 Z-10 F0.5
G0 X30
Z1
G50.2
S1=0 M5 (STOPPING THE SPINDLE S1)
S3=0 M5 (STOPPING THE SPINDLE S3)
...

Machining using single-edged tool:
...
G0 X20 Z1
G51.2 P1 Q-2 (SWITCHING THE POLYGONAL TURNING ON)
X15
G1 Z-10 F0.5
G0 X30
Z1
G51.2 R120 (PHASE SHIFT BY 120 DEGREES)
X15
G1 Z-10 F0.5
G0 X30
Z1
G51.2 R240 (PHASE SHIFT BY 240 DEGREES)
X15
G1 Z-10 F0.5
G0 X30
Z1
G50.2

258

20 Functions to Control Axes

...

20.2 Gear Hobbing (G81.8)

Gear hobbing is described in the book NCT2xxM Control for Milling Machines and Machining
Centers Programmer's Manual.

20.3 Synchronous Control of Axes

In the course of machining a workpiece, it could be necessary to move two axes synchronously.
The axes can be either in the same channel or in different channels.
The axis for which the data are given in the part program is called master axis.
The axis which moves in synchronism with the master axis is called slave axis. So long as an axis
is synchronous slave axis, this axis cannot be moved either from program or manually.
Synchronous moving is initiated by the PLC program by execution of a code M, for example.

Parameters and PLC flags used in the case of synchronous moving
If two axes are to be linked together for synchronous moving, it will have to be specified in the
parameter N2101 Synchronous Master belonging to the slave axis which axis is its master axis.
The master axis can be either in the same channel or in a different channel. The master axis can
have several slave axes. A slave axis can also be the master axis of another axis.
In the case of synchronous control of axes, it is only the master axis that can be programmed
or for which manual motion command (jog, handwheel) can be issued.

Synchronous control is requested by the PLC setting the flag AP_SYNCR belonging to the
slave axis to1. The PLC waits until the control acknowledges the request through the flag
AN_SYNCA. From that moment, displacements of the master axis will be received by the slave
axis too.
This flag can usually be switched on or off by functions M.
For example:

...
M41 (synchronous moving on)
...
M40 (synchronous moving off)
...

Hereafter, the code pair M40, M41 is used in this manual for switching synchronization on and
off. In the case of a given machine, the code of the function and operation description should
be asked the builder of the machine tool for.

Moving in synchronism can only start strictly by the function for waiting and of buffer
emptying.
If moving in synchronism occurs between two channels, in the case of the other channel a code
for waiting will have to be programmed:

259

20 Functions to Control Axes

Program of the channel 1
...
M502 P12
M41 (synchrony on)
M503 P12
...
M504 P12
M40 (synchrony off)
M505 P12
...

Program of the channel 2
...
M502 P12
(waiting for synchrony
on)
M503 P12
...
M504 P12
(waiting for synchrony
off)
M505 P12
...

Another condition of requesting for synchronous moving is the existence of valid reference point
both on the master axis and on the slave axis.

In the case of moving in synchronism, the motion direction of the slave axis can be the same as
that of the master axis, but it can be different too. The motion direction of the slave axis can be
set at the bit #0 MSY of the parameter N2102 Synchron Config which bit belongs to the slave
axis. If the value of the bit of the parameter

=0: both the master axis and the slave axis move in the same direction;
=1: both the master axis and the slave axis move in opposite direction.

Example of moving the axes in synchronism
To illustrate moving axes in synchronism, let us have a two-channel engine lathe.
A bar feeder places the workpiece in the
spindle S1 being in the channel 1 where
the front of the workpiece will be
machined. After receiving the
workpiece, its end will be machined in
the spindle S2 being in the channel 2.
In the channel 1, the workpiece together
with the spindle S1 is moved by the

1axis Z . The turning tools T01, ..., T06
being in vertical position are moved by

1 1the axes X , Y .
In the channel 2, the spindle S2 together
with the workpiece moves in the

2 2directions X , Z .
While in the spindle S1 the front of the
succeeding workpiece is machined, in
the spindle S2 the end of the previous
workpiece will be processed.
Let us assume that both ends of the
workpiece are to be machined in the
same way.
Let there be tools of the same length
and of the same rounding radius in the

1 1tool holders T01 and T02. If, in the channel 1, the axes X , Y are positioned in front of the tool

Fig. 20.3-1

260

20 Functions to Control Axes

2T01 and , in the channel 2, the axis X is positioned in front of the tool T02, both ends of the

1 2workpiece can be machined simultaneously too, by moving the axes Z and Z in synchronism.

2 1 Let the axis Z of the channel 2 be the synchronous slave of the axis Z of the channel 1, what
is designated in parameter.
Let us assume that the code

M41

1 2links the axes Z and Z together for moving in synchronism and the spindles S1 and S2 together
for rotating in synchronism,
and that the code

M40
stops the synchronous operation.
The codes M41 and M40 has to always be given in the channel 1.
Prior to machining, the workpiece being in the spindle S1has to be positioned in front of the tool

1 1 1 2 2T01 along the axes X , Y , Z in the channel 1, while the axes X , Z has to be positioned in front

1 2of the tool T02 in the channel 2. Then the synchronous cutting follows. The axes Z and Z moves

2in synchronism. The axis X stands, and the end of the workpiece being in the spindle S2 is

1 2machined by the motion of the axes X and Z . The overhang and the radius of rounding of the
tool T01 and T02 have to be the same.

In the two channels, the part program is the following:

The program running in the channel 1
...
T101
G0 X100 Y0 Z10

M501 P12 (waiting)

1 2M41 (Z , Z synchrony on)
M502 P12 (waiting)
G42 G0 X0 Z2
G1 Z0 F2
X10 ,C1
Z-5
X15
G40 G0 X100 Z10
M40 (synchrony off)
M503 P12 (waiting)
... (normal machining)

The program running in the channel 2
...
T202
G0 X0 Z10 (synchronous
position)
M501 P12 (waiting)

M502 P12 (waiting)
(the channel 2 does not work)

M503 P12 (waiting)
... (normal machining)

Parking the axes in the case of moving the axes in synchronism
It could be necessary that a program written with the use of moving in synchronism runs only on
one side, either on the master side or on the slave side; and not to write a new program.
In this case, the side not intended to be moved has to be ‘parked’. Either the slave side or the
master side can be parked. In such a case too, the control calculates appropriate displacements
both for the master axis and for the slave axis, but it does not issue motion command for the
parking side.

261

20 Functions to Control Axes

Parking an axis participating in synchronous moving is requested by the PLC setting the flag
of request for parking AP_PARKR to1. The control acknowledges the acknowledgment of the
request for parking by setting the acknowledging flag AN_PARKA to1.
Parking can be initiated from push-button or from function M. In the case of a given machine,
description of parking should be asked the builder of the machine tool for.

20.4 Interchanging of Axes

In the course of machining a workpiece, it could be necessary to interchange two axes. The axes
can be either in the same channel or in different channels.
The axis with which the slave axis is interchanged is called master axis.
The axis which initiates the interchanged is called slave axis.
Interchanging the axes is initiated by the PLC program by execution of a code M, for example.

Parameters and PLC flags used in the case of interchanging the axes
If two axes are to be interchanged, it will have to be specified in the parameter N2104 Composit
Axis belonging to the slave axis which axis is its master axis.
The master axis can be either in the same channel or in a different channel.
In the case of interchanging the axes, both the master axis and the slave axis can be
programmed, or for them manual motion command (jog, handwheel) can be issued.

Interchanging the axes is requested by the PLC setting the flag AP_MIXR belonging to the
slave axis to1. The PLC waits until the control acknowledges the request through the flag
AN_MIXA. From that moment, the two axis are interchanged.
This flag can usually be switched on or off by functions M.

For example:
...
M42 (axis interchange on)
...
M40 (axis interchange off)
...

Hereafter, the code pair M40, M42 is used in this manual for switching the axis interchange on
and off. In the case of a given machine, the code of the function and operation description
should be asked the builder of the machine tool for.

Interchanging the axes can only start strictly by the function for waiting and of buffer emptying.
If interchanging the axes occurs between two channels, in the case of the other channel a code
for waiting will have to be programmed:

Program of the channel 1
...
M502 P12
M42 (axis interchange on)
M503 P12
...
M504 P12
M40 (axis interchange
off)
M505 P12
...

Program of the channel 2
...
M502 P12
(waiting for interchange)
M503 P12
...
M504 P12
(waiting for deleting the
interchange)
M505 P12
...

262

20 Functions to Control Axes

After interchanging the axes, the motion direction of the slave axis can be its original one, but
it can be opposite, too. The motion direction of the slave axis can be set at the bit #0 MMI of the
parameter N2105 Composit Config which bit belongs to the slave axis. If the value of the bit of
the parameter

=0: the slave axis moves in the original direction after interchanging the axes;
=1: the slave axis moves in the direction opposite to the original one after interchanging

the axes.
After interchanging the axes, the motion direction of the master axis can be its original one, but
it can be opposite, too. The motion direction of the master axis can be set at the bit #0 MMI of
the parameter N2105 Composit Config which bit belongs to the master axis. If the value of the
bit of the parameter

=0: the master axis moves in the original direction after interchanging the axes;
=1: the master axis moves in the direction opposite to the original one after interchanging

the axes.

After interchanging the axes, the program can be written both on the real and the virtual
(mirrored) sides.
The programming on the virtual side can be set at the bit #2 MCO of the parameter N2105
Composit Config which bit belongs to the slave axis. If the value of the bit of the parameter

=0: the slave axis has to be programmed on the real side after interchanging the axes;
=1: the slave axis has to be programmed on the virtual side after interchanging the axes.

The programming on the virtual side can be set at the bit #2 MCO of the parameter N2105
Composit Config which bit belongs to the master axis. If the value of the bit of the parameter

=0: the slave axis has to be programmed on the real side after interchanging the axes;
=1: the slave axis has to be programmed on the virtual side after interchanging the axes.

After interchanging the axes, the axes will have their original zero-point offsets and length

1 2 1 2compensation. For example, if the axes X -X and the axes Z -Z are changed between the two

1channel, the length compensation set for the axis X will go to the channel 2 and vice versa.
Therefore, it is advisable to call a new zero-point offset measured after the axis change and a new
length compensation.

Example of interchanging
the axes
Let there be two turret on a two-
channel machine.
The first turret is managed by
the channel 1and it can be moved

1 1along the axes X , Z . The second
turret is managed by the channel
2 and it can be moved along the

2 2axes X , Z .
Because of receiving the
workpiece, the subspindel S2 in
the channel 2 can be moved by

2the axis W .
Being in the spindle S1 the one

Fig. 20.4-1

263

20 Functions to Control Axes

side of the workpiece, while being in the spindle S2 the other side of the workpiece is machined.
In both channels, identical tools could be necessary for machining.

It could come up in the case of
machining more complex
workpiece using tools of many
kinds, that there are no so many
tool stations in the one or in the
other turret required for mounting
identical tools in both turrets. In
this case, if in one of the channels
the tool stored in the other turret
is required, it will be necessary to
interchange the turrets, i.e. the

1 1 2 2axes X , Z and X , Z between
the channels.
Then, machining can be executed
in both channels.
As it can be seen in the figure, the

1 1direction of both the axes X , Z

2 2and X , Z has to be reversed writing 1 at the bit MMI in order that the directions will adapt to
coordinate directions given in the channel.

Then, it has to be decided
whether the program will be
written on the real or virtual side.
If, after interchanging the axes,
the program is written on the real
side either in the channel 1 or in
the channel 2, the tool will
approach the workpiece during
motion of the axis X in the
positive direction, and the tool
will move away from the
workpiece during motion of the
axis X in the negative direction.
Programming has to be done
contrary to the programming done
before interchanging the axes!
If the program is to be written on
the virtual side as it was done before interchanging the axes, 1 will have to be written at the bit

1 2MMO belonging to the axes X és az X .
In this case, the program written in such a way will be automatically mirrored through the axis
Z by the control.

Fig. 20.4-2

Fig. 20.4-3

264

20 Functions to Control Axes

This figure shows a workpiece being in the
channel2and to be machined after
interchanging the axes by the tool in the

1 1turret being moved by the axes X , Z .
The real absolute position of the tool in the
coordinate system fixed to the workpiece is

2 2x = !120, z =80.
The following two examples illustrate
program writing on the real side at the
parameter position

X2MCO =0,
and program writing on the virtual side at the
parameter position

X2MCO =1.
Writing the program on the virtual side looks
like as if interchanging the axes had been
passed unmarked and the machining would be
executed using the original turret.
At the tool nose radius compensation, the tool
position code Q has to be given according to the side the program was written on. In the
following example, there has to be given Q2 on the real side, and Q3 on the virtual side.

X2Real side, MCO =0:
2... (machining by the axes X ,

2Z)
(interchanging the axes,

1 1machining by the axes X , Z)
M502 P12
G55 T101 (R0.8, Q2)
G0 X-120 Z80
G41 G0 X0 Z40
G1 X-60 F0.5
G2 X-100 Z20 R20
G1 Z0
G0 X-120
G40 Z80
M503 P12
...

X2Virtual side, MCO =1:
2... (machining by the axes X ,

2Z)
(interchanging the axes,

1 1machining by the axes X , Z)
M502 P12
G55 T101 (R0.8, Q3)
G0 X120 Z80
G42 G0 X0 Z40
G1 X60 F0.5
G3 X100 Z20 R20
G1 Z0
G0 X120
G40 Z80
M503 P12
...

Certainly, the tool will always move on the real side.

Fig. 20.4-4

265

20 Functions to Control Axes

Interchanging real and hypothetical axes
There is a case, when a real axis and an unexisting axis are to be interchanged. Such a case is
illustrated in the figure showing kinematic scheme of an engine lathe.
A bar feeder places the workpiece in the
spindle S1 being in the channel 1 where
the front of the workpiece will be
machined. After receiving the
workpiece, its end will be machined in
the spindle S2 being in the channel 2.
In the channel 1, the workpiece together
with the spindle S1 is moved by the

1axis Z . The turning tools T01, ..., T06
being in vertical position are moved by

1 1the axes X , Y .
In the channel 2, the spindle S2 together
with the workpiece moves in the

2 2directions X , Z .
While in the spindle S1 the front of the
succeeding workpiece is machined, in
the spindle S2 the end of the previous
workpiece is processed.

2There is no axis Y in the channel 2.
Let us assume that the end of the
workpiece has to be machined using
one of the tools of the tool group T01,
..., T06, in the channel 2.

1 1 2 2In this case, the axes X , Y and X , Y have to be interchanged between the channels 1 and 2.

2In order that the mechanism of interchange can pass off, a hypothetical axis Y has to be
designated in the channel 2.
Hypothetical axis can be designated by the bit position #7 HYP=1of the parameter N0106 Axis
Properties. A hypothetical axis has a name (in this case it is Y) and a number, but physical axis
output and input from the servo parameters are not assigned to it, i.e. encoder input and drive
output do not belong to it.
After interchanging the axes, in this case in the channel 2, the axis Y can be referred both from
program and by manual moving.

2It can be seen in the figure that the positive direction of the axis Y is opposite to the positive

1 2 2 2direction of the axis Y in order that the coordinate system X , Y , Z will be right-handed. For
this purpose, 1 has to be set at the bit #0 MMI of the parameter N2105 Composit Config which

2bit belongs to the axis Y .
Since, after interchanging the axes, the hypothetical axis got to the channel1, the axis Y cannot
be referred either from program or by manual moving. Likewise, the axis X also cannot be
referred in the channel 1after changing the axis X would be moved by the spindle S2.

Fig. 20.4-5

266

20 Functions to Control Axes

20.5 Superimposed Control of Axes

In the course of machining a workpiece, it could be necessary to add motion of an axis to motion
of another axis. It is called superimposed moving the axes. The axes can be either in the same
channel or in different channels.
The axis, motion of which is added to motion of the slave axis, is called master axis.
The axis, to motion of which the motion of master is added, is called slave axis. Both the master
axis and the slave axis can be moved from program.
Superimposed moving is initiated by the PLC program by execution of a code M, for example.

Parameters and PLC flags used in the case of superimposed moving the axes
If two axes are to be linked together for superimposed moving, it will have to be specified in the
parameter N2107 Superimposed Master belonging to the slave axis which axis is its master
axis.
The master axis can be either in the same channel or in a different channel. The master axis can
have several slave axes. A slave axis can also be the master axis of another axis.
In the case of superimposed control of axes, both the master axis and the slave axis can be
programmed or manual motion command (jog, handwheel) can be issued.

Superimposed control is requested by the PLC setting the flag AP_SPRPNR belonging to the
slave axis to1. The PLC waits until the control acknowledges the request through the flag
AN_SPRPNA. From that moment, displacements of the master axis will be received by the slave
axis too, and displacements of the master axis will be added to the displacements of the slave
axis.
This flag can usually be switched on or off by functions M.
For example:

...
M43 (superimposed moving on)
...
M40 (superimposed moving off)
...

Hereafter, the code pair M40, M43 is used in this manual for switching superimposing on and off.
In the case of a given machine, the code of the function and operation description should be
asked the builder of the machine tool for.

Superimposed moving can only start strictly by the function for waiting and of buffer emptying.
If superimposed moving occurs between two channels, in the case of the other channel a code
for waiting will have to be programmed:

Program of the channel 1
...
M502 P12
M43 (superimposing on)

M503 P12
...
M504 P12
M40 (superimposing off)

M505 P12
...

Program of the channel 2
...
M502 P12
(W a i t i n g f o r
superimposing)
M503 P12
...
M504 P12
(W a i t i n g f o r
superimposing)
M505 P12
...

267

20 Functions to Control Axes

Another condition of requesting for superimposed moving is the existence of valid reference point
both on the master axis and on the slave axis.

In the case of superimposed moving, the motion of the master axis can be added or subtracted to
or from the motion of the slave axis. It can be set at the bit #0 MSU of the parameter N2108
Superimposed Config which bit belongs to the slave axis, whether the master axis will be added
or subtracted to or from the motion of the slave axis. If the value of the bit of the parameter

=0: the motion of the master axis will be added to the motion of the slave axis;
=1: the motion of the master axis will be subtracted from the motion of the slave axis.

Example of superimposed moving the axes
Let there be two turret on a two-channel machine.
The first turret is managed by the
channel 1and it can be moved

1along the axis X , while the
spindle S1 together with the
workpiece is moved by the axis

1Z .
The second turret is managed by
the channel 2 and it can be moved

2 2along the axes X , Z . The
subspindle in the channel 2
stands. Being in the spindle S1
the one side of the workpiece,
while being in the spindle S2 the
other side of the workpiece is
machined.
Let us assume that the outside
surface of the workpiece being in
the spindle S1 will be machined
by the tool being in the turret 1, while the
inside surface of this workpiece will be
machined by the tool being in the turret 2.

The program running in the channel 1 moves

1 1the axes X , Z . At the same time, the program

2running in the channel 2 moves the axes X ,

2 1Z . Since the axis Z moves the workpiece
being in the spindle S1 right and left, the

1displacement of the axis Z has to be added

2to the displacement of the axis Z in order
that the position of the tool being in the turret
2 will not change relative to the workpiece

2 2.because of motion of the axes X , Z

1In this arrangement Z is the master axis and

2 1Z is the slave axis. If the master axis Z

2moves in positive direction, the slave axis Z
will have to be moved in the positive

Fig. 20.5-1

Fig. 20.5-2

268

20 Functions to Control Axes

direction too in order that the position of the tool being in the turret 2 will not change relative to
the workpiece being in the spindle S1. For this, the bit position #0 MSU=0 has to be set in the
parameter N2108 Superimposed Config for the slave axis.
The programs for the workpiece illustrated in the drawing are the following:

The program running in the channel 1
...
T101 (tool position Q3)
G55 G90 G40 G0 X120 Z10
M3 S1=1000
M501 P12
M43 (superimposed moving)
M502 P12
G42 G0 X50 Z2
G1 X60 ,C3 F0.6
Z-20
G2 X80 Z-30 R10
G1 X100
G40 G0 Z10

M503 P12
M40 (normal machining)
M504 P12
G54 G0 X200 Z20
...

The program running in the channel 2
...
T2121 (tool position Q1)
G55 G90 G40 G0 X120 Z-10

M501 P12

M502 P12
G42 G0 X60 Z-5
G1 Z0 F0.8
X40 ,C1
Z30
G2 X20 Z40 R10
G1 X0
G40 G0 Z-10
X120
M503 P12

M504 P12
G54 G0 X150 Z10
...

20.6 Changing the Axis Direction

In the control, it is possible to change the movement direction of an axis, from the PLC program:
the positive direction command will cause a negative movement and vice versa.

It is the PLC that requests changing the axis direction by setting the flag AP_MIRR belonging
to the given axis to 1. The PLC waits until the NC acknowledges the request through the flag
AN_MIRA. From then on, the movement direction of the axis will be opposite to the direction
set in parameter.

In general, this flag can be switched on or off by the functions M.
In the case of a given machine, please ask the builder of the machine for the code and operation
of the function.
Changing the axis direction can only start strictly by the function of buffer emptying.

Changing the axis direction does not affect the direction of movement and the positions of the
positionings (G53) programmed in the machine coordinate system and of the moving to the
reference point (G28, G30 P).

269

20 Functions to Control Axes

Example of changing the axis direction
Now the turret T1 with its tools machines the front side of the workpiece being in the spindle S1.
The tool moves relative to the workpiece, in the directions X-Z. Then, the NC puts the workpiece
over to the spindle S2 being in the turret T1 (see the Figure). After revolving the turret, the
spindle S2 locates against the gang-type tool group T2 used for machining the rear part of the
workpiece. In this case, the workpiece being in the spindle S2 moves relative to the tool group
T2.
In order that the programs can be written in conventional way (the tool moves away from the
workpiece in the positive direction of motion) and that the coordinate system remains right-
handed, namely that the circle directions, direction of the radius compensation etc. do not change,
the motion direction of the X and Z axes has to also be reversed.

Let, for example, M44 be the function M that executes changing the axis direction, and the code
M40 cancels the change of direction.

...
G54 T101
...
M44 (change of direction on the axes X-Z)
G55 T2020 (new workpiece zero point and length compensation)
...
M40 (cancelling the change of direction on the axes X-Z)
G54 T101 (new workpiece zero point and length compensation)
...

After changing the axis direction, change-over to the coordinate system fixed to the workpiece
that was measured after the change of direction, and to the length compensation belonging to the
group T2. The situation is the same after canceling the change of direction, too.

Fig. 20.6-1

270

20 Functions to Control Axes

20.7 Managing Non-perpendicular Axes

If the movement of one axis on a machine is not perpendicular to the other, but makes an angle
with respect to the right angle, managing angular or slant axis is to be applied.

In each channel, a pair of axes can be designate in parameter to manage angular axes.
An axis existing in the orthogonal coordinate system is defined as perpendicular axis, and an axis
not perpendicular to it is defined as angular or slant axis.
The part program is written in an orthogonal virtual coordinate system, in the Figure it is the X-
Y’ coordinate system, where Y’ is the virtual axis.
The function that manages the slant axis automatically converts the program written in this way
into the coordinate system that makes angle.
The position is displayed in the orthogonal virtual coordinate system.
Using a PLC display, managing the slant axis can be switched on and off from the program by
means of M functions, for example.

Displacement
Let

aX mark the current displacement along the perpendicular axis,

aY mark the current displacement along the slant axis,

pX mark the programmed displacement along the perpendicular axis,

pY’ mark the programmed displacement along the virtual axis,
n mark the angle included between the virtual axis and the slant axis.

The relationship between the programmed and the current displacements is as follows:

where

pc=1, if the perpendicular axis (X -t) is given in radius,

pc=2, if the perpendicular axis (X -t) is given in diameter.

Fig. 20.7

271

20 Functions to Control Axes

Feed
The programmed feed must always be given in the orthogonal coordinate system.
Let

pF mark the programmed feed,

axF mark the feed component along the perpendicular axis,

ayF mark the feed component along the slant axis,
n mark the angle included between the virtual axis and the slant axis.

The programmed feed will be decomposed into components valid along the real axes in
accordance with the following relationship:

Switching off managing the slant axis
On the control, managing the slant axis can be switched on and off, using push button or M
functions.
Location of the push button, and the M function is determined by the machine builder. The M
function can also be used during program execution, provided the M function is designated to
buffer flush.
With setting the PLC flag CP_NOANGCR to 1, managing the inclined axis will be switched off
when the acknowledge signal CN_NOANGCA is switched on by the control.

Parameters for setting the managing of the inclined axis
Managing the inclined axis can be enabled by setting the #0 ANE bit of the parameter N0111
Angular Axis Control to 1.
The parameter N0112 Slant Angle can be used to specify the degree of deviation of the direction
of the slant axis from the perpendicular direction.
The number of the slant axis can be specified in the parameter N0113 Axis Number of Slant.
Only axes existing in the given channel can be specified.

Fig. 20.7

272

20 Functions to Control Axes

Finally, the parameter N0114 Axis Number of Cartesian allows you to specify the number of
the perpendicular axis to which the motion of the slant axis is reflected. Only axes existing in the
given channel can be specified.

Positioning and interpolation in the workpiece coordination system
Case 1: Managing the slant axis is switched on (the state of the PLC flag: CN_NOANGCA=0)
Data of the position and the feed are always specified in the virtual orthogonal coordinate
system.
The position is also displayed in the virtual coordinate system.
The position of the perpendicular axis is corrected with the position of the slant axis by the
interpolator.

Example:
N1 G0 G90 Y100 (positioning from P0 to the point P1)
N2 X200 (positioning from P1 to the point P2)

Positions in the point P1 at the end of the block N1:

Programmed position
X0.000
Y100.000

Position in the real coordinate system
X 57.735
Y115.470

Positions in the point P2 at the end of the block N2:

Programmed position
X200.000
Y100.000

Position in the real coordinate system
X257.735
Y115.470

The above also applies to manual movings.
By selecting the slant axis for jog or handwheel moving, the position of the perpendicular axis
will be corrected with the position of the slant axis, and the motion will be performed in the
virtual coordinate system.
For example, if the incremental jog Y button is pushed and the step value is 1 mm, the axis Y and
axis X will move 1.155 mm and 0.578 mm, respectively.

Fig. 20.7

273

20 Functions to Control Axes

Case 2: Managing the slant axis is switched off (the state of the PLC flag: CN_NOANGCA=1)
Data of the position and the feed are always specified in the virtual coordinate system.
The position is also displayed in the virtual coordinate system.
The position of the perpendicular axis is not corrected with the position of the slant axis by the
interpolator.

Example:
N1 G0 G90 Y100 (positioning from P0 to the point P1)
N2 X200 (positioning from P1 to the point P2)

Positions in the point P1 at the end of the block N1:

Programmed position

X0.000
Y100.000

Position in the virtual coordinate system
X-50.000
Y86.603

Positions in the point P2 at the end of the block N2:

Programmed position

X200.000
Y100.000

Position in the virtual coordinate system
X150.000
Y86.603

The above also applies to manual movings.
For example, if the incremental jog Y button is pushed and the step value is 1 mm, the axis Y will
move 1 mm while axis X will not move.

Positioning in the machine coordinate system: G53
Positioning in the machine coordinate system is not affected by the state of the flag
CN_NOANGCA. Movement of the slant axis does not compensate position of the perpendicular
axis.
The position data are interpreted in the real slant coordinate system.

Fig. 20.7

274

20 Functions to Control Axes

Example:
N1 G53 Y100 (positioning from P0 to the point P1)
N2 G53 X200 (positioning from P0 to the point P1)

Positions in the point P1 at the end of the block N1:

Virtual position
X-50.000
Y 86.603

Machine position
X 0.000
Y100.000

Positions in the point P2 at the end of the block N2:

Virtual position
X150.000
Y 86.603

Machine position
X200.000
Y100.000

Drilling cycles
If the slant axis is selected as the drilling axis, drilling is only possible if managing the slant
axis is not switched off (CN_NOANGCA=0 state), otherwise the error message "Drilling cycle
not possible with state CN_NOANGCA=1" is issued. In the case of G84.2 and G84.3, there will
be interpolation between spindle and virtual axis.

Execution of the codes G28 and G30
The position of the intermediate points is always interpreted in the virtual coordinate system.
Depending on the status of the flag CN_NOANGCA,
the position of the perpendicular axis will be compensated by moving the slant axis
(CN_NOANGCA=0) or there will not be compensation on the perpendicular axis
(CN_NOANGCA=1).
The positions specified in the parameters N0200 Reference Position1, ..., N0203 Reference
Position4 are always specified along the slant axis.
When motion from an intermediate point to the reference point occurs, motion of the slant axis
will not compensate motion of the perpendicular axis.

Fig. 20.7

275

20 Functions to Control Axes

Manual reference point return and G28
In the case of manual reference point return, or in the case of execution of G28 when reference
point return is not occurred yet, compensation of the perpendicular axis will or will not be
implemented depending on the state of the flag CN_NOANGCA.

Specifying the end position data
End positions have to be specified and taken into account always along the slant axis.

Transformations
Transformations (G52, G51, G51.1, G68, G68.2) are always interpreted in the virtual coordinate
system.

Zero point offset and length compensation data
Zero point offset and length compensation data for the slant axis are always stored according
to the virtual axis.
This is also necessary because, when measuring tool overhangs or workpiece zero point on an
external device, the offsets are obtained in orthogonal coordinate system.

Measuring zero point and lenth compensation
During measurement, offsets must always be calculated from the virtual axis positions.

Macro variables
Interpretation of the macro variables is as follows:
#5001..., #5041..., #5061: poition information in the virtual coordinate system
#5021...: position information in the real, slant axis coordinate system
#5081..., #5121: length compensations in the virtual coordinate system
#5101...: lag in the real, slant axis coordinate system
#100651...: handwheel zero point offset in the virtual coordinate system
#5181...: distance to go in the virtual coordinate system
#10001...: length compensations in the virtual coordinate system
#5201..., 12001..., #7001..., #12061...,: zero point offsets and misalignment compensations in

the virtual coordinate system
#5521...: dynamic zero point offsets in the virtual coordinate system
#5501...: the current dynamic zero point offsets in the virtual coordinate system

G10
When zero point offsets and compensations are entered, the data sspecified are entered in the
virtual coordinate system.

Moving the axes in synchronism, change of axis, superimposed movings
The above moving the axes including an angle is possible if the slant axis forms a pair with
another slant axis, while the perpendicular axis forms a pair with another perpendicular axis:

perpendicular axis X1- pair - perpendicular axis X2
slant axisY1 - pair - slant axis Y2.

In the case of an other setting the error message ‘Setting the slant axis synchronism,
superimposed, moving, change of axis is erronous’ will be issued.

276

21 Measurement Functions

Fig. 21.1-1

21 Measurement Functions

21.1 Skip Function (G31)

The command
G31 v (P) (F)

starts the motion to the point of coordinate v
using linear interpolation. The motion
continues until an external skip signal (e.g.
the signal of a touch probe) arrives or the
endpoint position of the coordinates v is
reached by the control. After arriving of the
skip signal or at the programmed endpoint of
the block the control will decelerate and stop.

The touch probe signal among the 8 ones inputable to the control which is to be taken into
account in the course of the motion, can be specified at the address P:

P1: using the touch probe signal 1;
P2: using the touch probe signal 2;
...
P8: using the touch probe signal 8.

Filling the address P is not obligatory; if the address P is not filled, the touch probe signal 1 will
be taken into account by the control.

The function G31 has to always be used in the state G94 (feed per minute). During the motion,
the feed F will be:
 – a specified on modal value, if the bit #0 SKF of the parameter N3001 G31 Config is 0;
 – a value taken on from the parameter N0311 G31 Feed, if the bit #0 SKF of the parameter

N3001 G31 Config is 1.

The command G31 is not a modal one, it is valid only in the block in which is programmed.

At the moment the external signal arrives, the positions of the axes will be stored in the
following macro variables:

#5061 or #100151 or #_ABSKP[1]: position of the axis 1;
#5062 or #100152 or #_ABSKP[2]: position of the axis 2.
...

The positions stored in the macro variable above will be the following:
 – the position taken at the moment the signal arrives, if the external signal arrived;
 – the position of the programmed endpoint of the block G31, if the external signal did not

arrive.
The position data will be stored
 – always in the coordinate system of the actual workpiece;
 – without taking the actual length compensation (G43, G44) into account.
After the external signal arrives, motion will stop with deceleration. At this time, the endpoint
position of the block G31deviates to a small extent from the positions stored in the variables
#5061... at the moment the signal arrives, according to the feed used in the block. The endpoint

277

21 Measurement Functions

Fig. 21.1-2

Fig. 21.1-3

positions of the block can be accessed in the variables #5001... . The next motion block will be
valid from these endpoint positions.

Execution of the block G31is possible only in the states G15, G40, G50, G50.1 G69, G94.
Otherwise, the error message ‘2055 Skip function in Gnn state’ will be induced.

The value given at the coordinates v can be both incremental and absolute. If coordinate
specification of the succeeding block is incremental, displacement will be calculated by the
control from that point of the block G31where the motion stopped in the previous block.

For example:
N1 G31 G91 Z100
N2 X100 Z30

In the block N1, an incremental motion in the
direction Z is started by the control. If, after
arriving of the external signal, the control
stops at the point with the coordinate of
Z=86.7, the following incremental motions
from that point will be executed in the block
N2: 100 in the direction X and 30 in the
direction Z.

If absolute data specification is programmed,
the motion will be as follows:

N1 G31 G90 Z200
N2 X200 Z300

The block N1 starts a motion in the direction Z
to the point with the coordinate of Z=200. If,
after arriving of the external signal, the control
stops at the point with the coordinate of
Z=130, the displacement in the direction Z in
the block N2 will be Z=300 - 130, i.e. Z=170.

21.2 Torque Limit Skip (G31)

The function G31 can also be used in the way by skipping the motion not by an external signal
(for example by the signal of the probe) but when the torque of the motor at a specified axis
reaches a given value, for example, when the tool is pressed against a fixed surface. At the
moment of reaching the torque limit or at the programmed endpoint of the block the control stops,
and then it goes on to execute the next block.
It is the function

G31 P98 Qq v Ff
that realizes the actions mentioned above, where:

Q: the value of the programmable torque limit expressed in percent of the maximum
torque of the motor. Q0 corresponds to 0% and Q255 corresponds to 100%.
The values that can be given: Q1-Q254

v: the name and the endposition of the programmed axis on which the torque limit is
monitored by the control. Only one axis address has to be specified

278

21 Measurement Functions

F: the value of feed in mm/min or inch/min. (G94 state is needed).
During motion, the value of the feed F will be:
 – the specified or modal value F if the bit #0 SKF of the parameter N3001 G31 Config is 0;
 – the value F taken from the parameter N0311 G31 Feed if the bit #0 SKF of the parameter

N3001 G31 Config is 1.

The command G31 P98 is not a modal one; it is valid only in the block, in which it was
programmed.

An example:

N1 G31 P98 Q50 Z30 F100
N2 G0 Z200

In the block N1, the tool reaches the
workpiece surface at the point ‘A’. As
from this point, the axis Z will not
move already. Because the motor has
not reached the torque limit Q50
(19.6%) yet, the control will not stop
the motion.
The position error on the axis Z from
the point ‘A’ to the point ‘B’ will
increase continuously while the torque
of the motor increases continuously.
Issuing the motion command continues
up to the point ‘B’ where the motor
reaches the torque limit.
At the point ‘B’, the control stops the motion, records the position of the point ‘A’, and then
begins execution of the next block N2.

The position error increases continuously increases from the point ‘A’ to the point ‘B’ while the
torque of the motor increases because the tool pushes the workpiece. In order that the control does
not run to a servo error during execution of the function, an error limit greater than the limit set
in the parameter N0520 Serrl2 can be set in the parameter N3019 Servo Limit during Torque
Limit Skip. The control will send the message ‘3157 Servo error during G31P98' only after
exceeding this limit. This servo error does not cause emergency situation but it suspends
execution of the program.

At the moment of reaching the torque limit, the position of the axis recorded at the point ‘A’ will
be stored in the following macro variables:

#5061, or #100151, or #_ABSKP[1]: the position of the axis 1;
#5062, or #100152, or #_ABSKP[2]: the position of the axis 2;
...

The position stored in the abovementioned macro variables will be:
 – the position of the point ‘A’ if torque limit signal has been received;
 – the position of programmed endpoint of the block G31 P98 if torque limit signal has not been

received.

Fig. 21.2-1

279

21 Measurement Functions

Fig. 21.3-1

The position data will be stored
 – always in the actual workpiece coordinate system;
 – without taking the actual length compensation (G43 and G44) into account.

Error messages
If the address Q is not filled in, the control will send the message ‘2004 The data Q is missing’.
If the value of the address Q is less than 1 or greater than 254, the control will send the message

‘2039 Q definition error’.
If more than one axis address is referred in the function, the control will send the message ‘2035

<axis address> axis definition is illegal’, where <axis address> is the address of the
programmed axis 2 according to the axis number order.

If the control does not receive torque (current) information about the programmed axis, it will
send the message ‘2156 Probe status error on the channel 98'.

21.3 Automatic Tool Length Measurement (G36, G37)

Due to the command
G36 X_
G37 Z_

the length compensation of the tool changed will be measured and corrected along the axis X in
the case of the G36, and along the Z in the case of the G37. The values of the X and Z are always
interpreted as absolute data, in the coordinate system of the actual workpiece.

The motion is performed to the
position q - Rapid Distance at the
rapid traverse rate, where Rapid
Distance is the distance set in the
parameter N3006 Rapid Distance
X for the axis X, and in the
parameter N3010 Rapid Distance
Z for the axis Z; q is the value
programmed at the addresses X, Z.

Then, the motion continues at the
feed rate until touch probe signal
arrives or the control indicates
error. The error message ‘2104
Measurement position out of area’
will be sent, if the touch probe signal arrives from a place which is out of the range with the
radius of Alarm Distance, being around the predicted measurement position q (programmed at
the address X or Z). The distance Alarm Distance is a value set in the parameter N3007 Alarm
Distance X for the axis X, and in the parameter N3011 Alarm Distance Z for the axis Z.

In the block G36, G37, the value of the feed will be:
 – a modal value from the program, if the bit #0 TLF of the parameter N3003 G36, G37 Config

is 0; or
 – a value set in the parameter N0312 G37 Feed Feed, if the bit #0 TLF of the parameter N3003

G36, G37 Config is 1.

280

21 Measurement Functions

If the measurement is completed successfully and the touch probe signal arrived at the point with
the coordinate Q, the following compensation modifications will be possible in the length
compensation registers called previously:
 – geometry compensation will be modified if the bit #1 TMW of the parameter N3003 G36, G37

Config is 0;
 – wear compensation will be modified if the bit #1 TMW of the parameter N3003 G36, G37

Config is 1.
Modifying the length compensation is as follows:
 – the difference q-Q will be subtracted from the appropriate compensation if the bit #2 TCA

of the parameter N3003 G36, G37 Config is 0;
 – the difference q-Q will be added to the appropriate compensation if the bit #2 TCA of the

parameter N3003 G36, G37 Config is 1.

Prior to starting the measurement, the appropriate length compensation has to be called.
 – The G36, G37 is one-shot command.
 – The cycle G36, G37 is always executed in the coordinate system of the actual workpiece.
 – The parameters Rapid Distance and Alarm Distance are always positive values. For these two

parameters, the following condition has to be satisfied: Rapid Distance > Alarm Distance.
 – The function can be called only in the state G15, G50, G50.1, G69, G94, otherwise an error

message will be sent by the control.

Example

G55 G15 G50 G50.1 G69 G94
...
G0 X300 Z200
T505
X20 Z100
G37 Z50 F200
Z100
X200
Z50
G36 X40
X200
...

281

22 Safety Functions

22 Safety Functions

The following three safety zones can be set on the control:
 – Stroke ends: they determine the limit of axis travel, entering beyond which is forbidden.

Switches or parameters are used for limitation.
 – Working area limitation (Stored stroke check 2): it can be started and cancelled from program

by the functions G22 and G23, respectively. It can be set by specification of parameters
too. Both inside and outside forbidden areas can be defined.

 – Area forbidden internally (Stored stroke check 3): an area moving into which is forbidden.
It can be set using parameters.

22.1 Stroke End

The stroke ends limit axis travel. Stroke ends can be managed
from switch or from parameter. They always forbid outside area.

Managing stroke end from switch
It is the PLC program that manages signals from the limit
switches and transmits them to the control. When an axis moves
onto a limit switch, the error message
‘3018 Axis # on positive limit switch’ or
‘3019 Axis # on negative limit switch’
will be sent by the control, where # is the name of the axis.
A disadvantage of stoke limitation using limit switch is that the
control begins to decelerate after moving onto the switch. On the machines featured by high
rapid traverse rate, it would be necessary to decrease the stroke to a great extent because of the
long deceleration distance, in order that the axis will be able to stop from rapid traverse.
Furthermore, monitoring the stroke end prior to motion start does not work either.

Managing stroke end from parameter
In the case of managing stroke end from parameter, the control knows momentarily the distance
to the stroke end, and it always begins to decelerate at the right moment in accordance with the
axis speed. In this way, the machine stroke is fully utilized by parametric stroke end.
When an axis moves onto a parametric stroke end, the error message
‘3010 Positive limit on axis # obtained’ or
‘3011 Negative limit on axis # obtained’
will be sent by the control, where # is the name of the axis.
The parametric stroke ends are determined by the builder of the machine tool.
Monitoring the parametric stroke end will be effective only after positioning to the reference
point. On those machines, where there is no absolute measuring system, i.e. reference point return
is necessary, the rapid traverse rate is limited before positioning to the reference point, for safety
reason. In the case of the axes equipped with absolute measuring system, the parametric stroke
end is effective immediately after switching on.
Two stroke end ranges, A and B, can be set in parameter. During operation of the machine, the
PLC program determines which stroke end range (A or B) should be effective on which axis and
in which direction.

Fig. 22.1-1

282

22 Safety Functions

For example, in a normal case, the stroke end range A is effective on the axis Z. If, in the course
of tool change, the change arm grips the tool, the PLC program will switch over to the stroke end
range B; in this way, the stroke end range of the axis Z is adjusted within such narrow boundary
that does not allow tearing the change arm off by the motion of the axis Z.

Leaving the stroke end
If, in the course of program run or manual moving, any of the axes moves onto a stroke end,
leaving it will be possible by moving manually only.

22.2 Working Area Limitation from Parameter/Program (G22, G23)

Working area limitation from parameter
Working area limitation can be given by setting the following parameters. Parameters can be set
only in the Edit mode.

With setting the parameter bit #1 RE2 of the parameter N1000 Range Enable to 1, it can be
determined which axis will participate in working area limitation.
The point of positive and negative direction of the working area to be limited has to be given in
the parameters N1006 Range2 Positive and N1007 Range2 Negative in the machine coordinate
system, for each axis.
The condition

N1006 Range2 Positive > N1007 Range2 Negative
has to be satisfied for all assigned axes!
Using the enable bit and the machine positions, all the axes on the machine can be assigned in
parameter for working area limitation.
It can be given at the bit #0 EXT of the parameter N1001 StrkContr whether the assigned
working area will be forbidden internally (when EXT=0) or externally (when EXT=1).
The working area limitation has to be enabled with setting the bit #1 STE of the parameter
N1001 StrkContr to 1. If the bit STE is 0, the working area limitation will not operate.
The bits EXT and STE has to be set for each channel. The working area limitation is always
related to the axes belonging to the given channel.
Following the entering or rewriting the parameters, the single block

G23

Fig. 22.2-1

283

22 Safety Functions

has to be issued in one of the manual modes. As a result of this, the entered or modified
parameters will be taken into account by the control.
The figure illustrates a working area limitation for the axes X, Y, Z. Certainly, either less or more
axes can be assigned for this function.
If the machine moves into an area forbidden internally (EXT=0), the error message

‘3042 Internally forbidden area 2'
will be sent by the control.
If the machine moves into an area forbidden externally (EXT=1) in positive or negative direction,
the error message

‘3040 Forbidden area 2 # +’ or
‘3041 Forbidden area 2 # -‘

will be sent by the control, where # is the name of the axis.

Leaving the area forbidden by parameter
If, in the course of program run or manual moving, any of the axes moves into forbidden area, the
following method should be applied:

The case when the working area is forbidden externally.
The area can be left by moving manually, similarly to leaving the stroke end.

The case when the working area is forbidden internally.
By switching the PLC flag on: The program has to be reset, the error has to be deleted. By

switching the flag CP_LIM2DIS PLC on (e.g. pushing a button and keeping it pushed),
monitoring the forbidden area 2 can be suspended and leaving the area will be possible
without rewriting the parameters. For details the builder of the machine tool has to be
asked .

By parameter setting: Monitoring the working area limitation has to be cancelled by parameter
setting STE=0, the command G23 has to be issued in single block, the area has to be left
by moving manually, monitoring has to be started again by parameter setting STE=1,
and the command G23 has to be issued again.

Working area limitation from program
The command

G22 X Y Z I J K P
starts monitoring the working area limitation. The motion ranges of the axes can be limited by
this command. The meaning of the addresses of the command are as follows:

X: Limit along the axis X in the positive direction;
I: Limit along the axis X in the negative direction;
Y: Limit along the axis Y in the positive direction;
J: Limit along the axis Y in the negative direction;
Z: Limit along the axis Z in the positive direction;
K: Limit along the axis Z in the negative direction.

The following conditions have to be satisfied for data above:
XI, YJ, Z$K

All the coordinate data (X, Y, Z, I, J, K) have to be given in the machine coordinate system.
It can be given at the address P whether moving beyond or into the assigned space is forbidden.

In the case of P=0, the internal zone of the assigned space is forbidden.
In the case of P=1, the external zone of the assigned space is forbidden.

284

22 Safety Functions

Fig. 22.2-2

Due to the command G22, the values of the range 2 set in parameter will be ignored by the
control, and only those values will be taken into account that were given in the command G22.

The command
G23

cancels monitoring the working area limitation.

The command G23 deletes the borders of the range set in the command G22, and, at the same
time, resets the values of monitoring the range 2 set in parameter.

 – Working area limitation can be given only for main axes.
 – The commands G22 and G23 has to be given in independent block..
 – Working area limitation will be effective after turning on and machine reference point return.
 – In the case of X=I, Y=J, Z=K and P=0, the entire area is allowed.
 – In the case of X=I, Y=J, Z=K and P=1, the entire area is forbidden.

If the machine moves into an area forbidden internally (G22 P0), the error message
‘3042 Internally forbidden area 2'

will be sent by the control.
If the machine moves into an area forbidden externally (G22 P1) in positive or negative direction,
the error message

‘3040 Forbidden area 2 # +’ or
‘3041 Forbidden area 2 # -‘

will be sent by the control, where # is the name of the axis.

Leaving the forbidden area programmed using the function G22
If, in the course of program run or manual moving, any of the axes moves into forbidden area, the
following method should be applied:

The case when the working area is forbidden externally.
The area can be left by moving manually, similarly to leaving the stroke end.

The case when the working area is forbidden internally.
By switching the PLC flag on: The program has to be reset, the error has to be deleted. By

switching the flag CP_LIM2DIS PLC on (e.g. pushing a button and keeping it pushed),

285

22 Safety Functions

monitoring the forbidden area 2 can be suspended and leaving the area will be possible.
For details the builder of the machine tool has to be asked .

From program: In manual mode, monitoring the working area limitation has to be cancelled
using function G23, the area has to be left by moving manually, and monitoring has to
be started again by issuing the complete command G22 again.

If, on the control, the forbidden area 2 is set from parameter, but working area limitation is issued
using the command G22, the area specified by the G22 will be forbidden until it will be deleted
by the G23. Then, the area 2 specified in parameter will be forbidden again.

22.3 The Area Forbidden Internally

An area always forbidden internally can be defined by
parameters on the control. If one or maybe more of the axes
moves into this area or to the border of it, the error message

‘3042 Internally forbidden area 3'
will be sent by the control.

Leaving the area forbidden internally
By switching the PLC flag on: The program has to be reset,

the error has to be deleted. By switching the flag
CP_LIM3DIS PLC on (e.g. pushing a button and
keeping it pushed), monitoring the area 3 forbidden
internally can be suspended and leaving the area will be possible without rewriting the
parameters. For details the builder of the machine tool has to be asked.

By parameter setting: If the machine moves into the abovementioned area forbidden internally,
the bit #2 RE3 of the parameter N1000 Range Enable, i.e. enabling the monitoring the
area forbidden internally, will have to be cancelled for each axis by writing the bits RE3
to 0. Then, the area has to be left by moving manually, and the bits #2 RE3 have to be set
again.
The bits RE3 can be set only in the Edit mode.

22.4 Monitoring the Forbidden Area Prior to Motion Start

In the bit state #2 CBM=1 of the parameter N1001 StrkCont, prior to starting a motion
command, the control will check in automatic or manual data input mode or when a single block
is being started, whether the endpoint of the given block will fall into one of the forbidden areas
or not.

Fig. 22.3-1

286

22 Safety Functions

If the endpoint of the block falls beyond the stroke end within the forbidden area 1,
the error message

‘2056 Endpoint on positive limit on axis #’
‘2057 Endpoint on negative limit on axis #’

will be sent by the control, where # is the name of the related axis; and motion will not be started.
If the endpoint falls within the internally forbidden area 2,
the error message

‘2060 Endpoint in internally forbidden area 2'
will be sent by the control, and motion will not be started.
If the endpoint falls within the externally forbidden area 2,
the error message

‘2058 Endpoint in forbidden area 2 # +’
‘2059 Endpoint in forbidden area 2 # -‘

will be sent by the control, where # is the name of the related axis; and motion will not be started.
If the endpoint falls within the internally forbidden area 3,
the error message

‘2061 Endpoint in internally forbidden area 3'
will be sent by the control, and motion will not be started.

In the bit state #2 CBM=1 of the parameter N1001 StrkCont,
prior to starting a motion command, the control will check in
automatic or manual data input mode or when a single block is
being started, whether the path of the given block intersects the
area forbidden internally.

If the path of the block intersects the internally forbidden area
2, but the endpoint is not within the forbidden area,
the error message

‘2062 Entry into second internally forbidden area’
will be sent by the control, and motion will not be started.
If the path of the block intersects the internally forbidden area
3, but the endpoint is not within the forbidden area,
the error message

‘2063 Entry into third internally forbidden area’
will be sent by the control, and motion will not be started.

Fig. 22.4-1

Fig. 22.4-2

287

22 Safety Functions

The errors mentioned in the cases above can be eliminated by rewriting the programmed
coordinates and by modifying the zero points or tool compensations.

288

23 Custom Macro

23 Custom Macro

The conventional NC programming language describes the desired path and switches the various
functions on or off by specifying codes G, M, S and T. Specific numerical value is assigned to
a given address. For example, if the axes are to be moved to the position X50 Y100, the block

G0 X50 Y100
will have to be programmed.
With the application of the macro language, it is not necessary to assign a specific numerical
value, e.g. X50, to a given address, but instead, the value of a variable can also be assigned to
it; for example, it can be written in the program that

G#105 X#102 Y#110
where #105, #102 and #110 are the values of three different variables to which a value was
assigned earlier.
In the programming language, various arithmetical expressions and functions can be used, for
example addition, square-root extraction, sine function etc.
Assignment commands, condition check commands, branch commands and commands
executing cycle can be used.
The programming language enables such subprograms, macros to be called to which arguments
(parameters) can be passed from the calling block.
With parameter specification, such so-called system macros or system subprograms can be
generated that can be used by the user to extend or modify the commands of conventional
programming language of codes G in accordance with his demands.

289

23.1 Variables of the Programming Language

23.1 Variables of the Programming Language

In the main program, subprograms and macros, variables can also be assigned to the addresses,
instead of specific numerical values.
Value within a permissible range can be assigned to the variables. By the use of variables,
programming can be made much flexible.
Variables can be classified as

local variables that are used for passing argument in macro calls;
common variables that can be accessed at every level of macro call; and
system variables.

The system variables are those internal data of the control that can be read out or rewritten from
the part program.

23.1.1 Referring to Variables

Variables can be referred by number, but system variables can be referred either by number or
by symbol.
Referring to a variable has to always be begun with the number sign #.

Referring to variable by number
The identifier of the variable is a number following the number sign #:

#<number>
For example:

#12
#138
#5106

A variable can also be referred indirectly, by a formula: #[<formula>]
For example:

#[#120] means that the variable No. 120 contains the serial number of the variable
referred to.
#[#120-4] means that subtraction 4 from the number contained in the variable No. 120
gives the number of the variable referred to.

Referring to system variables by symbol
Symbolical reference is also begun with the number sign # followed by the character _
(underscore symbol):

#_<symbol>
For example:

#_ALM (error message)
In certain cases, an index has to also be added to the symbolic variables. The index has to be put
into brackets []:

#_<symbol>[index]
For example:

#_ABSIO[3] means block end position of the axis 3, axis index: [3].

In the words of the program block, the various addresses can take on not only numerical values,
but also values of variables. In the case of referring to variable behind addresses, the minus sign
(!) or the operator I can also be used wherever it is permitted in the case of numerical values. For
example:

290

23.1 Variables of the Programming Language

G#102
if #102=1.0, this reference is equivalent to G1

XI!#24
if #24=135.342, this reference is equivalent to XI!135.342

 – It is not permitted to refer to a variable behind addresses of block number N and conditional
block /. The first address N written in the block is considered to be block number by the
control.
 – The number of a variable cannot be substituted by a variable, i.e. writing ##120 is not
permitted. The correct specification is #[#120].

 – If a variable is used behind an address, the value of the variable will not have to exceed the
range of values permitted for the given address. For example, after the value specification

 #112=123456789
the reference

M#112
will cause error message.

 – If a variable is used behind an address, the value of the variable will be rounded to the
significant digit corresponding to the address. For example:

if the #112=3.23, the M#112 will be M3,
if the #112=3.6, the M#112 will be M4.

23.1.2 Number Representation of Macro Variables

Disregarding few exceptions, macro variables are floating-point numbers. The macro variables
being not floating-point ones will have special marking in their description.
In the control, representation of the floating-point numbers follows the double precision
representation of the floating-point numbers in accordance with the standard IEEE 754. These
numbers are represented on 64 bits.
Using the double precision representation of the floating-point numbers, the numbers

from ±5.0 × 10 to ±1.7 × 10!324 308

and the 0 can be represented with precision of 15-16 digits. The decimal point (.) has to be used
during input, but it is not necessary when the numbers to be input are integer numbers:

#100=256
Neither leading zeros nor following zeros have to be given. The positive sign (+) can be omitted:

#100=134.89654

23.1.3 Local Variables: #1 – #33

The local variables are used by the macro program at a given point, locally.
Generally, the local variables are used to pass arguments.
The local variables are multi-level variables; different levels belong to the main program and to
the various macro calls, and that is because they are called local. For example, the value of the
#1 can be different in the main program than, let us say, in the level 2 of the macro calls.
After returning from macro call, the local variables of the given level will be eliminated to #0,
they will be deleted to vacant. The local variables of the main program will be deleted at the end
of the program.
Fitting the addresses of the arguments and the local variables, and managing the levels are
covered by the section 23.3 Calling the Macros, System Macros and System Subprograms
on page 336.

291

23.1 Variables of the Programming Language

The local variables the address of which is not included in the argument assignment is null and
can be used freely.

23.1.4 Common Variables: #100 - #499, #500 - #999

Unlike the local variables, the common variables are identical in the whole channel regardless
of whether they are used in the main program, subprogram or macro and in which level of the
macro call.
In the system, the use of common variables absolutely free, they do not have any dedicated role.

The following two groups of the common variables are distinguished:
The common variables from #100 to #499 that will be deleted upon power-off.
The common variables from #500 to #599 the value of which will be retained even after

power-off.

The common variables from #500 to #999 can be made write-protected using the parameters
N1702 Write Prt Low and N1703 Write Prt Hig.
The first element of the array to be protected has to be written in the parameter N1702 Write Prt
Low, but the last element of the array declared protected has to be written in the parameter N1703
Write Prt Hig.
For example, if the common variables from#530 to #540 are to be made write-protected, the
parameter settings N1702 Write Prt Low=530 and N1703 Write Prt Hig=540 will have to be
applied.

If the control manages several channels, an array of the common variables can be made
accessible in each channel using parameter.
The parameter N1700 No. of Common #100 determines the number of the macro variables from
#100 to #499 that can be called from each channel. In each channel, the macro variables with the
number from 100 to the parameter 100 + No. of Common #100 will be common. This parameter
has to be smaller than 400.
If the value of the parameter, let us say, 40, the macro variables from #100 to #139 will be
common for each channel.
The parameter N1701 No. Of Common #500 determines the number of the macro variables from
#500 to #999 that can be called from each channel. In each channel, the macro variables with the
number from 500 to the parameter 500 + No. of Common #500 will be common. This parameter
has to be smaller than 500.
If the value of the parameter, let us say, 30, the macro variables from #500 to #529 will be
common for each channel.

23.1.5 Notation Used in Description of System Variables

The system variables are those internal data of the control that can be read out or rewritten from
the part program.

The axes can be identified only from 1 to 20 on the macro variables belonging to the axes and
identified by a number under 10000. For the case of greater axis number, the identification
numbers over 100000 has been introduced. Referring to axes can be done on the numbers from
1 to 50. For example:

#100001

292

23.1 Variables of the Programming Language

can also be used to identify the block end position of the axis 1. Certainly, referring to the data
above can also be done using numbers smaller than 10000, and symbols.

Notation used in description of system variables is as follows:
[n]: the index of the variable. It can be, for example the number of an axis or a spindle;
R: an attribute of the variable: read-only variable;
W: an attribute of the variable: write-only variable;
R/W: an attribute of the variable: readable and writable variable.

23.1.6 Vacant Variable. Constants

Number Symbol Attribute Description

#0, #3100 #_EMPTY R Empty constant

#3101 #_PI R ð= 3.14159...

#3102 #_E R Base of natural logarithm: e=2.71828...

Vacant variable #0, #3100, #_EMPTY (R)
When a macro is called, if value is not assigned to an address, the value of the local variable
belonging to that address will be vacant in the body of the macro.
For example: After calling

G65 P100 X20 Y30,
the value of the local variable #1 in the macro O0100 will be vacant because value was not
assigned to the address A in the call G65. It can be decided with the checking

#1 EQ #0
in the body of the macro whether the address A was filled in the course of calling the macro or
not.
The vacant variable and the number 0 are not identical ones, they differ from each other!

The difference between the effects of the vacant variable and a variable having the value 0 is as
follows:
Referring to the vacant variable in address:

 If #1=<vacant> If #1=0

 G90 X20 Y#1 G90 X20 Y#1
 * *
 G90 X20 G90 X20 Y0

293

23.1 Variables of the Programming Language

Vacant variable in assignment command:
 If #1=<vacant> If #1=0

 #2=#1 #2=#1
 * *
 #2=<vacant> #2=0

 #2=#1*3 #2=#1*3
 * *
 #2=0 #2=0

 #2=#1+#1 #2=#1+#1
 * *
 #2=0 #2=0

The difference between the vacant variable and a variable having the value 0 in the case of
condition checking:
 If #1=<vacant> If #1=0

 #1 EQ #0 #1 EQ #0
 * *
 satisfied not satisfied

 #1 NE 0 #1 NE 0
 * *
 satisfied not satisfied

 #1 GE #0 #1 GE #0
 * *
 satisfied not satisfied

 #1 GT 0 #1 GT 0
 * *
 satisfied not satisfied

23.1.7 Variables Between the Part Program and the PLC Program

Information exchange between the part program and the PLC program can be realized by the
variables described below.
L Warning! The kind of information the PLC program transmits to the part program and

receives from the part program through various system variables is determined the
builder of the machine tool.

Number Symbol Attribute Description

#1000...#1031 #_UI[n]
n=0 - 31

R 32 bit variables of the PLC program
transmitted to the control. Value set: 0, 1

#1032 #_UIL[n]
n=0

R 32 bit variables of the PLC program
transmitted to the control as a 32-bit
integer number. Value set: 0 ... 2 -132

294

23.1 Variables of the Programming Language

Number Symbol Attribute Description

#1033...#1035 #_UIL[n]
n=1, 2, 3

R 3 floating-point variables of the PLC
program transmitted to the control.

#1100...#1131 #_UO[n]
n=0 - 31

R/W 32 bit variables of the part program
transmitted to the PLC. Value set: 0, 1

#1132 #_UOL[n]
n=0

R/W 32 bit variables of the part program
transmitted to the PLC as a 32-bit
integer number. Value set: 0 ... 2 -132

#1133...#1135 #_UOL[n]
n=1, 2, 3

R/W 3 floating-point variables of the part
program transmitted to the PLC.

23.1.8 Messages of the Part Program

From the macro program, errors can be indicated and messages can be sent to the operator:

Number Symbol Attribute Description

#3000 #_ALM W Error message; it can be deleted by the button
Cancel

#3006 #_MSGSTP W Stop accompanied by a message; continuation by
Start

#3106 #_MSG W Displaying the message in the program list window

#3107 #_MSGBOX R/W Sending the message to the Windows window

Error message: #3000, #_ALM (W)
With the value assignment

#3000=nnn(ERROR INDICATION)
or

#_ALM=nnn(ERROR INDICATION),
numbered (nnn: maximum three digits) and/or text error message can be sent. The text has to be
written between round brackets (,).
If an error in the macro is detected by the program, i.e. the program runs on a branch where value
was assigned to the variable #3000, the program will be executed up to the previous block, and
then the execution will be suspended, and the error message given between brackets or the code
of the message will be displayed on the screen in the form of

ii4nnn00 (ii: the number of the channel in which the error occurred),
i.e. 4000 will be added to the number nnn given at the value #3000. If a number is not given, the
code of the message will be 4000; if a text is not given, only the code will appear. The error
message can be deleted by the button CANCEL.

Stop with a message: #3006, #_MSGSTP (W)
With the value assignment

#3006=nnn(MESSAGE)

295

23.1 Variables of the Programming Language

or
#_MSGSTP=nnn(MESSAGE),

execution of the program will stop, and the message given between brackets or the code of the
message will be displayed on the screen in the form of

ii5nnn00 (ii: the number of the channel in which the error occurred)
i.e. 5000 will be added to the number nnn given at the value #3006. If a number is not given, the
code of the message will be 5000; if a text is not given, only the code will appear. Pushing the
button START the execution of the program will continue, and the message will disappear from
the screen. This command is useful in the cases when operator intervention is needed during
execution of the command.

Displaying a message in the program list window: #3106, #_MSG (W)
With the value assignment

#3106=nnn(MESSAGE)
or

#_MSG=nnn(MESSAGE)
the program continues without stop, and the text of the message will be displayed in the top line
of the Program list window in the form of:

MSGnnn: (MESSAGE)
The text of the message remains there until it is overwritten by a new #3106 or #_MSG
instruction. RESET, program end (M30) deletes the message.
In order that the message text appears on the top line of the program list, the displaying has to
be enabled using the function keys as follows:

F5 View - F1 Program list - F9 Settings - F3 #_MSG info
It can be used for indication of program parts indication for example:

...
#3106=1(roughing by the use of a diam. 30 milling cutter)
...
...
#_MSG=2(finishing by the use of a diam. 20 milling cutter)
...

Sending a message to the Windows window: #3107, #_MSGBOX (R/W)
With the value assignment

#3107=nnn(MESSAGE)
or

#_MSGBOX=nnn(MESSAGE)
execution of the program will stop (there will be STOP status), and the message given between
brackets and the code of the message will be displayed in the message row of the control in the
form of

ii6nnnjj (ii: the number of the channel in which the message was issued).
The message will appear not only in the upper status line but in the centre of the screen, in a
Windows message window too.
It is the code of the message which determines the type of the message window. If the message
assignment is

between nnn=100 - 199, the message window will appear with an ‘OK’ button, so the
operator can only accept the displayed message. If the message assignment is

296

23.1 Variables of the Programming Language

between nnn=200 - 299, the message window will appear with a ‘Yes’ button and a
‘No’ button. In this case, the operator has alternative. In case of any other value assignment, an
error message will be sent by the control.

After responding to the messages appeared in the Windows window, the message will be
deleted and the #3107 variable will take the following values in the different cases:

#3107=0: the X (closing) button was clicked or the CANCEL button was pushed;
#3107=1: the ‘OK’ button was clicked;
#3107=2: the ‘Yes’ button was clicked;
#3107=3: the ‘No’ button was clicked.

During displaying the message, if the intension is to display a given part of the text in several
rows in the message window, it is possible to divide up the text by the use of the ‘\n’ character
and insert a line character. In the case of displaying a value, the macro variable formatting
described at the instruction DPRNT can be applied.

Example 1:
##3107=100(Values of the measurement results\nX length:

#140[53]\nY length: #141[53])

Example 2:
#140=0.3458
#141=0.9123
(Measurement)
(Displaying the result of the compensation calculation)
#_MSGBOX=200(Values of the tool wear\nX diameter wear:

#140[53]\nZ-direction wear: #141[53]\nDo you want to
input the new compensation?)

IF [[#_MSGBOX] EQ 2] GOTO10
GOTO20
N10 (Yes branch)
(Inputting the wear)
N20
(Continuing the program)

23.1.9 Clock, Timers and Part Counters

Number Symbol Attribute Description

#3001 #_CLOCK1 R/W Millisecond timer, usable freely

#3002 #_CLOCK2 R/W Cutting time (ms)

#3011 #_DATE R Date: year/month/day

#3012 #_TIME R Time: hour/minute/second

#3901 #_PRTSA R/W Number of the parts produced

#3902 #_PRTSN R/W Number of the parts to be produced

Millisecond timer: #3001, #_CLOCK1 (R/W)
The value of this variable is writable and readable.

297

23.1 Variables of the Programming Language

The time elapsed between two points in time that can be measured in millisecond. Measuring
the value of the variable is started from zero at the moment of turning the control on, and
performed up. Time is always measured when the control is on. Using the command

#3001=0
or

#_CLOCK1=0,
the variable can be set to zero by value assignment from the program; in this case
measurement starts from zero, and later the value can be queried from the program, using the
command

#100=#3001
or

#100=#_CLOCK1.
Cutting time: #3002, #_CLOCK2 (R/W)
The value of this variable is writable and readable. The time elapsed during machining with
feed in automatic mode and start state (G1, G2 etc.) is measured in millisecond, cumulatively
from the beginning of the control life. The value of the variable can be read on the display
Cutting time of the screen Clock times and part counters.

Date: #3011, #_DATE (R)
The actual date can be read from the variable in the format year/month/day.
After using the command

#100=#3011
or

#100=#_DATE,
if the value of the variable #100 is, for example,

20140518,
it will mean that the date is: 2014 (year), 05 (month, May), 18 (day, 18).

Time: #3012, #_TIME (R)
The actual time can be read from the variable in the format hour/minute/second.
After using the command

#100=#3012
or

#100=#_TIME,
if the value of the variable #100 is, for example,

20140518,
it will mean that the time is: 15 hours (3 hours p.m.), 32 minutes, 41 seconds.

Number of the parts produced/to be produced: #3901, #_PRTSA / #3902, #_PRTSN
(R/W)
The values of these variables are writable and readable. The number of the parts produced is
accumulated by the control in the counter #_PRTSA having the number #3901. The control
will increase the content of the counter by 1 in the course of execution of each function M02,
M03 or function M given in the parameter N2305 Part Count M.
When the number of the parts produced reaches the number of the parts to be produced (the
counter #_PRTSN having the number #3902) the PLC will be notified.

The number of the parts produced #3901, #_PRTSA
The number of the parts to be produced #3902, #_PRTSN

298

23.1 Variables of the Programming Language

The value of the numbers of the parts produced and to be produced can be read on the display
Produced and to be produced of the screen Clock times and part counters.

23.1.10 Variables Influencing the Operation of the Automatic Mode

Number Symbol Attribute Description

#3003 #_CNTL1 R/W Control variable 1 (block-by-block)

#3003 bit 0 #_M_SBK R/W Disabling the block-by-block execution.
Value set: 0, 1

#3004 #_CNTL2 R/W Control variable 2

#3004 bit 0 #_M_FHD R/W Disabling the Stop. Value set: 0, 1

#3004 bit 1 #_M_OV R/W Disabling the Override and the Stop. Value set: 0,
1

#3004 bit 2 #_M_EST R/W Disabling the exact Stop. Value set: 0, 1

L Warning! By reset and block end, the values of the bits set at the variables will be deleted!

Control variable 1: #3003, #_CNTL1 (R/W)
If the value of the variable #3003 or #_CNTL1 is 1 (or an uneven number), the control, in the
state of the block-by-block execution, will not stop after execution of a block until the value
of this variable will be 0.
With writing the variable
#_M_SBK ,
disabling the block-by-block execution can also be referred using bits (assigning 0 or 1).
By the power on or reset the value of the variable will be 0.
The block-by-block execution

will not be disabled if the value of the variable is 0;
will be disabled if the value of the variable is 1.

299

23.1 Variables of the Programming Language

Control variable 2: #3004, #_CNTL2 (R/W)
The following values cab be assigned to the variable #3004 or #_CNTL2:

Value of
the #3004 or

the #_CNTL2

Disabling
the Exact stop

G61,G9

Disabling
the Override
and the Stop

Disabling
the Stop

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

The Exact stop, the Override and the Stop
will not be disabled if the number written in the right column is 0;
will be disabled if the number written in the right column is 1.

The suppressions above can also be specified by assigning 0 or 1 to the bit-type variables:
The case of the variable #_M_FHD (disabling the Stop):

0: there is no disabling;
1: there is disabling.
The block-by-block execution is not disabled.

The case of the variable #_M_OV (disabling the Override and the Stop) (the state G63):
0: there is no disabling;
1: there is disabling.
The block-by-block execution is also disabled.

The case of the variable #_M_EST (disabling the Exact stop G61, G9) (the state G64):
0: there is no disabling;
1: there is disabling.

23.1.11 Querying the Block Search and Test Statuses

Number Symbol Feature Description

#_CNTBS R Querying the block search and test statuses

bit 0 #_BSEARCH R Block search status

bit 1 #_TEST R Test mode

bit 2 #_MCHLOCK R Machine locked mode

300

23.1 Variables of the Programming Language

Querying the block search and test statuses: #_CNTBS (R)
All three of statuses in one can be queried at the variable #_CNTBS.
Bit-type querying is also possible for the variable #_CNTBS:
#_BSEARCH: The control executes block search:

=0: it does not execute block search;
=1: it executes block search.

#_TEST: Test mode:
=0: the control is not in test mode;
=1: the control is in test mode.

#_MCHLOCK: The machine is locked:
=0: the machine is not locked;
=1: the machine is locked.

23.1.12 Status of Mirror Image

Number Symbol Feature Description

#3007 #_MIRIMG R Status of Mirror Image

By the reading of the variable #3007 it can be determined on which axis a valid mirroring
command is entered. The variable is only readable.
Interpreting the value of the variable binary:

1 1 1 1 1 1
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* * *
* * *
* * .))))) axis 1
* .))))))) axis 2
* .
* .
.)) axis 16

The meaning of the bits is as follows:
0: there is no mirroring;
1: mirroring is turned on.

For example, if the value of the variable is 5, it means that mirroring is turned on at the axes 1
and 3. The axis number means physical axis number; it is determined by parameter which axis
of what name belongs to which physical axis number.

23.1.13 Number of the Main Program

Number Symbol Attribute Description

#4000 #_MAINO R The number of the main program being executed

The number of the actual main program being executed will always be indicated even if a
subprogram is in progress. If the automatic mode is interrupted and a program is executed in
the MDI mode, the number of the program being executed in the MDI mode will be indicated.
If the name of the main program begins with the letter other than O and contains more than 8
digits, the value of the #4000 will be 0.

301

23.1 Variables of the Programming Language

23.1.14 Modal Information

The modal information valid in the previous block can be obtained by reading the system
variables from #4001 to #4199.

Number Symbol Attribute Description

#4001...#4039 #_BUFG[n]
n=1-39

R For each group, the code of the modal
function G given last.
n: the number of the group of codes G

#4101 #_BUFA R The value of the auxiliary function given last
and the address of which was defined in the
parameter N1333 Aux Fu Addr1.

#4102 #_BUFB R The value of the auxiliary function given last
and the address of which was defined in the
parameter N1334 Aux Fu Addr2.

#4103 #_BUFC R The value of the auxiliary function given last
and the address of which was defined in the
parameter N1334 Aux Fu Addr3.

#4107 #_BUFD R The value of the address D given last.

#4108 #_BUFE R The value of the address E given last.

#4109 #_BUFF R The value of the address F given last.

#4111 #_BUFH R The value of the address H given last.

#4113 #_BUFM R The value of the address M given last.

#4114 #_BUFN R The value of the block number N given last.

#4115 #_BUFO R The value of the program number O given
last.

#4119 #_BUFS R The value of the address S given last.

#4120 #_BUFT R The value of the address T given last.

#4130 #_BUFWZP R The number of the additional coordinate
system given last (G54.1 Pn)

302

23.1 Variables of the Programming Language

The modal information valid in the block being executed just at the moment can be
obtained by reading the variables from #4201 to #4399.

Number Symbol Attribute Description

#4201...#4239 #_ACTG[n]
n=1-39

R For each group, the code of the modal
function G valid in the block being executed.
n: the number of the group of codes G

#4301 #_ACTA R The value of the auxiliary function valid in
the block being executed and the address of
which was defined in the parameter N1333
Aux Fu Addr1.

#4302 #_ACTB R The value of the auxiliary function valid in
the block being executed and the address of
which was defined in the parameter N1334
Aux Fu Addr2.

#4303 #_ACTC R The value of the auxiliary function valid in
the block being executed and the address of
which was defined in the parameter N1334
Aux Fu Addr3.

#4307 #_ACTD R The value of the address D valid in the block
being executed.

#4308 #_ACTE R The value of the address E valid in the block
being executed.

#4309 #_ACTF R The value of the address F valid in the block
being executed.

#4311 #_ACTH R The value of the address H valid in the block
being executed.

#4313 #_ACTM R The value of the address M valid in the block
being executed.

#4314 #_ACTN R The value of the block number N valid in the
block being executed.

#4315 #_ACTO R The value of the program number O valid in
the block being executed.

#4319 #_ACTS R The value of the address S valid in the block
being executed.

#4320 #_ACTT R The value of the address T valid in the block
being executed.

#4330 #_ACTWZP R The number of the additional coordinate
system valid in the block being executed
(G54.1 Pn)

303

23.1 Variables of the Programming Language

The modal information valid in the interrupted block at the moment of calling the
interruption macro can be obtained by reading the variables from #4401 to #4599.

Number Symbol Attribute Description

#4401...#4439 #_INTG[n]
n=1-39

R For each group, the code of the modal
function G valid in the interrupted block.
n: the number of the group of codes G

#4501 #_INTA R The value of the auxiliary function valid in the
interrupted block and the address of which
was defined in the parameter N1333 Aux Fu
Addr1.

#4502 #_INTB R The value of the auxiliary function valid in the
interrupted block and the address of which
was defined in the parameter N1334 Aux Fu
Addr2.

#4503 #_INTC R The value of the auxiliary function valid in the
interrupted block and the address of which
was defined in the parameter N1334 Aux Fu
Addr3.

#4507 #_INTD R The value of the address D valid in the
interrupted block.

#4508 #_INTE R The value of the address E valid in the
interrupted block.

#4509 #_INTF R The value of the address F valid in the
interrupted block.

#4511 #_INTH R The value of the address H valid in the
interrupted block.

#4513 #_INTM R The value of the address M valid in the
interrupted block.

#4514 #_INTN R The value of the block number N valid in the
interrupted block.

#4515 #_INTO R The value of the program number O valid in
the interrupted block.

#4519 #_INTS R The value of the address S valid in the
interrupted block.

#4520 #_INTT R The value of the address T valid in the
interrupted block.

304

23.1 Variables of the Programming Language

Number Symbol Attribute Description

#4530 #_INTWZP R The number of the additional coordinate
system valid in the interrupted block (G54.1
Pn).

L Warning! In the case of modal codes G containing dot, for example G51.1, the code will
be given back by the control in such a way so that the number standing after the dot
will be written before the dot. Due to the command

#100=#4022,
the value of the #100 will be 151 in the state G51.1, and it will be 150 in the state
G50.

The following table illustrates sorting the modal codes G by group number.
The one-shot and non-modal codes G belong to the group 0. The group 0 cannot be queried,
so the codes G belonging to it are not shown in the table.

Group
number

The modal codes G
belonging to the group

Function

1 G0, G1, G2, G3, G33 Interpolation

2 G17, G18, G19 Plane selection

3 G90, G91 Absolute/incremental programing

4 G22, G23 Forbidden area on/off

5 G94, G95 Feed per minute/revolution

6 G20, G21 Inch/metric data specification

7 G40, G41, G42 Radius compensation off/on

8 G43, G44, G43.7, G49 Length compensation on/off

9 G73, G74, G76, G80, G81, G82,
G83, G84, G84.2, G84.3, G85, G86,
G87, G88, G89

Drilling cycles

10 G98, G99 Returning from drilling cycle to the
initial/R point

11 G50, G51 Scaling off/on

12 G66, G66.1, G67 Modal macro call on/off

13 G96, G97 Constant surface speed on/off

14 G54, G54.1, G54.2, G55, G56, G57,
G58, G59

Selecting the workpiece coordinate
system

15 G61, G62, G63, G64 Feed control functions

305

23.1 Variables of the Programming Language

Group
number

The modal codes G
belonging to the group

Function

16 G68, G69 In-plane rotation on/off

17 G15, G16 Polar coordinate off/on

18

19

20

21 G12.1, G13.1 Polar interpolation on/off

22 G50.1, G51.1 Mirroring off/on

23

24

25

26

27

28

29

30

31 G50.2, G51.2 Polygonal turning off/on

32

33

34 G80.8, G81.8 Electronic gear box off/on

35

36

37

38

39

306

23.1 Variables of the Programming Language

23.1.15 Position Information

Number Symbol Attribute Description

#5001...#5020 #_ABSIO[n]
n=1-50

R The block end position of the axis 1 ...
n.

#100001...#100050

#5021...#5040 #_ABSMT[n]
n=1-50

R The position of the axis 1 ... n in the
machine coordinate system.

#100051...#100100

#5041...#5060 #_ABSOT[n]
n=1-50

R The position of the axis 1 ... n in the
workpiece coordinate system.

#100101...#100150

#5061...#5080 #_ABSKP[n]
n=1-50

R The skip position of the axis 1 ... n in
the workpiece coordinate system.

#100151...#100200

L Warning! The read-out of the position information is done in accordance with the axis
number. Prior to using this manual, you have to ask the builder of the machine tool for
information about the axis numbers.

For example, let us have a two-channel control. There are axes X, Y and Z in the first channel,
and axes X and Z in the second channel. Assignment of the axes by the builder of the machine
tool is as follows:

The channel 1:
X – the axis 1
Y – the axis 2
Z – the axis 3

The channel 2:
X – the axis 4
Z – the axis 5

If the position information is to be queried in the channel 1, the index 3 will have to be used in
the case of the axis Z; but the index 5 will have to be used if query is to be done in the channel
2.

Block end position of the axes: #5001...#5020, #100001...#100050, #_ABSIO[n] (R)
The block end position of the axes will be given back

in the coordinate system of the actual workpiece (G54, G55, ...);
using orthogonal coordinates;
disregarding all the compensations (length, radius).

Machine position of the axes: #5021...#5040, #100051...#100100, #_ABSMT[n] (R)
The machine position of the axes will be given back

in the coordinate system of the machine (G53). If the given axis moves, the value
given back will change continuously.

Workpiece position of the axes: #5041...#5060, #100101...#100150, #_ABSOT[n] (R)
The workpiece position of the axes will be given back

307

23.1 Variables of the Programming Language

in the coordinate system of the actual workpiece (G54, G55, ...);
using orthogonal coordinates;
having regard to all the compensations (length, radius). If the given axis moves, the
value given back will change continuously.

Skip position: #5061...#5080, #100151...#100200, #_ABSKP[n] (R)
The position in the block G31 where the touch probe signal is received. The position will be
given back

in the coordinate system of the actual workpiece (G54, G55, ...);
using orthogonal coordinates;
having regard to all the compensations (length, radius).

If the touch probe signal is not received, the variables above will take on the end point
position programmed in the block G31.
After receiving the touch probe signal, de axis will decelerate and stop. The end point position
of the block G31 #_ABSIO(n) will on the value being valid after deceleration and stop.

Fig. 23.1.15-1 Fig. 23.1.15-2

Fig. 23.1.15-3

308

23.1 Variables of the Programming Language

23.1.16 Value of the Actual Length Compensation

Number Symbol Attribute Description

#5081 #_TOFSWX R The value of wear compensation taken into
account at the axis X.

#100201

#5082 #_TOFSWZ R The value of wear compensation taken into
account at the axis Z.

#100202

#5083 #_TOFSWY R The value of wear compensation taken into
account at the axis Y.

#100203

#5121 #_TOFSGX R The value of geometry length compensation
taken into account at the axis X.

#100901

#5122 #_TOFSGZ R The value of geometry length compensation
taken into account at the axis Z.

#100902

#5123 #_TOFSGY R The value of geometry length compensation
taken into account at the axis Y.

#100903

From the variables above, the value of length compensation (geometry+wear) taken into
account in the block being executed can be read out, for the axes X, Z and Y.

23.1.17 Other Position Information

Number Symbol Attribute Description

#5101...#5120 #_SVERR[n]

n=1-50

R Lag of the axis 1 ... n.

#100251...#100300

#100651...#100700 #_MIRTP[n]

n=1-50

R Position offset made by handwheel at
the axis 1 ... n.

#5181...#5200 #_DIST[n]

n=1-50

R The value of the distance to go at the
axis 1 ... n.

#100801...#100850

Lag of the axes: #5101...#5120, #100251...#100300, #_SVERR[n] (R)
From the variables, the lag of the axis servo loop (servo-follower error) can be read out, in
input unit of measurement.

Position offset made by handwheel: #100651...#100700, #_MIRTP[n] (R)
If, in automatic mode, even in the course of motion, position (zero point) of the axes are being
corrected using handwheel, the extent of correction can be read out from the variables above

309

23.1 Variables of the Programming Language

for each axis, in input unit of measurement.

The value of the distance to go: #5181...#5200, #100801...#100850, #_DIST[n] (R)
From the variables, the values of the distance to go, i.e. the distance to go to the end position
in the block being executed, can be read out for each axis, in input unit of measurement. It is
the value the control displays on the screen of the position as distance to go.

23.1.18 Values of the Tool Compensation Memory

Number Symbol Attribute Description

#10001...#10999 #_OFSXW[n]

n=1...999

R/W The wear value of length compensation
in the direction X.

n=1...999: the number of the
compensation cell.

#15001...#15999 #_OFSXG[n]

n=1...999

R/W The geometry value of length
compensation in the direction X.

n=1...999: the number of the
compensation cell.

#14001...#14999 #_OFSYW[n]

n=1...999

R/W The wear value of length compensation
in the direction Y.

n=1...999: the number of the
compensation cell.

#19001...#19999 #_OFSYG[n]

n=1...999

R/W The geometry value of length
compensation in the direction Y.

n=1...999: the number of the
compensation cell.

#11001...#11999 #_OFSZW[n]

n=1...999

R/W The wear value of length compensation
in the direction Z.

n=1...999: the number of the
compensation cell.

#16001...#16999 #_OFSZG[n]

n=1...999

R/W The geometry value of length
compensation in the direction Z.

n=1...999: the number of the
compensation cell.

#12001...#12999 #_OFSRW[n]

n=1...999

R/W The wear value of radius compensation.
n=1...999: the number of the
compensation cell.

#17001...#17999 #_OFSRG[n]

n=1...999

R/W The geometry value of radius
compensation. n=1...999: the number of
the compensation cell.

310

23.1 Variables of the Programming Language

Number Symbol Attribute Description

#13001...#13999 #_OFST[n]

n=1...999

R/W The code of tool position. n=1...999: the
number of the compensation cell.

Using the macro variables above, value can be assigned to all the compensation cells, and, all
the compensation cells can be read out from program.

23.1.19 Workpiece Zero Point Offsets

Values of zero point offset

Number Symbol Attribute Description

#5201...#5220 #_WZCMN[n]
n=1-50

R/W Common workpiece zero point offset
for each axis

#100301...#100350

#5221...#5240 #_WZG54[n]
n=1-50

R/W Workpiece zero point offset G54 for
each axis

#100351...#100400

#5241...#5260 #_WZG55[n]
n=1-50

R/W Workpiece zero point offset G55 for
the axis 1...n

#100401...#100450

#5261...#5280 #_WZG56[n]
n=1-50

R/W Workpiece zero point offset G56 for
the axis 1...n

#100451...#100500

#5281...#5300 #_WZG57[n]
n=1-50

R/W Workpiece zero point offset G57 for
the axis 1...n

#100501...#100550

#5301...#5320 #_WZG58[n]
n=1-50

R/W Workpiece zero point offset G58 for
the axis 1...n

#100551...#100600

#5321...#5340 #_WZG59[n]
n=1-50

R/W Workpiece zero point offset G59 for
the axis 1...n

#100601...#100650

Using the macro variables above, value can be assigned to all the zero point offsets for each
axis, and, all the zero point offsets for each axis can be read out from program.

Values of misalignment compensation

Number Symbol Attribute Description

#120001 #_WRG54[1] R/W Misalignment compensation G54 in the plane XY

#120002 #_WRG54[2] R/W Misalignment compensation G54 in the plane ZX

#120003 #_WRG54[3] R/W Misalignment compensation G54 in the plane YZ

311

23.1 Variables of the Programming Language

Number Symbol Attribute Description

#120011 #_WRG55[1] R/W Misalignment compensation G55 in the plane XY

#120012 #_WRG55[2] R/W Misalignment compensation G55 in the plane ZX

#120013 #_WRG55[3] R/W Misalignment compensation G55 in the plane YZ

#120021 #_WRG56[1] R/W Misalignment compensation G56 in the plane XY

#120022 #_WRG56[2] R/W Misalignment compensation G56 in the plane ZX

#120023 #_WRG56[3] R/W Misalignment compensation G56 in the plane YZ

#120031 #_WRG57[1] R/W Misalignment compensation G57 in the plane XY

#120032 #_WRG57[2] R/W Misalignment compensation G57 in the plane ZX

#120033 #_WRG57[3] R/W Misalignment compensation G57 in the plane YZ

#120041 #_WRG58[1] R/W Misalignment compensation G58 in the plane XY

#120042 #_WRG58[2] R/W Misalignment compensation G58 in the plane ZX

#120043 #_WRG58[3] R/W Misalignment compensation G58 in the plane YZ

#120051 #_WRG59[1] R/W Misalignment compensation G59 in the plane XY

#120052 #_WRG59[2] R/W Misalignment compensation G59 in the plane ZX

#120053 #_WRG59[3] R/W Misalignment compensation G59 in the plane YZ

Using the macro variables above, misalignment compensation can be assigned in an arbitrary
main plane (but in one main plane only) for each workpiece coordinate system, where the
center point of the misalignment compensation is the origin of the coordinate system.

312

23.1 Variables of the Programming Language

Values of additional zero point offset

Number Symbol Attribute Description

#7001...#7020 #_WZP1[n]

n=1-50

R/W Workpiece zero point offset
G54.1 P1 for the axis 1...n

#101001...#101050

#7021...#7040 #_WZP2[n]

n=1-50

R/W Workpiece zero point offset
G54.1 P2 for the axis 1...n

#101051...#101100

...

#7941...#7960 #_WZP48[n]

n=1-50

R/W Workpiece zero point offset
G54.1 P48 for the axis 1...n

#103351...#103400

#103401...#103450 #_WZP49[n]

n=1-50

R/W Workpiece zero point offset
G54.1 P49 for the axis 1...n

#103451...#103500 #_WZP50[n]

n=1-50

R/W Workpiece zero point offset
G54.1 P50 for the axis 1...n

...

Using the macro variables above, value can be assigned to all the zero point offsets for each
axis, and, all the zero point offsets for each axis can be read out from program.

Values of additional misalignment compensation

Number Symbol Attribute Description

#120061 #_WRP1[1] R/W Misalignment compensation G54.1 P1 in the plane
XY

#120062 #_WRP1[2] R/W Misalignment compensation G54.1 P1 in the plane
ZX

#120063 #_WRP1[3] R/W Misalignment compensation G54.1 P1 in the plane
YZ

#120071 #_WRP2[1] R/W Misalignment compensation G54.1 P2 in the plane
XY

#120072 #_WRP2[2] R/W Misalignment compensation G54.1 P2 in the plane
ZX

#120073 #_WRP2[3] R/W Misalignment compensation G54.1 P2 in the plane
YZ

...

Using the macro variables above, misalignment compensation can be assigned in an arbitrary

313

23.1 Variables of the Programming Language

main plane (but in one main plane only) for each additional workpiece coordinate system,
where the center point of the misalignment compensation is the origin of the coordinate
system.

Values of dynamic zero point offset

The values of dynamic zero point offset in the table can be written and read using the
following variables:

Number Symbol Attribute Description

#5521...#5540 #_FOFS1[n]
n=1-50

R/W Dynamic zero point offset G54.2 P1for
each axis

#117051...#117100

#5541...#5560 #_FOFS2[n]
n=1-50

R/W Dynamic zero point offset G54.2 P2
for each axis

#117101...#117150

...

#5661...#5680 #_FOFS8[n]
n=1-50

R/W Dynamic zero point offset G54.2 P8
for each axis

#117401...#117450

Number of the actual dynamic zero point offset

While the program runs, the number of the valid dynamic zero point offset can be read out
using the command below:

Numbe
r

Symbol Attribute Description

#5500 #_FOFSP R The number of the actual dynamic zero point offset
(G54.2 Pp P=1-8)

#117000

Value of the actual dynamic zero point offset

While the program runs, the value of the valid dynamic zero point offset can be read out using
the commands below. These values are not identical with the values written in the table of the
dynamic zero point offset, but they are values modified (rotated) in accordance with the actual
position of the work table(s).

Number Symbol Attribute Description

#5501...#5520 #_FOFSVAL[n]

n=1-50

R The value of the actual dynamic zero
point offset for each axis

#117001...#117050

314

23.1 Variables of the Programming Language

23.1.20 Reading Data of Tools Being in Spindle and in Stand-by Magazines

Number Symbol Attribute Description

#8400 R/W The address of the spindle or the stand-by magazine

The data of tools being in the spindle or in the stand-by magazine can be read using macro
variables #8401, #8402, ... by specifying magazine number on variable

#8400 (10, 11, 20, 21, ... writable, readable).
Only the magazine numbers given in brackets can be defined. If there are several spindles or
stand-by magazines on the machine, ask the builder of the machine tool for information.
If there is only one spindle and no stand-by magazine on the machine, value will not have to
be assigned to the macro variable #8400 and the macro variables #8401, ... will always be
related to the tool being in the spindle.

The data that can be read out are the following:

Number Symbol Attribute Description

#8401 R Data number (serial number of the tool management
table)

#8402 R Tool type number (code T)

#8403 R Tool life counter value

#8404 R Maximum tool life value

#8405 R Warning tool life value

#8406 R Tool life status

#8407 R Customer bit-type data

#8408 R Tool information

#8409 R H: number of the length compensation cell (for milling
machine channel)

#8410 R D: number of the radius compensation cell (for milling
machine channel)

#8411 R S: spindle speed

#8412 R F: feed

#8413 R G: number of the geometry compensation cell (for
lathe channel)

#8414 R W: number of the wear compensation cell (for lathe
channel)

#8431 R Customer data 1

#8432 R Customer data 2

315

23.1 Variables of the Programming Language

Number Symbol Attribute Description

#8433 R Customer data 3

#8434 R Customer data 4

#8435 R Customer data 5

#8436 R Customer data 6

#8437 R Customer data 7

#8438 R Customer data 8

#8439 R Customer data 9

#8440 R Customer data 10

#8441 R Customer data 11

#8442 R Customer data 12

#8443 R Customer data 13

#8444 R Customer data 14

#8445 R Customer data 15

#8446 R Customer data 16

#8447 R Customer data 17

#8448 R Customer data 18

#8449 R Customer data 19

#8450 R Customer data 20

The number of customer data can be given in the parameter N2903 No. of Custom Columns.
The first customer data is always a bit-type data.
The macro variables above are readable only.
If the spindle or the stand-by magazine selected by the macro variable #8400 is empty (there is
no tool in it), the value of the macro variables will be the following:

#8401=0 (data number);
#8402= #8403= ...= #8450= #0 (empty).

Using the macro variables, compensations (H, D) or technological parameters (F, S) assigned
to the tool can be called. If, for example, subprogram call is assigned to the code of tool
change (M06), the following can be written in the subprogram:

...
M6
#8400=10 (1. spindle magazine)
H#8409 D#8410 S#8411 F#8412
...

316

23.1 Variables of the Programming Language

23.1.21 Reading the Data of the Pallet Being in the Working Space and in the Loading-
Unloading Point

Number Symbol Feature Description

#8500 R/W Address of the working space of loading-
unloading point

It is the macro variable
#8500 (10, 11 writable, readable)

at which it can be given whether the data of the pallet being in the working space (#8500=10)
or the data of the pallet being in the loading-unloading point (#8500=11) have to be read out
via macro variables #8501, #8502, Only the magazine numbers given in bracket can be
defined.
If there is only working space and there is no loading-unloading point, value has not to be
given to the macro variable #8500; the macro variables #8501, ... apply always to the pallet
being in the working space.
After turn-on, the control starts with the initial value #8500=10.

The data that can be read out are as follows:

Number Symbol Feature Description

#8501 R Pallet identifier

#8502 R Status

#8503 R Priority

#8504 R Number of executed programs

#8505 R Number of assigned programs

#8531 R Custom 1

#8532 R Custom 2

#8533 R Custom 3

#8534 R Custom 4

317

23.2 Instructions of the Program Language

23.2 Instructions of the Program Language

For describing various instructions, the expression
#i = <formula>

is used. The <formula> may include arithmetic operations, functions, variables, constants.
In general, the variables #j and #k are referred to in the <formula>.
The <formula> may stand not only in the right side of the assignment statement, but in an NC
block, the various addresses may take on a formula too, instead of concrete numerical value or
variable.
The order of the operation execution can be influenced by using brackets [,].

23.2.1 Definition or Replacement: #i = #j

The code of this instruction: =
Due to this instruction, the variable #I takes on the value of the variable #j, i.e. the value of the
variable #j gets into the variable #i.
The assignment

#i=#i<operation>#j
is also permitted. An operation will be executed in the value of the variable #I by the variable
#j , and the result of the operation will get into the variable #i.
For example:

#100=#100+1
means that the new value of the #100 will be its old value plus 1.
Value can be assigned to bit-type variables too:

#1100=1
#_UO[3]=0
#_M_SBK=1

If the value assigned to the bit-type variable is
0 < value # 1,

the value will be taken on as 1. If te value is greater than 1
1 < value,

the error message ‘2092 Value truncation’ will be sent by the control.

L Warning! Only writable or writable/readable (W or W/R) variable must stand on the left
side of the assignment statement. If a value is to be assigned to a variable that is
readable (R) only, the error message ‘2161 Macro variable #nnnn is read-only’ will be
sent by the control.

23.2.2 Arithmetic Operations

Unary minus: #i = ! #j
The code of the operation: !
As a result of the operation, the variable #i will be identical with the variable #j in
absolute value, but it will have opposite sign.

#100=!#12

318

23.2 Instructions of the Program Language

Addition: #i = #j + #k
The code of the operation: +
As a result of the operation, the variable #i will take on the sum of the variables #j and
#k.

#1=#2+3.25
G0 X[#100+#101]

Subtraction: #i = #j ! #k
The code of the operation: !
As a result of the operation, the variable #i will take on the difference of the variables
#j ans #k.

#100=#100!#102
G1 Z[25.34!2.48]

Multiplication: #i = #j * #k
The code of the operation: *
As a result of the operation, the variable #i will take on the product of the variables #j
and #k.

#3=#1*#2
#100=#101*5.65

Division: #i = #j / #k
The code of the operation: /
As a result of the operation, the variable #i will take on the quotient of the variables #j
and #k. The value of the variable #k must not be 0, otherwise the error message ‘2093
Zero divide error’ will be sent by the control.

#3=#1/#2
#100=542.23/#3

Producing remainder: #i = #j MOD #k
The code of the operation: MOD
As a result of the operation, the variable #i will take on the division remainder of the
variables #j and #k. The value of the variable #k must not be 0, otherwise the error
message ‘2093 Zero divide error’ will be sent by the control. In the case of

#120=27MOD4
the value of the variable #120 will be 3.

Examples of using arithmetic operations
Using the brackets [,], the order of precedence can be influenced.

#100 = #101 + #102
#100 = #100 ! 3
#100 = [#101 + #102*5.27]/4.1
G0 X[[#100 + 2]/4] Y100

23.2.3 Logic Operations

Logical operations always manipulate the variables as 32-bit signed integer numbers. If
logical operation is executed with an originally floating-point variable, e.g. with #100, it will
be checked by the control whether the value of the variable #i satisfies the following
condition:

!(2 ! 1) # #i < 2 ,32 32

or in decimal format
!4294967297 # #i < 4294967296.

319

23.2 Instructions of the Program Language

If not, the error message ‘2129 Erroneous operation with #’ will be sent by the control.
If the value of the variable is within the these boundaries, the operation will be executed with
the 32-bit integer number. If the result of the operation gets to an originally floating-point
variable, e.g. to #100, the result will be reconverted into floating-point number by the control.

Negation: #i = NOT #j
The code of the operation: NOT
As a result of the operation, at first, the variable #j will be converted into 32-bit fixed-
point number. Then, the bitwise negated value of this fixed-point number will be taken
at all the 32 bits.

Disjunction: #i = #j OR #k
The code of the operation: OR
As a result of the operation, at first the variables #j and #k will be converted into 32-bit
fixed-point number.
As a result of the operation, the logic sum of the bitwise values of the variables #j and
#k will get to the variable #i, at all the 32 bits. Where there is 0 at the same positional
values of the two numbers in both places, at this positional value in the result there
will be 0, otherwise 1.

Exclusive or: #i = #j XOR #k
The code of the operation: XOR
As a result of the operation, at first the variables #j and #k will be converted into 32-bit
fixed-point number.
As a result of the operation, the bitwise values of the variables #j and #k will be
summed into the variable #i in such a way so that where there are same numerical
values at same positional values, at this positional value in the result there will be 0,
but where there are dissimilar numerical values at same positional values, at this
positional value in the result there will be 1, at all the 32 bits.

Conjunction: i# = #j AND #k
The code of the operation: AND
As a result of the operation, at first the variables #j and #k will be converted into 32-bit
fixed-point number.
As a result of the operation, the logic product of the bitwise values of the variables #j
and #k will get to the variable #i, at all the 32 bits. Where there is 1 at the same
positional values of the two numbers in both places, at this positional value in the
result there will be 1, otherwise 0.

Examples of using logic operations
Let us manipulate the 32-bit macro variable #1132 sent to PLC in the following way: the
upper 8 bits (31-24) of the variable are to be set in such a way so that the lower bits remain
unchanged. To leave the lower 24 bits unchanged and to delete the 8 upper 8 bits, let us have
the following bit mask:
The hexadecimal format of the bit mask is:

00FFFFFF,
and having converted into decimal format, it will be:

16777215
Let us store the bit mask in the variable #100:

#100=16777215
Let as store in the variable #100 the value leaving the lower 24 bits of the macro variable

320

23.2 Instructions of the Program Language

#1132 unchanged but deleted at the upper 8 bits of it:
#101=#100AND#1132

Let us write on the variable #102 the bit mask to be set:
The hexadecimal format of the bit mask is:

9B000000,
and having converted into decimal format, it will be:

!1694498816
Let us store the bit mask in the variable #102:

#102= !1694498816
Then, let us write it on the variable #1132 in such a way so that the lower 24 bits remain
unchanged:

#1132=#101XOR#102

Using brackets accordingly, the following can also be written instead of the four rows above:
#1132=[16777215AND#1132]XOR[!1694498816]

23.2.4 Functions

Square root: #i = SQRT #j
The code of the function: SQRT
As a result of the operation, the variable #i will take on the square root of the variable
#j.

#101=SQRT[#100+4]
The value of the variable #j must be only a positive number or 0:

#j $ 0
 If the argument is negative, the error message ‘2122 Square root from negative value’
will be sent by the control.

Sine: #i = SIN #j
The code of the function: SIN
As a result of the operation, the variable #i will take on the sine of the variable #j. The
value of the #j is to be always interpreted in degree.

G1 X[SIN30!#101]
Cosine: #i = COS #j

The code of the function: COS
As a result of the operation, the variable #i will take on the cosine of the variable #j.
The value of the #j is to be always interpreted in degree.

#102=COS[#1+#2]
Tangent: #i = TAN #j

The code of the function: TAN
As a result of the operation, the variable #i will take on the tangent of the variable #j.
The value of the #j is to be always interpreted in degree.
If the value of the argument #j is

#j=(2n+1)*90E, where n=0, ±1, ±2,...
The error message ‘2116 Absolute value of the argument is not less then 90' will be
sent by the control.

#1=TAN[#2*15.6]
Arc sine: #i = ASIN #j

The code of the function: ASIN
As a result of the operation, the variable #i will take on the arcsine of the variable #j.

321

23.2 Instructions of the Program Language

The result will be given in degree, the value of the variable #i will be between +90E
and -90E.

#101=ASIN[!0.5] (it will be #101=-30)
The argument of the variable #j must satisfy the following condition:

–1##j#1
Otherwise, the error message ‘2117 Absolute value of the argument is greater then 1'
will be sent by the control.

Arc cosine: #i = ACOS #j
The code of the function: ACOS

As a result of the operation, the variable #i will take on the arc cosine of the
variable #j. The result will be given in degree, the value of the variable #i will
be between 0E and 180E.
#101=ACOS[!0.5] (it will be #101=120)

The argument of the variable #j must satisfy the following condition:
–1##j#1

Otherwise, the error message ‘2117 Absolute value of the argument is greater then 1'
will be sent by the control.

Arc tangent: #i = ATAN #j
The code of the function: ATAN
As a result of the operation, the variable #i will take on the arc tangent of the variable
#j. The result will be given in degree, the value of the variable #i will be between
+90E and -90E.

#101=ATAN[!0.5] (it will be #101=-26.565)
Exponential with base e: #i = EXP #j

The code of the function: EXP
As a result of the operation, the variable #i will take on the #jth power of the
exponential growth constant e.

#100=EXP1 (it will be #100=2.71828... i.e. “e”)
Natural logarithm: #i = LN #j

The code of the function: LN
As a result of the operation, the variable #i will take on the logarithm to the base of the
mathematical constant e of the number #j.

#100=LN2.718281828 (it will be #100=0.999... ln(e)=1)
If the value of the #j is

#j # 0,
the error message ‘2118 Value of the argument is not positive’ will be sent by the
control.

23.2.5 Conversion Instruction

Generating the absolute value: #i = ABS #j
The code of the function: ABS
As a result of the operation, the variable #i will take on the absolute value of the
variable #j.

#100=ABS[!3.1] (it will be #100=3.1)
#100=ABS[5.25] (it will be #100=5.25)
#100=ABS[0] (it will be #100=0)

Rounding down to the absolute value: #i = FIX #j
The code of the function: FIX

322

23.2 Instructions of the Program Language

The fractional part of the variable #j is discarded by the operation, and the variable #i
will have the remaining value.
For example:

#130=FIX4.8 (it will be #130=4)
#131=FIX[!6.7] (it will be #131=!6)

Rounding up to the absolute value: #i = FUP #j
The code of the function: FUP
The fractional part of the variable #j is discarded by the operation, and 1 will be added
to the absolute value.
For example:

#130=FUP12.1 (it will be #130=13)
#131=FUP[–7.3] (it will be #131=!8)

23.2.6 Execution Sequence of Complex Arithmetic Operations

The arithmetic operations and the functions listed above can be combined. The execution
sequence of operations or the order of precedence is as follows:

function – multiplicative arithmetic operations – additive arithmetic operations .
For instance, in the example below the execution sequence of the operations is as follows:

#110 = #111 + #112 * COS #113
 ————1———

 ———————2———————
 ——————————3———————————

Modifying the execution sequence of operations
Using brackets[and], the execution sequence of operations can be modified.
An example of a bracketing of three-level depth is illustrated below:

#120 = COS [[[#121 - #122] * #123 + #125] * #126]
 —————1——————
 ————————2——————————
 ———————————3———————————————

 —————————————————4———————————————————
 ——————————————————————————5—————————————————

The numbers indicate the execution sequence of operations. It can be seen that the
abovementioned order of precedence apply to execute sequence of operations within the
brackets of the same level.

The opening bracket [and the] closing bracket have to be used in pair. If the opening
brackets [is less than the closing brackets], the error message ‘2064 Syntax error’ will be sent
by the control. If the closing brackets]is less than the opening brackets [, the error message
‘2121Erroneous terminator #’ will be sent by the control.

323

23.2 Instructions of the Program Language

23.2.7 Conditional Expressions

The conditional expressions known by the program language are the following:

equal to (=): #i EQ #j

not equal to (�): #i NE #j

greater than (>): #i GT #j

less than (<): #i LT #j

greater than or equal to ($): #i GE #j

smaller than or equal to (#): #i LE #j

The variables on the both sides of a conditional expression can be substituted by a formula
too. The conditional expressions above can stand after the instructions IF or WHILE.

23.2.8 Unconditional Branch: GOTOn

Due to the instruction GOTOn, execution of the program will resume without any condition
in the same program, at the block with the sequence number n. The sequence number n can
also be replaced by a variable or a formula. The sequence number of the block to which
jumping is to be intended by the use of the instruction GOTO must stand at the beginning of
the block.
If the specified block sequence number is not found, the error message ‘2125 Block not found
Nnnnn’ will be sent by the control.
Jump can be made either forward:

...
GOTO160 (jumping to the block N160)
...
N160 G0 X100
...

or backward. In this case an infinite cycle can also be produced:
...
N160 G0 X100
...
#1=100
#2=60
...
GOTO[#1+#2] (jumping to the block N160)
...

23.2.9 Conditional Branch: IF[<conditional expression>] GOTOn

If [<conditional expression>] put into brackets compulsorily is satisfied, execution of the
program will resume in the same program, at the block with the sequence number n.
If [<conditional expression>] is not satisfied, execution of the program will resume at the
succeeding block.
If the IF is not followed by condition check, the error message ‘2064 Syntax error’ or ‘2121
Erroneous terminator=’ will be sent by the control, depending on the type of the error.

324

23.2 Instructions of the Program Language

For example:
...
#100=52.28
#101=16.87
...
IF[#100GT#101] GOTO210 (jumping to the block N210)
...
N210 G0 X0 Y100 Z20
...

23.2.10 Conditional Instruction: IF[<conditional expression>] (THEN)<instruction>

If [<conditional expression>] is satisfied, the instruction following the THEN will be
executed.
If [<conditional expression>] is not satisfied, execution of the program will resume at the
succeeding block.
The word THEN can be omitted in the instruction, execution of the instruction line

IF[<conditional expression>] instruction
will be the same.

...
#100=0
#101=0
#1=20
...
IF[#1EQ20] THEN#100=3.15 (it will be #100=3.15)
IF[#100GT3.15] #101=5 (it will remain #101=0))
...

23.2.11 Iteration: WHILE[<conditional expression>] DOm ... ENDm

As long as [<conditional expression>] is satisfied, the blocks from DOm to ENDm will be
executed repeatedly. I.e. the control checks whether the condition is satisfied: if yes, the
program part between DOm and ENDm will be executed and then, due to the instruction
ENDm, the program returns to checking once again the condition following the command
WHILE.
If [<conditional expression>] is not satisfied, execution of the program will resume at the
block following ENDm.
If WHILE [<conditional expression>] is omitted, i.e. the cycle is described by the
instructions DOm ... ENDm, the program part between Dom and ENDm will be executed
for infinite period of time.

The possible values of m: 1, 2, 3.
If m>3, the error message ‘2002 DO data out of range’ will be sent by the control.
If not a condition check but an assignment follows the command WHILE, the error message
‘2121 Erroneous terminator=’ will be sent by the control.
If, in the same block, the instruction WHILE is not followed by DO, the error message ‘2110
WHILE without DO’ will be sent by the control.
If there is no Dom before the instruction ENDm, the error message ‘2125 Block not found:
Dom’ will be sent by the control.

Let us produce a hollow using the following data: depth in the direction Z is 5.4 mm; width in

325

23.2 Instructions of the Program Language

the direction X is 21 mm; the zero point located at the center of the hollow in the direction X
and at the top of the hollow in the direction Z. Let depth of cut be 0.2 mm. The task can be
solved using cycle organization:

#1=0 (Target position in the direction Z)
#2=10 (Target position in the direction X)
G0 X#2 (Motion to the starting point in the

direction X)
Z[#1+1] (Motion to the starting point in the

direction Z)
WHILE[#1GT-5.39] DO1 (Cycle until depth of 5.4 mm is

reached in the direction Z)
#1=#1!0.2 (Depth of cut of 0.2 mm in the direction Z)
#2=-#2 (Reversing the motion direction X)
G1 Z#1 F100 (Infeed in the direction Z)
X#2 F500 (Milling in the direction X)
END1
G0 Z20
...

The rules of cycle organization are as follows:

 – The instruction Dom has to be specified before the instruction ENDm:
:
END1
:
: WRONG
:
DO1

In the case above, the error message ‘2125 Block not found: Dom’ will be sent by the control
at the block END1.

 – The instructions DOm and ENDm has to stand in pair:
:
DO1
:
DO1 WRONG
:
END1
:

or

:
DO1
:
END1 WRONG
:
END1
:

326

23.2 Instructions of the Program Language

 – It is allowed to use the same identification number several times:
:
DO1
:
END1
:
: RIGHT
:
DO1
:
END1
:

 – The pairs DOm ... ENDm can be nested into each other up to three levels at most:
:
DO1
:
DO2
:
DO3
:
: RIGHT
:
END3
:
END2
:
END1
:

 – The pairs DOm ... ENDm must not overlap each other:
:
DO1
:
DO2
:
: WRONG
:
END1
:
END2

327

23.2 Instructions of the Program Language

 – It is allowed to branch from inside the cycle to outside the cycle:
:
DO1
:
GOTO150
:
: RIGHT
:
END1
:
N150
:

 – It is allowed to enter the cycle from outside:
:
GOTO150
:
DO1
:
:
:
N150
:
END1
:

or

:
DO1
:
N150
:
:
:
END1
:
GOTO150
:

328

23.2 Instructions of the Program Language

 – Calling subprograms or macros from inside the cycle is possible. Inside the subprogram or
the custom macros, the cycles can again be nested into each other up to three levels:
:
DO1
:
M98... RIGHT
:
G65... RIGHT
:
G66... RIGHT
:
G67... RIGHT
:
END1
:

23.2.12 Indirect Axis Address Specification

The instruction
#i=AXNUM[<axis address>]

makes it possible to query the number of an axis in a given channel by the address of that axis.
If it is intended to query the axis number for a non-existent axis address, the error message
‘2017 Illegal address <axis name>’ will be sent by the control.
Using the instruction

AX[<axis number>]=
a command can be issued indirectly, i.e. not by the address of the axis, but by the number of
the axis. If there is no the axis of the specified number in the channel, the error message ‘2018
Bad physical axis number: n’ will be sent by the control.
For example, instead of the block

G0 X10 Y20 Z30
the following instruction line can be written:

#101=AXNUM[X] (Querying the number of the axis X)
#102=AXNUM[Y] (Querying the number of the axis Y)
#103=AXNUM[Z] (Querying the number of the axis Z)
G0 AX[#101]=10 AX[#102]=20 AX[#101]=30

L Warning! If multi-character axis addresses are used, the axis address will not have to be
AX or AXN.

23.2.13 Data Output Commands

The following data output commands are known by the control:
POPEN opening a peripheral
FOPEN opening a file
BPRNT binary data output
DPRNT decimal data output
PCLOS closing a peripheral
FCLOS closing a file

These data output commands can be used to output characters and variable values. Outputting
occurs in the memory of the control. They can be used, for example, for storing measurement
results, logging etc.

329

23.2 Instructions of the Program Language

Opening a peripheral: POPENn
Prior to issuing a data output command, it is necessary to open the appropriate peripheral
through which data output will be executed. The number Number is used for selecting the
appropriate peripheral:

n = 31 the memory of the control
On opening the peripheral, one character % is output to the peripheral so each data output
begins with one character %.
After the command POPEN, a filename has to be output by the command DPRNT. If the
file already exists, the old one will be overwritten without asking; if it does not exist yet, a
new one will be open. The file gets to the folder where the program runs and takes on the
extension of the program.
For example:

...
#100=4567
POPEN31
DPRNT[O#100[4]] (The filename will be O4567)
...

or
...
POPEN31
DPRNT[ABC] (The filename will be ABC)
...

Closing a peripheral: PCLOSn
The peripheral opened by the command POPEN has to be closed by the command PCLOS.
After the command PCLOS it is necessary to give the number of the peripheral to be closed.
In our case:

...
PCLOS31
...

On closing, one character % is also output to the peripheral, i.e. each data output is closed
with one character %.

Opening a file: FOPENn Ppppp, FOPENn <filename>
Prior to issuing a data output command, it is necessary to open a file where the data are to be
written.

Opening a file by program number
The command

FOPENn P(program number)
opens the file the number of which is given at the address P (program number).
The rules of programming the program number given at the address P are dealt with in the
subsection 14.4.1 Identification of Programs in Memory. The Program Number (O) on
page 117. The rules of extension and in-memory location of the files opened by program
number are the same as those of subprograms. See the subsection 14.4.2 Calling a
Subprogram (M98) on page 117.

330

23.2 Instructions of the Program Language

For example:
...
FOPEN1 P12 (The filename will be O0012)
...

Opening a file by filename
The command

FOPENn <filename>
opens the file the name of which is given between the symbols < and >.
The rules of filename specification are dealt with in the subsection 14.4.1 Identification of
Programs in Memory. The Program Number (O) on page 117. The rules of extension and
in-memory location of the files opened by filename are the same as those of subprograms.
See the subsection 14.4.2 Calling a Subprogram (M98) on page 117.
For example:

...
FOPEN1 <data.txt> (The filename will be data.txt)
...

Types of opening a file
The type of opening a file can be given by the number written at the place of ‘n’:
n = 1: Creating a new file

If the file already exists, the error message ‘2144 The file (Ooooo) already exists’ or
‘2146 The given file already exists’ will be sent by the system, and the program run
does not continue.

n = 2: Creating a new file in any case
If the file does not exist, it will be created; if the file exists, it will be open and its
content will be deleted. The contents output by the command BPRNT or DPRNT will
be written from the beginning of the file.

n = 3: Opening a file for attachment
If the file does not exist, the error message ‘2147 The file (Ooooo) not found’ or ‘2132
The file not found’ will be sent by the system, and the program run does not continue.
If the file already exists, it will be open and, beginning from the end of the file, the
contents output by the command BPRNT or DPRNT will be attached.

n = 4: Creating a file or opening it for attachment
If the file does not exist yet, it will be created; if the file already exists, it will be open
and, beginning from the end of the file, the contents output by the command BPRNT
or DPRNT will be attached.

n = 5: Opening a file together with content deletion
If the file does not exist, the error message ‘2147 The file (Ooooo) not found’ or ‘2132
The file not found’ will be sent by the system, and the program run does not continue.
If the file already exists, it will be open and its content will be deleted. The contents
output by the command BPRNT or DPRNT will be written from the beginning of the
file.

Closing a file: FCLOS
The opened file can be closed by the command FCLOS. For writing, one file can be created or
opened simultaneously.

331

23.2 Instructions of the Program Language

Binary data output: BPRNT[...]
The format of the command BPRNT is as follows:

BPRNT[a #b [c] ...]
 * * *
 * * .))))))))) number of digits after the decimal point
 * .)))))))))))) variable
 .))))))))))))))) character

The command send characters in ASCII code, variables in binary format.
 – Characters that can be sent are the following:

alphabetical characters: A, B, ..., Z
numerical characters: 1, 2, ..., 0
special characters: *, /, +, !

Instead of the character * (asterisk), the code of the space will be sent by the control.
 – Values of the variables are output by the control at 4 bytes, i.e. at 32 bits, beginning from

the most significant byte. After the number of variables, the number of digits after the
decimal point has to be given in brackets []. In this case, the control converts the
floating-point value of the variable into such fixed-point value in which the number of
significant decimal digits will be the value given in brackets []. The possible values of
c are: 1, 2, ..., 8. For example, if

#120 = 258.647673 és [3] S)))Q 258648=0003F258h will be output.
 – A vacant variable will be output with binary code 00000000h
 – At the end of data output, one character of carriage return (CR) and one character of line

feed (LF) will automatically be output by the control.

Example
#110=318.49362
#120=0.723415
#112=23.9
BPRNT[C*/X#110[3]Y#120[3]M#112[0]]

After rounding and hexadecimal conversion, the values of the variables #110, #120 and #112
will be the following:

#110=318.49362)))))))) 318494=0004DC1Eh
#120=0.723415)))))))) 723=000002D3h
#112=23.9)))))))) 24=00000018h

332

23.2 Instructions of the Program Language

The characters to be output are the following:

7 6 5 4 3 2 1 0

0 1 0 0 0 0 1 1 C
0 0 1 0 0 0 0 0 Space
0 0 1 0 1 1 1 1 /
0 1 0 1 1 0 0 0 X
0 0 0 0 0 0 0 0 00
0 0 0 0 0 1 0 0 04
1 1 0 1 1 1 0 0 DC
0 0 0 1 1 1 1 0 1E
0 1 0 1 1 0 0 1 Y
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 1 0 02
1 1 0 1 0 0 1 1 D3
0 1 0 0 1 1 0 1 M
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00
0 0 0 0 0 0 0 0 00
0 0 0 1 1 0 0 0 18
0 0 0 0 1 1 0 1 Carriage Return
0 0 0 0 1 0 1 0 Line Feed

Decimal data output: DPRNT[...]
The format of the command DPRNT is as follows:

DPRNT[a #b [c d] ...]
 * * * *
 * * * .) number of digits after the decimal point
 * * .)))) number of digits before the decimal point
 * .))))))) variable
 .)))))))))) character

All the characters and numbers will be output in ASCII code.
 – See the command BPRNT for the rules applied to outputting the characters.
 – For outputting the values of the variables, the number of decimal integers and fractions in

which the variable is to be output has to be given. The numeral digits have to be given
in brackets [].
For specification of numerical digits, the condition 0 < c + d < 16 has to be specified.
Outputting the numbers begins from their highest place value.

 – When number is output, the negative sign (!) will also be output.
 – If the decimal point is defined (d > 0), all the zeros, including the following zeros too, will

be output together with the decimal point (.).
 – If d=0, or d is not given, neither decimal point, nor zero will be output by the control.
 – If the bit #0 PNT of the parameter N1757 Print Contr is

=0, the code of space will be output in the positions of the sign + and the zeros;
=1, the sign + and the leading will not be output.

 – A vacant variable will be output with code 0.

333

23.2 Instructions of the Program Language

 – At the end of data output, one character of carriage return (CR) and one character of line
feed (LF) will automatically be output by the control.

Example
#130=35.897421
#500=!150.8
#10=14.8
DPRNT[X#130[53]Y#500[53]T#10[20]

After rounding, the values of the variables #130, #500 and #10 will be the following:
#130=35.897421))))))) 35.897
#500=–150.8))))))) 150.8
#10=14.8))))))) 15

Data output at the state #0 PNT=0 of the parameterN1757 Print Contr:

7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 0 X
0 0 1 0 0 0 0 0 Space
0 0 1 0 0 0 0 0 Space
0 0 1 0 0 0 0 0 Space
0 0 1 0 0 0 0 0 Space
0 0 1 1 0 0 1 1 3
0 0 1 1 0 1 0 1 5
0 0 1 0 1 1 1 0 Decimal point (.)
0 0 1 1 1 0 0 0 8
0 0 1 1 1 0 0 1 9
0 0 1 1 0 1 1 1 7
0 1 0 1 1 0 0 1 Y
0 0 1 0 1 1 0 1 Negative sign (!)
0 0 1 0 0 0 0 0 Space
0 0 1 0 0 0 0 0 Space
0 0 1 1 0 0 0 1 1
0 0 1 1 0 1 0 1 5
0 0 1 1 0 0 0 0 0
0 0 1 0 1 1 1 0 Decimal point (.)
0 0 1 1 1 0 0 0 8
0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 T
0 0 1 0 0 0 0 0 Space
0 0 1 1 0 0 0 1 1
0 0 1 1 0 1 0 1 5
0 0 0 0 1 1 0 1 Carriage Return
0 0 0 0 1 0 1 0 Line Feed

334

23.2 Instructions of the Program Language

Data output at the state #0 PNT=1 of the parameterN1757 Print Contr:

7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 0 X
0 0 1 1 0 0 1 1 3
0 0 1 1 0 1 0 1 5
0 0 1 0 1 1 1 0 Decimal point (.)
0 0 1 1 1 0 0 0 8
0 0 1 1 1 0 0 1 9
0 0 1 1 0 1 1 1 7
0 1 0 1 1 0 0 1 Y
0 0 1 0 1 1 0 1 Negative sign (!)
0 0 1 1 0 0 0 1 1
0 0 1 1 0 1 0 1 5
0 0 1 1 0 0 0 0 0
0 0 1 0 1 1 1 0 Decimal point (.)
0 0 1 1 1 0 0 0 8
0 0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 1 0 1 0 1 0 0 T
0 0 1 1 0 0 0 1 1
0 0 1 1 0 1 0 1 5
0 0 0 0 1 1 0 1 Carriage Return
0 0 0 0 1 0 1 0 Line Feed

L Notes:
 – The sequence of data output commands is fixed: at first, the appropriate file has to be open

by the command POPEN or FOPEN, then data output can be executed by the
command BPRNT or DPRNT, and finally, the opened file has to be closed by the
command PCLOS or FCLOS.

 – Opening and closing the file can be given in any point of the program. For example, the file
can be open at the beginning of the program and can be closed at the program end,
while data can be output in any part of the program between these two commands.

 – The command M30 or M2 executed during data output will interrupt the data transfer. To
avoid this, prior to execution of the command M30 it is necessary to wait during data
transfer.

335

23.3 Calling the Macros, System Macros and System Subprograms

23.3 Calling the Macros, System Macros and System Subprograms

Macro call is similar to subprogram call with the difference that macros, contrary to
subprograms, can have input variables, i.e. arguments.
Both macros and subprograms can be called either by their program number or by their
filename.

Those macros and subprograms are called system macros and system subprograms the call of
which is related to an address assigned in the parameter (for example G, M etc.). Specific
rules apply to filenames of system macros and system subprograms and to their location in
the memory.

A macro call can be multi-level too. A macro can be called from a subprogram, and a
subprogram can be called from a macro. The maximum aggregated level of calling
subprograms and macros is 16.

Return from a macro occurs by the code
M99.

One-shot and modal macro calls are distinguished. The modal macro calls can be deleted by
the code

G67.

Argument assignment
Arguments can be assigned to a macro program. Arguments are specific numerical values
assigned to definite addresses that, during macro call, will be stored in the appropriate local
variables (#1, #2, ..., #33). A macro program (special subprogram) can use these local
variables, i.e. a macro call is such a special subprogram call, in which the main program can
transfer variables (parameters) to the subprogram.
There are two possible argument assignments:

Argument assignment No.1
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

In the case of argument assignment No.1, the parameters are transferred to the macro by using
the letters of the English alphabet. Some of the letters above (G, P, L) can be monopolized by
certain calls for specific purpose; in that case, these letters cannot be used for parameter
transfer. Filling the addresses can be made in arbitrary order; it is not necessary to write them
into the calling block in alphabetical order.

Argument assignment No.2
A B C I1 J1 K1 I2 J2 K2 ... I10 J10 K10

In the case of argument assignment No.2, the arguments are transferred to the macro by using
the addresses I, J and K, in addition to the addresses A, B and C. At the addresses A, B and C,
maximum 10 different argument group can be assigned. If, in a block, several arguments are
assigned at the same address, the variables will take on the appropriate value in the order of
assignment.

336

23.3 Calling the Macros, System Macros and System Subprograms

Relations between the local variables and the arguments are as follows:

l v 1. a a 2. a a l v 1. a a 2. a a l v 1. a a 2. a a

#1 A A #12 L K3 #23 W J7

#2 B B #13 M I4 #24 X K7

#3 C C #14 N J4 #25 Y I8

#4 I I1 #15 O K4 #26 Z J8

#5 J J1 #16 P I5 #27 – K8

#6 K K1 #17 Q J5 #28 – I9

#7 D I2 #18 R K5 #29 – J9

#8 E J2 #19 S I6 #30 – K9

#9 F K2 #20 T J6 #31 – I10

#10 G I3 #21 U K6 #32 – J10

#11 H J3 #22 V I7 #33 – K10

where: lv: local variable
1.a a: argument assignment No.1,
2.a a: argument assignment No.2.

The indexes following the addresses I, J and K show the sequence of argument assignment.
Decimal point and sign can also be transferred at the addresses.

Handling the address N
The first address N written in the block is interpreted as block number, the second address N,
however, will be recorded in the local variable #14 as argument:

/N130 X12.3 Y32.6 N250
N130: block number
#24=12.3
#25=32.6
#14=250 (argument)

If the address N had already been recorded as argument, the succeeding reference to the
address N will result in the error message ‘2017Illegal address N’.

Mixed argument assignment
The argument assignment No.1 and the argument assignment No.2 can exist together within a
block, the control accepts it. Error message will be sent in the case when a variable of a given
number is referred twice. For example:

A2.12 B3.213 J36.9 J!12 E129.73 P2200
The local variables take on the address values in the following sequence:

A: #1=2.12
B: #2=3.213
J: #5=36.9 (first J)
J: #8=!12 (second J)
E: #8=ERROR, the variable #8 had already been filled

In this example, the second address J (with the value !12) assigned a value to the variable #8.
Since the value of the address E will also be taken on by the variable #8, the error message

337

23.3 Calling the Macros, System Macros and System Subprograms

‘2017 Illegal address E’ will be sent by the control.
But, if the sequence of assigning the second address J and the address E is interchanged,

A2.12 B3.213 J36.9 E129.73 J!12 P2200
error message will not be sent, and the value of the address J will be written in the variable
#11 of the succeeding J:

A: #1=2.12
B: #2=3.213
J: #5=36.9 (first J)
E: #8=129.73
J: #11=!12 (it gets to the variable of the third J

because the variable #8 is already occupied)

L Warning! Only one-character addresses can be used for argument assignment, it means
that ,C ,R ,A and multi-character axis addresses and spindle addresses not!

Argument levels
A macro call, like a subprogram call, can also be multi-level, but the maximum aggregated
level of calling subprograms and macros can be 16.
Therefore, the local variables #1 ... #33 are multi-level too. The level of the local variables
belonging to the main program is 0 (zero level), then macro calls fill the levels 1, 2 etc. in
sequence, up to the maximum level 16.
A subprogram or calling the system subprogram does not change the level of local
variables.
After return from macro call, the local variables of the given level will be eliminated, they
will be deleted to empty by the #0. The local variables of the main program will be
eliminated at the end of the program.

Macro call by program number
By programming

P(program number)
the macro program with the number defined at the address P (program number) will be called.
The rules of programming the program number given at the address P are dealt with in the
subsection 14.4.1 Identification of Programs in Memory. The Program Number (O) on
page 117. The rules of extension and in-memory location of the macros defined by program
number are the same as those of subprograms. See the subsection 14.4.2 Calling a
Subprogram (M98) on page 117.
Macro call by filename
L Warning! Only G65-type non-modal macros can be called by filename, G66-type and

G66.1-type modal macros not!
By programming

<filename>
the macro program with the filename given between the symbols < and > will be called.
The rules of filename specification are dealt with in the subsection 14.4.1 Identification of
Programs in Memory. The Program Number (O) on page 117. The rules of extension and
in-memory location of the macros defined by filename are the same as those of subprograms.
See the subsection 14.4.2 Calling a Subprogram (M98) on page 117.

338

23.3 Calling the Macros, System Macros and System Subprograms

Calling the system macros and subprograms and their in-memory location
System macros and subprograms can only be called at the address specified in parameter.
The rules applied to the storage of system macros and subprograms in memory are stricter
than those of macros and subprograms.
In the memory, the system macros and subprograms have to be stored in separate folder for
each channel, namely, in the folder SystemMacros of the directory Programs:

..\Programs\SystemMacros\Channel1\

..\Programs\SystemMacros\Channel2\

..\Programs\SystemMacros\Channel8\
Their filename has to begin with the letter O which has to be followed by four decimal
digits. The extension of the filename has to be .nct. For example:

O9010.nct

23.3.1 Simple Macro Call (G65)

Due to the instructions
G65 P(program number) L(repetition number) <argument assignment>
G65 <filename> L(repetition number) <argument assignment>

the macro program with the number defined at the address P (program number) or with the
filename given between the symbols < and > will be called sequentially and repeatedly; the
repetition number is given at the address L.
It is not a modal call.

Rules of argument assignment in the case of call G65
Both forms of argument assignment can be used.
In the case of the call G65, the addresses G, P and L cannot be used for argument transfer,
but the values specified will be written in the appropriate local variable.

Multiple call G65
If macro is called from macro again, the level of local variables will grow in accordance with
the level of macro.
Main program Macro Macro Macro Macro
Level 0 Level 1 Level 2 Level 3 Level 4

O_____ O_____ O_____ O_____

G65 P G65 P G65 P G65 P

M99 M99 M99 M99

Local variables
Level 0 Level 1 Level 2 Level 3 Level 4
#1 #1 #1 #1 #1

: : : :
#33 #33 #33 #33 #33
When the first macro is called, the local variables of the main program from #1 to #33 will be
stored, and, at the level 1, the local variables will take on the argument values specified on
call. In the case of a further macro call from the level 1, the local variables of the level 1 from

339

23.3 Calling the Macros, System Macros and System Subprograms

#1 to #33 will be stored, and, at the level 2, the local variables will take on the argument
values specified on call. In the case of multiple call, the local variables of the previous level
will be stored, and, at the succeeding level, the local variables will take on the argument
values specified on call. In the case of M99, when return from the called macro to the calling
program occurs, the stored local variables of the previous level will be reset to the state in
which they were stored on call.

A hole pattern is to be produced using call G65. The code of drilling is to be specified at the
address ‘A’, the other addresses have to be filled in the way used in the case of drilling cycles.

Let the main program be the following:
G54 G17 X0 Y0 Z20
...
G65 P300 A81 Z-2 R2 F300 S500 M3 (center punching by G81)
G65 P300 A83 Z-30 R2 Q6 E1 F100 S1000 (drilling by G83)
G65 P300 A84.2 Z-30 R2 S1000 F1000 (thread tapping by
G84.2)
G0 Z20
...

In the macro O0300, the arguments of the call will be received by the local variables, i.e.
data related to the spindle:

speed S#19
direction of rotation M#13;

input parameters of drilling:
drilling cycle code A#1
hole depth Z#26
coordinate of the point R R#18
feedrate F#9
infeed Q#17
distance to the point of approaching E#8.

Then, listing the coordinates X, Y of the hole follows.

The body of the macro O0300 executing the drilling is as follows:
S#19 M#13 (Starting the spindle)
G#1 X0 Y0 Z#26 R#18 F#9 Q#17 E#8 (Setting the drilling
cycle)
X100
Y100
X0
X50 Y50
G80
M99

340

23.3 Calling the Macros, System Macros and System Subprograms

23.3.2 Macro Modal Call after Each Motion Command (G66)

Due to the instruction
G66 P(program number) L(repetition number) <argument assignment>

the macro program with the number defined at the address P (program number) will be called
sequentially and repeatedly after execution of each motion command; the repetition number
is given at the address L.
It is a modal call.
The assigned macro will be called until the command

G67
is issued to cancel the modal call.

Rules of argument assignment in the case of call G66
Both forms of argument assignment can be used.
In the case of the call G66, the addresses G, P and L cannot be used for argument transfer,
but the values specified will be written in the appropriate local variable.

Example
In a given segment of the part program, a hole has to be produced after each motion:
Main program

...
G66 P1250 Z–100 R–1 X2 F130 (Z: the bottom point of the

hole, R: the point R of the hole, X: dwell time, F:
feedrate)

N100 G91 G0 X100
N110 Y30
...
N180 X150
G67

From the block N110 up to and including the block N180, the macro program O1250 will be
called at the end of positioning, and the drilling operation written there will be executed with
the input parameters specified in the block G66.

Macro program
O1250
G0 Z#18 (Rapid traverse positioning in the

direction Z to the position -1 given at the
address R)

G1 Z#26 F#9 (Drilling to the bottom point -100 given at
the address Z, at the feedrate 130 mm/min
given at the address F)

G4 P#24 (Dwell at the bottom of the hole for 2 s
given at the address X)

G0 Z-[#18+#26](Retracting the tool to the initial point)
M99 (Return to the calling program)

The state G91 will be inherited from the block N100 of the main program by the macro
program O1250, for this reason, each positioning will be executed incrementally.

Multiple call G66
In the case of multiple call of G66-type macros, after execution of each motion block, at first

341

23.3 Calling the Macros, System Macros and System Subprograms

the macro that was called last will be called, and the macros that were called previously will
be called from this macro, in reverse order. Let us see the example below:

O0001
...
N10 G66 P2
N11 G1 G91 Z10 (1–11)
N12 G66 P3
N13 Z20 (1–13)
N14 G67 (G66 P3 call deletion)
N15 G67 (G66 P2 call deletion)
N16 Z–5 (1–16)
...

O0002
N20 X4 (2–20)
N21 M99

O0003
N30 Z2 (3–30)
N31 Z3 (3–31)
N32 M99

Taking only the blocks containing motion into account, the execution order will be as follows:

The first of the numbers in parentheses means the number of the program being under
execution, and the second one means the number of the block being under execution.

Each call G66 must be deleted by separate instruction G67. The first instruction G67
deletes the call G66 that was called last, and then, the other calls will be deleted by a
succeeding instruction G67, in reverse order. The instruction G67 given in the block N14
deletes the macro called in the block N12 (O0003), and the instruction G67 given in the block
N15 deletes the macro called in the block N10 (O0002).

23.3.3 Macro Modal Call from Each Block (G66.1)

Due to the instruction
G66.1 P(program number) L(repetition number) <argument assignment>

all the blocks following it will be interpreted as an argument assignment, the macro program
with the number defined at the address P (program number) will be called sequentially and
repeatedly for each block; the repetition number is given at the address L.
The effect produced by the instruction is the same as if each block was a macro call G65:

G66.1 P L
X Y Z = G65 P L X Y Z
M S = G65 P L M S
X = G65 P L X
G67

 (1–11) (1–13) (1–16) Call level
))) level 0

(2–20) (3–30) (3–31)
))) level 1

(2–20) (2–20)
))) level 2

342

23.3 Calling the Macros, System Macros and System Subprograms

It is a modal call.
The assigned macro will be called until the command

G67
is issued to cancel the modal call.

Rules of argument assignment
1. In the block executing start (where G66.1 P L is programmed):

In the call G66.1, the addresses G, P and L cannot be used for argument transfer,
but the values specified will be written in the appropriate local variable.

2. In the blocks following the instruction G66.1:
The addresses G, P and L can also be used.
The address G (G: #10) can be used with the restriction that reference to only one
address G in a block is accepted by the control; if several addresses G are
programmed, the error message ‘2017 Illegal address G’ will be sent by the control.

Rules of argument assignment in the case of G66.1
The assigned macro will already be called from that block where the code G66.1 was given,
taking the rules of argument assignment in the item 1 into account.
From the block following the code G66.1 to the block containing the code G67, each NC
block will resulted in macro call in accordance with the rules of argument assignment in the
item 2. Macro will not be called in the case of vacant block, e.g. N1240 where there is only a
reference to an address N, or it will not be called from the block containing macro instruction.

Multiple call G66.1
In the case of multiple call of G66.1-type macros, at first the macro called last will be called
on read-in of each block, handling the addresses of this block as argument; and then, reading
in and handling the blocks of this macro, the macro specified one-ahead will be called.
Each call G66.1 must be deleted by separate instruction G67. The first instruction G67
deletes the call G66.1 that was called last, and then, the other calls will be deleted by a
succeeding instruction G67, in reverse order.

The following program part had been written for the plane XY, at vertical position of the
machine head.

...
G1 X40 Y30 F1000
G3 X0 Y50 I-40 J-30
G1 Y0
...

In the meantime, the machine head had been mounted into horizontal position. In order that
the program written for the plane XY has not to be written again, the axes Y and Z have to be
inverted, and direction of the axis X has to be reversed so that the coordinate system remains
right-handed. By calling the macro O0400, the direction of motion along X will be reversed
and the axes Y and Z will be inverted:

Main program:
...
G66.1 P400 (Call for inverting macro)
G18 X0 Y0 Z-5 (Plane designation, positioning)

343

23.3 Calling the Macros, System Macros and System Subprograms

G1 X40 Y30 F1000 (O0400 call)
G3 X0 Y50 I-40 J-30 (O0400 call)
G1 Y0 (O0400 call)
G67 (Deletion of modal call)
...

Macro:
IF[#10EQ66.1] GOTO10 (avoiding recursive call)
G#10 X-#24 Y#26 Z#25 I-#4 K#5 R#18 F#9 (changes)
N10 M99

The macro O0400 will already be called by the block G66.1.P400. In this case, the code 66.1
will be received at the variable #10. By the first call, return will immediately be executed. The
second block of the macro will receive and process the arguments: It will invert the axes Y
and Z, and reverse the direction X.

23.3.4 System Macro Call by Codes G Given in Parameter

For macro call, single codes G or arrays of codes G given in parameter can be assigned for
each channel.

Assigning 10 single codes G for system macro call
In the parameter field, for each channel, maximum 10 different codes G can be assigned, for
which macro call can be initiated. In this case, instead of the instruction line

Nn G65 Pp <argument assignment>
the instruction line

Nn Gg <argument assignment>
has to be written. In the parameter field it is necessary to set which calling G code has to call
which program number. The codes G65, G66, G66.1 and G67cannot be assigned for this
purpose.
These parameters are the following:

N1704 G(9010): the code G calling the program with the name O9010.nct
N1705 G(9011): the code G calling the program with the name O9011.nct

 :
N1713 G(9019): the code G calling the program with the name O9019.nct

If 0 is written in the parameter, the macro with the given program number will not be called.
If macro call is to be initiated by G0, 1000 has to be written in the parameter.

Assigning an array of codes G for system macro call
By using the parameters below, an array of codes G can be assigned for macro call, for each
channel.

In the parameter N1714 Start G Macro, the initial number of the array of codes G is
specified by decimal integer number.

In the parameter N1715 Start Prg No, the program number of the macro belonging to
the code G given in the parameter Start G Macro is specified.

In the parameter N1716 No. of G Codes, the number of elements of the array of codes
G is specified.
If No. of G Codes=0, for these codes G macro will not be called.

344

23.3 Calling the Macros, System Macros and System Subprograms

Example
Let, for example, the initial code of the array be G2000. Therefore, Start G Macro=2000 has
to be set.
If the code G2000 calls the program O3400, then Start Prg No=3400.
In the parameter No. of G Codes, the number of codes G belonging to the array can be
specified. If there is 50 codes in the array, then No. of G Codes=50.
So, relation between the codes G and the program numbers is as follows:

Code G 1 G2000 º Program number 1 O3400
Code G 2 G2001 º Program number 2 O3401
Code G 3 G2002 º Program number 3 O3402
........
Code G 50 G2049 º Program number 50 O3449

Assigning an array of codes G with decimal point for system macro call
By using the parameters below, such an array of codes G can be assigned for macro call, for
each channel, the code of which contains decimal point and one decimal place.

In the parameter N1717 Start Dec G Macro, the initial number of the array of codes G
is specified with decimal point and one decimal place.

In the parameter N1718 Start Prg No. Dec G, the program number of the macro
belonging to the code G given in the parameter Start Dec G Macro is specified.

In the parameter N1719 No. of Dec G Codes, the number of elements of the array of
codes G containing decimal point is specified.
If No. of Dec G Codes=0, for these codes G macro will not be called.

Example
If the starting code of the group is, for example, G310.5, the parameter has to be filled as
follows: Start Dec G Macro=310.5.
If the code G310.5 calls the program O4000, then Start Prg No. Dec G=4000.
In the parameter No. of Dec G Codes, the number of G codes belonging to the group can be
given. If there are 10 codes, then No. of Dec G Codes=10.
So, relation between the codes G and the program numbers is as follows:

Code G 1 G310.5 º Program number 1 O4000
Code G 2 G310.6 º Program number 2 O4001
Code G 3 G310.7 º Program number 3 O4002
........
Code G 10 G311.4 º Program number 10 O4009

Making calls for code G modal
If negative value is assigned to single codes G in the case of single calls, and to the
parameters N1714 Start G Macro or N1717 Start Dec G Macro in the case of array calls,
modal call will be generated by the assigned code G or group of codes G. For example, if
G(9011)=–120, the instruction G120 will result modal call in the program. The type of the call
will be determined by the following parameter state :

N1755 Macro Contr #0 MEQ=0: the type of the call G is G66;
N1755 Macro Contr #0 MEQ=1: the type of the call G is G66.1. a G hívás G66.1
típusú

If the value of the is 0, the macro will be called at the end of each motion block. If the value of
the parameter 1, the macro will be called by each block.

345

23.3 Calling the Macros, System Macros and System Subprograms

Referring to the same code G in the body of the macro G
If a standard code G (for example G01) is designated as user call and it is referred again in
the body of the macro, this reference will not result in an additional macro call, but it will be
interpreted and executed as a usual code G by the control.
If a non-standard code G (for example G101) is designated as user call and the calling code
G (in this case G101) is referred again in the body of the macro, the error message ‘2123 Not
implemented function: G<number>’ will be sent by the control.

Referring to M, S ... in the body of a macro G, referring to G in the body of an M, S ...
call

 – Calling a system subprogram/ macro M, S, T, A, B, C, ASCII from calling a system macro
G, and

 – calling a system macro G from calling a system subprogram/ macro M, S, T, A, B, C,
ASCII

is enabled depending on the following parameter state:
N1755 Macro Contr #1 ENC=0: call will not be initiated (they will be executed as

usual code M, S, ...G);
N1755 Macro Contr #1 ENC=1: call will be initiated.

The argument set of the system macros G
The argument set can be defined as follows:
 – if the type of the code is G65 or G66, it will be the argument set assigned to the G65, as
well as P and L;
 – if the type of the code is G66.1, the subject-matter mentioned at the code G66.1will apply

to its argument set.

The modal call can be cancelled by instruction G67.

23.3.5 System Macro Call by Codes M Given in Parameter

For macro call, single codes M or arrays of codes M given in parameter can be assigned for
each channel.

Assigning 10 single codes M for system macro call
In the parameter field, for each channel, maximum 10 different codes M can be assigned, for
which macro call can be initiated. In this case, instead of the instruction line

Nn G65 Pp <argument assignment>
the instruction line

Nn Mm <argument assignment>
has to written. In this case, the code Mm will not be transferred to the PLC, but the macro
with appropriate program number will be called.
In the parameter field it is necessary to set which calling code M has to call which program
number. These parameters are the following:

N1733 M(9020): the code M calling the program with the name O9020
N1734 M(9021): the code M calling the program with the name O9021

 :
N1742 M(9029): the code M calling the program with the name O9029

If 0 is written in the parameter, the macro with the given program number will not be called.

346

23.3 Calling the Macros, System Macros and System Subprograms

Assigning an array of codes M for system macro call
By using the parameters below, an array of codes M can be assigned for macro call, for each
channel.

In the parameter N1743 Start M Macro, the initial number of the array of codes M is
specified by decimal integer number.

In the parameter N1744 Start Prg No. M Macro, the program number of the macro
belonging to the code M given in the parameter Start M Macro is specified.

In the parameter N1745 No. of M Macro Codes , the number of elements of the array
of codes G is specified.
If No. of M Macro Codes=0, for these codes M macro will not be called.

Example
Let, for example, the initial code of the array be M500. Therefore, Start M Macro=500 has to
be set.
If the code M500 calls the program O3500, then No. M Macro=3500.
In the parameter No. of M Macro Codes , the number of codes M belonging to the array can
be specified. If there is 20 codes in the array, then No. of M Macro Codes=20.
So, relation between the codes M and the program numbers is as follows:

Code M 1 M500 º Program number 1 O3500
Code M 2 M501 º Program number 2 O3501
Code M3 M502 º Program number 3 O3502
........
Code M 20 M520 º Program number 20 O3519

Position of the code M starting a macro call in the block
In the block, the code M assigned in the parameter field and initiating a macro call can be
preceded only by the symbol / and the address N (block number, the input argument can only
follow then.

The macro called by code M is not modal.
By using code M, always G65-type, so non-modal call can be specified.

Referring to the same code M in the body of the macro M
If, in the body of the macro, the same code M is referred again, the macro will not be called
again, but the code M will be transferred to the PLC.

Referring to G, S ... in the body of a macro M, referring to M in the body of an G, S ...
call
 – Calling a system subprogram/ macro G, S, T, A, B, C, M, ASCII from macro call initiated

by a code M, and
 – macro call initiated by a code M from calling a system subprogram/ macro G, S, T, A, B, C,

ASCII
is enabled depending on the following parameter state:

N1755 Macro Contr #1 ENC=0: call will not be initiated (they will be executed as
usual code M, S, ...G);

N1755 Macro Contr #1 ENC=1: call will be initiated.

347

23.3 Calling the Macros, System Macros and System Subprograms

The argument set of the codes M starting a macro call
In the block containing macro call started by code M, both argument sets, i.e. either the set 1
or the set 2, can be used.
Following the specification of the calling code M, the second code M will be interpreted as
argument and transferred to the variable #13 by the control.

23.3.6 System Subprogram Call by the Code M Given in Parameter

For system subprogram call, single codes M or an array of codes M given in parameter can be
assigned for each channel.
The difference between the code M calling a subprogram and the code M calling a macro is
that the code M calling a subprogram does not transfer any argument to the subprogram,
but the code calling a macro does it.

Assigning 10 single codes M for system subprogram call
In the parameter field, for each channel, maximum 10 different codes M can be assigned, for
which subprogram call can be initiated. In this case, the code Mm will not be transferred to
the PLC, but the macro with appropriate program number will be called, i.e. instead of the
instruction

Nn Gg Xx Yy M98 Pp
the instruction

Nn Gg Xx Yy Mm
has to written..
In the parameter field it is necessary to set which calling code M has to call which program
number. These parameters are the following:

N1720 M(9000): the code M calling the the program with the number O9000
N1721 M(9001): the code M calling the the program with the number O9001

 :
N1729 M(9009): the code M calling the program with the number O9009

If 0 is written in the parameter, the subprogram with the given program number will not be
called.

Assigning an array of codes M for system subprogram call
By using the parameters below, an array of codes M can be assigned for subprogram call, for
each channel.

In the parameter N1730 Start M SubP, the initial number of the array of codes M is
specified by decimal integer number.
In the parameter N1731 Start Prg No. M SubP , the program number of the
subprogram belonging to the code M given in the parameter Start M SubP is
specified.
In the parameter N1732 No. of M Codes, the number of elements of the array of codes
M is specified.

If No. of M Codes=0, for these codes M subprogram will not be called.

348

23.3 Calling the Macros, System Macros and System Subprograms

An example:
Let, for example, the initial code of the array be M600. Therefore, Start M SubP=600 has to
be set.
If the code M600 calls the subprogram O3600, then Start Prg No. M SubP=3600.
In the parameter No. of M Codes , the number of codes M belonging to the array can be
specified. If there is 30 codes in the array, then No. of M Codes=30.
So, relation between the codes M and the program numbers is as follows:

Code M 1 M600 º Program number 1 O3600
Code M 2 M601 º Program number 2 O3601
Code M3 M602 º Program number 3 O3602
........
Code M 20 M630 º Program number 20 O3629

Position of the code M starting a subprogram call in the block
In the block, the code M can be written in arbitrary position.

Referring to the same code M in the body of the macro M
If, in the subprogram, the same code M is referred again, the subprogram will not be called
again, but the code M will be transferred to the PLC.

Referring to G, S ... in the body of a subprogram M, referring to M in the body of an
G, S ... call
 – Calling a system subprogram/ macro G, S, T, A, B, C, M, ASCII from subprogram call

initiated by a code M, and
 – subprogram call initiated by a code M from calling a system subprogram/ macro G, S, T, A,

B, C, ASCII
is enabled depending on the following parameter state:

N1755 Macro Contr #1 ENC=0: call will not be initiated (they will be executed as
usual code M, S, ...G);

N1755 Macro Contr #1 ENC=1: call will be initiated.

349

23.3 Calling the Macros, System Macros and System Subprograms

23.3.7 System Subprogram Call by Codes A, B, C, S, T Enabled in Parameter

Having been enabled, a subprogram can be called by codes A, B, C, S and T, for each channel.

Assigning codes A, B, C, S, T for subprogram call
At several bit positions of the parameter N1746 ABCST, the subprogram calls are as follows:

when #0 AM=1, the subprogram O9030.nct will be called by the code A;
when #1 BM=1, the subprogram O9031.nct will be called by the code B;
when #2 CM=1, the subprogram O9032.nct will be called by the code C;
when #3 SM=1, the subprogram O9033.nct will be called by the code S;
when #4 TM=1, the subprogram O9034.nct will be called by the code T.

In the case of addresses designated for calling subprograms, the values A, B, C, S and T will
not be transferred either to the interpolator (if the address A, B or C is assigned to axis), or to
the PLC, but the subprograms above will be initiated by the codes A, B, C, S and T.
If, for example, the code T is assigned to call a subprogram, the block

Gg Xx Yy Tt
will be equivalent to the following two blocks:

#199=t
Gg Xx Yy M98 P9034

Transferring the argument of the codes A, B, C, S and T to the subprogram
The values assigned to the addresses A, B, C, S and T, as arguments, will be written in the
following global variables:

Code A º #195
Code B º #196
Code C º #197
Code S º #198
Code T º #199

Then, these variables can be used by the subprogram.

Position of the codes A, B, C, S and T starting a subprogram call in the block
In the block, the codes can be written in arbitrary position.

Referring to the calling code in the body of the subprogram A, B, C, S and T
If, in the subprogram being called to the address A, B, C, S and T, the calling address is
referred again, the subprogram will not be called again, but the code A, B, C, S and T will be
transferred either to the interpolator or to the PLC.

350

23.3 Calling the Macros, System Macros and System Subprograms

Referring to G, S ... in the body of a subprogram A, B, C, S and T, referring to A, B, C,
S, T in the body of an G, S ... call

 – Calling system subprogram/macro G, M, S, T, A, B, C, ASCII from subprogram call
initiated by the code A, B, C, S, T (if the call initiated not from the calling address),
and

 – calling a subprogram initiated by the code A, B, C, S, T from system subprogram/macro G,
M, S, T, A, B, C, ASCII call (if the call initiated not from the calling address)

is enabled depending on the following parameter state:
N1755 Macro Contr #1 ENC=0: call will not be initiated (they will be executed as

usual code M, S, ...G);
N1755 Macro Contr #1 ENC=1: call will be initiated.

23.3.8 System Subprogram Call by Codes ASCII Given in Parameter

Subprogram can be called by four codes ASCII given in parameter, for each channel. The
letters of the English alphabet can be selected from the codes ASCII.

Assigning the code ASCII for subprogram call
In the parameters

N1747 ASCII Code SubP1
N1748 ASCII Code SubP2
N1749 ASCII Code SubP3
N1750 ASCII Code SubP4

4 different codes (letters of the English alphabet) can be set. Then, by these parameters, the
control will call subprograms with the number (Onnnn) specified in the following parameters:

N1751 Prg No. ASCII Call1
N1752 Prg No. ASCII Call2
N1753 Prg No. ASCII Call3
N1754 Prg No. ASCII Call4

Transferring the argument of the code ASC;q4ubprogram
The values assigned to the address ASCII, as argument, will be written in the following
global variables:

Code ASCII 1 º #191
Code ASCII 2 º #192
Code ASCII 3 º #193
Code ASCII 4 º #194

Then, these variables can be used by the subprogram.

Position of the code ASCII starting a subprogram call in the block
In the block, the codes can be written in arbitrary position.

Referring to the calling code in the body of the subprogram being called by the code
ASCII

If, in the subprogram being called by the code ASCII, the calling address is referred again,
the subprogram will not be called again, but the code ASCII will be transferred either to the
interpolator or to the PLC.

351

23.3 Calling the Macros, System Macros and System Subprograms

Referring to G, S ... in the body of the subprogram ASCII, referring to ASCII in the
body of an G, S ... call

 – Calling system subprogram/macro G, M, S, T, A, B, C, ASCII from subprogram call
initiated by the code ASCII (if the call initiated not from the calling address), and

 – calling the subprogram initiated by the code ASCII from system subprogram/macro G, M,
S, T, A, B, C, ASCII call (if the call initiated not from the calling address)

is enabled depending on the following parameter state:
N1755 Macro Contr #1 ENC=0: call will not be initiated (they will be executed as

usual code M, S, ...G);
N1755 Macro Contr #1 ENC=1: call will be initiated.

23.3.9 Displaying the Blocks of Macros and Subprograms in Automatic Mode

Basically, the blocks of the macros and subprograms being under execution are listed by the
control. However, it is possible to disable listing the blocks. In this case, the control will
consider the whole macro or subprogram a block, and, in the block-by-block mode, it will not
stop at the inner blocks.

Listing can be enabled or disabled by the bits #0 MD8 and #1 MD9 of the parameter N1756
List Contr. Listing the macros and subprograms numbered from 8000 to 8999 is controlled by
the bit MD8, but listing those numbered from 9000 to 9999 is controlled by the bit MD9.
If the value of the bit MD8 or MD9 is 0, the blocks of the macro and the subprogram will not
be listed during execution of the macros and the subprograms from 8000 to 8999 and from
9000 to 9999, respectively; execution will not stop at the inner blocks in the block-by-block
mode.
If the value of the bit MD8 or MD9 is 1, the blocks of those macros and subprograms will also
be listed, and the control will also stop at the inner blocks in the block-by-block mode.

352

23.4 Interruption-type Macro

23.4 Interruption-type Macro

In the course of running the part program, it is possible to suspend the actual program, to call
another program, and then, after execution of this program, to continue the suspended one.
The events causing interruption can be, for example, power failure, tool break or data
gathering done between times.
The program being called during suspension is named interruption-type macro.
Calling the interruption-type macro is started by the signal CP_MINT from the PLC
program.
In the part program, calling the interruption-type macro has to be enabled, otherwise the
PLC signal will be ineffective.
In addition, the program to be run due to the signal has to be designated.
The instruction

M96 P(program number)
or

M96 <filename>
enables the interruption signal CP_MINT from the PLC program to influence. Due to the
interruption signal, the program with the number given at the address P (program number)
will be called.

The rules of programming the program number given at the address P are dealt with in the
subsection 14.4.1 Identification of Programs in Memory. The Program Number (O) on
page 117. The rules of extension and in-memory location of the interruption-type macros
given by the program number are the same as those of subprograms. See the subsection
14.4.2 Calling a Subprogram (M98) on page 117.

Location of the interruption-type macro in the memory
The bit state #5 SYM of the parameter N1758 Intrrt Contr determines where in the memory
the interruption-type macro has to be searched by the control:
 – in the case of #5 SYM=0: always in the folder, in which the main program is there, even if

the interruption-type macro was enabled not in the main program by the instruction
M96P;

 – in the case of #5 SYM=1: always in the directory of the folder SystemMacros, which
directory belongs to the appropriate channel.

Return from the interruption-type macro occurs by the code M99.

The instruction
M97

disables calling the interruption-type macro, i.e. the interruption-type macro will not be
called any more even if the signal is received. Interruption will also be disabled by reset and
program end.

The interruption-type macro can exclusively be used
in automatic or manual data input mode,

when start state is effective.

353

23.4 Interruption-type Macro

Enabling the function to work
In the control, the bit state #0 USD=1 of the parameter N1758 Intrrt Contr enables the
interruption-type macro to work.
If the value of the parameter is #0 USD=0, the interruption-type macro will not work, and the
PLC can use the codes M96 and M97 as function.

Enabling interruption by other codes
In the bit state #4 MCD=0 of the parameter N1758 Intrrt Contr, enabling/disabling the
interruption-type macro can be done by using the code pair M96/M97.
In the bit state #4 MCD=1 of the parameter N1758 Intrrt Contr, enabling/disabling the
interruption-type macro can be done by using a code pair different from the M96/M97.
In this case, the code M enabling the interruption can be given in the parameter N1759 M
Code MI On, but the code M disabling the interruption can be given in the parameter N1760
M Code MI Off.
It can be useful in the case, when the code M96 or M97 is already used by the PLC for other
function.

Subprogram-type or macro-type interruption
In the bit state #1 STP=1 of the parameter N1758 Intrrt Contr, interruption will be
subprogram-type, i.e. the level of local variables will not be higher by the call, the values of
the local variables in the called program and in the interrupted program will be the same.
On the other hand, in the bit state #1 STP=0, interruption will be macro-type, the level of
local variables will be higher in the called program, i.e. the values of the local variables in the
calling program and in the interrupted program will be different.

Edge-controlled and level-controlled interruption
Interruption is edge-controlled in the case, when the interruption-type macro is called by the
rising edge of the PLC signal CP_MINT. If the signal remains switched on after returning
from the interruption-type macro, the macro will be called again only after switching the
signal off and then switching it on again.
On the contrary, in the case of level-controlled interruption, if the signal CP_MINT remains
switched on after returning from the interruption-type macro, the interruption-type macro will
be called again until the signal CP_MINT will be switched off.

354

23.4 Interruption-type Macro

The bit #3 ELT of the parameter N1758 Intrrt Contr determines the type of the macro call.
If #3 ELT=1, the macro call will be edge-controlled, if #3 ELT=0, the macro call will be
level-controlled.

Interruption during block execution or at the end of the block
The user can decide whether the interruption-type macro begins to run at the moment of
receiving the signal, or it waits until motion will be completed in the actual block and begins
to run only at the end of the block.
In the bit state #2 TPI=0 of the parameter N1758 Intrrt Contr , the interruption-type macro will
be called immediatel, but in the bit state #2 TPI=1 it will be called only at the end of the
block.

Modal information in the interruption-type macro
Calling the interruption-type macro differs from a normal subprogram call.
In the case of a subprogram call (M98Pp), the subprogram inherits from the calling program

the modal information#4001...#4130 valid in the previous block, and
the modal information#4201...#4330 valid in the block being executed.

Certainly, these two kinds of information are different, because, due to buffering, execution
lags behind preprocessing the blocks.
In the case of the interruption-type macro, the situation is different.
Interruption occurs during execution of the program, therefore the interruption-type macro
(M96Pp) can read out the modal information valid in the block being executed, i.e. in the
interrupted block, in the variables
#4401...#4530.
The modal information #4001...#4130 and #4201...#4330 will be initialized after entering the
interruption-type macro.
During execution of the interruption-type macro, the variables #4001...#4130 and
#4201...#4330 work in the usual way, but the variables #4401...#4530 retain the modal
information valid at the moment of interruption.

Fig. 23.4-1

355

23.4 Interruption-type Macro

Return from the interruption-type macro by M99
The control stores the modal information valid at the moment of interruption, and then,
after return by M99, it restores the saved modal information.
If the program is interrupted during interpolation, the program will finish interpolation after
return; if the program is interrupted at the end of a block, the succeeding block will be taken
and executed.
Therefore, if motion has to also be programmed in the interruption-type macro, it will be
advisable to store the block-end position (#5001 ...) after entering the interruption-type macro,
and then, prior to return, to move back to this position.

Return from the interruption-type macro by M99Pp
If return from the interruption-type macro is executed by the instruction M99Pp, the
machining will be continued from that block of the interrupted program the number of which
is given at the address P.
After return by the M99Pp, the saved modal information will not be restored by the control,
but the program will be continued using the modal information generated in the
interruption-type macro.

356

23.5 NC and macro instructions. Execution of macro blocks

23.5 NC and Macro Instructions. Execution of Macro Blocks

NC and macro blocks
In the program language, NC and macro blocks can be distinguished.
The blocks written with traditional codes G, M etc. are considered to be NC blocks, even if
the values of the addresses are not only numbers but variables or formula as well.
The following blocks are considered to be macro instructions:
 – the blocks containing assignment statement: #i=#j;
 – the blocks containing conditional or cycle organizing instruction: IF, WHILE;
 – the blocks containing control instructions: GOTO, DO, END;
 – the blocks containing macro call: G65, G66, G66.1, G67 or those codes G or M initiating

macro call;
 – the subprogram call (M98P or the subprogram initiated by the A, B, C, S, T and M);
 – the code of return from a subprogram or a macro (M99).

Synchronization of instructions (G53)
In the bit state #6 MBM=1 of the parameter N1301 DefaultG2 (multibuffer mode), the block
preparator reads both the NC and macro blocks ahead, processes them, and then, places them
in the buffer memory. The executors, the interpolator and the PLC, take the blocks from the
buffer memory during execution of the program. It is necessary in order that the interpolator
will be able to move the axes continuously, and will not have to wait for processing the
succeeding block.
As a result of block processing in advance and buffering, the executor lags behind the block
preparator by hundreds of blocks. For example, the block preparator is already processing the
block 1500 while the executor is executing the block 1000 yet.
This is the reason of distinguishing the variables #4001...#4130 (#_BUFx) and the variables
#4201...#4330 (#_ACTx). While the former provides information about the blocks placed in
the buffer memory last, the latter gives information about the blocks being executed.
In some cases, preprocessing and buffering the blocks has to be suspended; for example, when
it is necessary to wait for a given position of an axis during program execution.
The instruction

G53
written in a separate block suspends reading the blocks ahead. The control waits until the
block buffer will be empty and only after that begins to read in and process the succeeding
block.

Execution of macro blocks
The control can execute the macro blocks in parallel with execution of NC blocks or
following the execution of them. It is the parameter N1755 Macro Contr #2 SBM that controls
execution of NC and macro blocks. If the value of the parameter is:

 =0: the NC and macro blocks will be executed in the sequence written in the program;
 =1: macro instructions will be executed during execution of the NC blocks.

357

23.5 NC and macro instructions. Execution of macro blocks

Fig. 23.5-1 Fig. 357-2

Example

SBM=0

%O1000
...
N10 #100=50
N20 #101=100
N30 G1 X#100 Y#101
N40 #100=60 (assignment statement
after N30)
N50 #101=120 (assignment statement
after N30)
N60 G1 X#100 Y#101

Assignment statement written in the blocks
N40 and N50 will be carried out after
execution of the block N30.

L Consequences:
 – slower program execution,
 – if execution of the block N30 is

interrupted and then machining is
started again, and since the variables
of the block N30 are not rewritten by
the blocks N40 and N50 yet,
machining can be continued in a
usual way.

SBM=1

%O1000
...
N10 #100=50
N20 #101=100
N30 G1 X#100 Y#101
N40 #100=60 (assignment statement
during N30)
N50 #101=120 (assignment statement
during N30)
N60 G1 X#100 Y#101

Assignment statement written in the blocks
N40 and N50 will be carried out during
execution of the block N30.

L Consequences:
 – faster program execution,
 – if execution of the block N30 is

interrupted and then machining is
started again, and since the
variables of the block N30 are
rewritten by the blocks N40 and N50
already, machining can be continued
only in the case, when search is
started for the block N30.

358

23.6 Pocket Milling Macro Cycle

Fig. 23.6-1

23.6 Pocket Milling Macro Cycle

The instruction
G65 P9999 X Y Z I J K R F D E Q M S T

starts a pocket milling cycle.
Prior to calling the cycle, the tool must be positioned over the geometric center of the pocket
in the selected plane, at a safety distance from the workpiece surface. At the end of the cycle
the tool will be positioned back to the same point.
Interpretation of the addresses of
the block is as follows:
X: the size of the pocket in the
direction X;
Y: the size of the pocket in the
direction Y;
Z: the size of the pocket in the
direction Z.
It is determined by the instructions
G17, G18 and G19, which of the
three coordinates will be the length,
width and depth of the pocket. For
example, in the case of G17, Z will
be the depth of the pocket, the
longer one of X and Y will be the
length of the pocket and the shorter
one will be the width thereof.
These values have to be entered in
absolute values as positive
numbers.
R: the radius of the corners of the
pocket.
Rounding (if any) of the pocket
corners has to be specified at the
address R. If the address R is not
filled, the rounding of the pocket
corners will be equal to the tool
radius.
I: the safety distance in the direction of depth in the case of G19.
J: the safety distance in the direction of depth in the case of G18.
K: the safety distance in the direction of depth in the case of G17.
Depending on the plane selected, the safety allowance in the direction of the tool has to be
specified at the addresses I (G19), J (G18) or K (G17) in the block. When the cycle is started,
it is assumed by the control, that the tip of the tool is located at such a distance from the
workpiece surface. In the course of milling the pocket, when removing a level of material is
completed, the tool will be retracted by such a distance so that it can be positioned to the start
point for milling the next level.
D: the address of the cell containing the tool radius compensation.
The radius compensation cell number of the tool used in the program has to be specified
mandatorily at the address D. Otherwise, milling a pocket has to be carried out in the state

359

23.6 Pocket Milling Macro Cycle

Fig. 22.6-2

G40.
E: the width of cutting in percent of the milling tool diameter:

with the sign +: counter clockwise machining;
with the sign !: clockwise machining.

At the address E, the types of information can be given to the control. The value of E
determines how great the width of cutting has to be in percent of the milling tool diameter. If
it is not given, its value is automatically assumed by the control to be +83%. Depending on
the width of the pocket, the data given at the address E can be specified by the control in such
a way so that the value of infeed will be constant in the course of milling a level. However,
modification has to be decrease only. The sign of the address E shows the direction of milling.
In the case of E+, i.e. when it is positive, machining is being performed in the counter
clockwise direction; in the case of E!, i.e. when it is negative, machining is being performed
in the clockwise direction.
Q: depth of cut
At the address Q, the depth of cut can be given in the unit system used, i.e. in mm or in inch.
Depending on the depth of the pocket, the programmed value can be revoked by the control in
order to obtain constant division of cut. However, modification has to be decrease only.
F: feed
At the address F, the value of the feed used in the course of cycle can be given. If no value is
given at the address F, the modal value of F will be taken into account by the control. 50% of
the value of F will be applied in the following cases:
– When machining a level is started and drilling to the depth Q is executed in the direction of
the tool.
– During longitudinal milling, as long as the tool is loaded on both sides.
M S T: function
In the block calling the pocket milling, one function M and functions S and T can be given,
which will be executed prior to starting the milling.

Degenerate cases of pocket milling

If the width of the pocket is not given, the radius of the pocket corners will be taken on twice
and it will be the width of the pocket.

If neither the width of the pocket nor the radius of the corner is given, the diameter of the tool
applied will be taken as the with of the pocket (groove).

360

23.6 Pocket Milling Macro Cycle

Fig. 23.6-3

Fig. 23.6-4

If neither the length nor the width of the pocket is given, and only the address R is
programmed, a circular pocket will be milled.

If neither the length nor the with and the radius is given, the cycle will degenerate into
drilling.

Error messages which are possible during execution of pocket milling:

MACRO ERROR 1: wrong block specification. Possible causes:
 – The depth of the pocket is not specified.
 – The tool radius is not specified.
 – The depth of cut is not specified.

MACRO ERROR 2: wrong dimensional specification. Possible causes:
 – The dimension given as the length or the width of the pocket smaller than the double of the

pocket radius.
 – The value of the length and the width of the pocket smaller than tool diameter called at the

address D.

361

23.6 Pocket Milling Macro Cycle

 – The value of the width of cutting is 0, or the tool diameter called is 0.
 – The value of the depth of cut is 0, i.e. 0 is programmed at the address Q.

362

24 Writing and Reading the Parameters

24 Writing and Reading the Parameters

The parameters are used to set up operation of the control according to the demands. The
parameters are stored in the non-volatile memory of the control. The parameters of the control
can be rewritten and read in from the part program.
Each of the parameters has an identifier number of maximum four digits, which identifies
the parameter in the memory. One value (in the case of global parameters) or several different
values (indexed per channel, per axis, per spindle) can belong to these identifier numbers.
The parameters can be classified in accordance with number representation, effect range and
case of taking into account.

Classification of parameters in accordance with number representation
 Bit-type parameters: their value range can be

0 or 1.
 Integer-type parameters (DWORD): their value range can be

without sign: 0,...4294967295 or
with sign: -2147483648... +2147483647.

 Floating point-type parameters (double): their value range can be
in the case of negative numbers: -1.7 × 10 ... -5.0 × 10308 !324

in the case of positive: 5.0 × 10 ... 1.7 × 10 .!324 308

Classification of parameters in accordance with effect range
 Global parameters: Those parameters are named global which are valid in every channel of

the control. For example, the parameters N2201 Waiting M Codes Min and N2202
Waiting Codes Max are such ones, which designate the M codes group controlling
synchronization between channels and are valid for each of the channels.
In the case of global parameters, one parameter value belongs to each identifier
number.

 Parameters that can be specified per channel: These are the parameters, in which values
different per channel can be written. For example, the group N1500 Return Val G73 is
such a parameter, in which the distance of retraction can be set up in the drilling cycle
G73 and values different per cannel can be written.
In the case of parameters that can be specified per channel, maximum 8 parameter
values can belong to each identifier number.

 Parameters that can be specified per axis: These are the parameters, in which values
different per axis can be written. For example, the bit #0 DIA of the group N0106 Axis
properties is such a parameter, in which it can be set per axis whether the the given
axis shoukd be programmed in radius or in diameter.
In the case of parameters that can be specified per axis, maximum 32 parameter values
can belong to each identifier number.

 Parameters that can be specified per spindle: These are the parameters, in which values
different per spindle can be written. For example, the group N0608 Spindle Encoder
Counts is such a parameter, in which the number of pulses of the encoder mounted on
the given axis can be specified per spindle.
In the case of parameters that can be specified per spindle, maximum 16 parameter
values can belong to each identifier number.

363

24 Writing and Reading the Parameters

Classification of parameters in accordance with case of taking into account
 Parameters taken into account during run-time: These parameters will be taken into

account by the control immediately after rewriting them.
 Parameters taken into account after restart: Rewriting these parameters will be taken into

account by the control only after restart (after turn-off and then turn-on).
 Parameters that can be rewritten in the case of emergency stop state: Rewriting these

parameters is enabled by the control only in the case of emergency stop state.

Detailed description of the parameters can be found in the manual ‘NCT2xx Machine Tool
Controls Parameters’.

24.1 Writing the Parameters from Part Program (G10 L52)

The command
G10 L52 (writing the parameter on)

written in separate row turns on the function of writing the parameter. Then, the serial number
and the value of each parameter has to be specified in separate row in accordance with the
following way:

N_ (Q_) R_ (writing global parameter)
N_ P_ (Q_) R_ (writing channel/axis/spindle parameter)
...
...

It is the command
G11 (end of writing the parameter)

written in separate row that closes the end of writing the parameter.
Interpretation of the addresses N, P, Q and R:

N: the identifier number of the parameter (0-9999). The leading zeros can be
neglected.

L Warning! Only such parameter having a given number can be rewritten by the use of the
command G10 L52, which does not require restart for being taken into account or
does not require emergency stop state for being rewritten!

P: the number of the channel (1-8), the axis (1-32) or the spindle (1-16). The value of
P that can be assigned in the specific cases are given in brackets.

L Warning! If a parameter, which can be specified per channel, is being written and the
address P is not filled in, the command will rewrite the parameter of the channel, in
which the program is running.

Q: in the case of the bit-type parameter, it is the number of the bit to be written from 0
to 7.

R: the value of the parameter. For the value of R, the incremental operator I is
accepted; it increases the actual value by the value specified at the address RI.
In the case of floating-point data, decimal point (.) can be used.

Parameters modified by the command G10 L52 will be saved so modification will be valid
during next turn-on too.

364

24 Writing and Reading the Parameters

If the addresses N, P, Q or R addresses are filled in incorrectly, the control will send the
message ‘2002 <N, P, Q or R> data out of range‘

to the address N: if there is no parameter having such identifier number;
to the address P: if there is no channel/axis/spindle having such number;
to the address Q: if the value of Q is less than 0 or greater than 7;
to the address R: if a value being out of the value range permitted for the parameter

having identifier N is written on R.

If any of the data N, P, Q and R is missing, the control will send the error message ‘2004 <N,
P, Q, R> data missing’.
If such parameter should be rewritten, which requires restart for being taken into account or
requires emergency stop state for being rewritten, the control will send the error message
‘2193The parameter Nnnnn cannot be modified by the command G10’.
An example of writing the parameters:

...
G10 L52 (Writing the parameters on)
N107 P4 Q0 R1 (N0107 RollOver Control A4- REN)
N1339 (P1) R0.5 (N1339 Radius Diff)
N1746 (P1) Q1 R1 (N1746 ABCST BM=1)
G11 (Writing the parameters off)
...

24.2 Reading the Parameters from Part Program (PRM)

Using the assignment statements
#a=PRM[#b,#c]

and
#a=PRM[#b,#c] / [#d]

the value of any parameter of the control can be read out without any constraint. The
meaning of the arguments is as follows:

#a: it is a writable macro variable.
#b: it is the identifier number of the parameter. It can be given indirectly on a macro

variable or directly using a number value.
#c: it is the bit number of the parameter in the case of reading a bit-type parameter. It

can be given indirectly on a macro variable or directly using a number value.
#d: it is the number of the channel (1-8), the axis (1-32) or the spindle (1-16). The

value that can be assigned on #d in the specific cases are given in brackets. It
can be given indirectly on a macro variable or directly using a number value.

L Warning!
If a parameter which can be specified per channel is being read and the part / [#d] is
neglected from the command, the command will read in the parameter of the channel,
in which the program is running.
If the arguments of the command PRM are specified on macro variables and the value
of the macro variable is #0 (empty), it would produce such an effect as if that
argument would not have been specified.
Arguments could also be results of macro expressions.

If the command PRM stands on the right side of a command, which is not an assignment
statement, the control will send the error message ‘2017 Illegal address PRM’.

365

24 Writing and Reading the Parameters

If the argument #b of the command PRM, i.e. the number of the parameter id missing, the
control will send the error message ‘2064 Syntax error’.
If the bit number #c or the argument /[#d] of the command PRM is missing, the control will
send the error message ‘2194 PRM function param <2., 3.> missing’.

An example of reading the parameters:
...
#101=PRM[107,0]/[4] (N0107 RollOver Control A4- REN)
#102=PRM[1339](/[1] (N1339 Radius Diff)
#103=PRM[1746,1](/[1]) (N1746 ABCST BM=1)
#104=PRM[2201] (N2201 Waiting M Codes Min)
...

366

Notes

367

368

	1 Introduction
	1.1 Part Program
	1.2 Channel
	1.3 Fundamental Terms

	2 Controlled Axes
	2.1 Naming and Numbering the Axes
	2.2 Extended Axis Names
	2.3 Assigning Axes to Channels
	2.4 Unit System of Axes and Accuracy of Position Display

	3 Preparatory Functions (Codes G)
	4 Interpolation
	4.1 Positioning (G0)
	4.1.1 Positioning by Linear Interpolation
	4.1.2 Positioning by Overlapping the Rapid Traverse Motions

	4.2 Linear Interpolation (G1)
	4.3 Circular Interpolation (G2, G3)
	4.3.1 Planar Spiral Interpolation (G2, G3)
	4.3.2 Helical Spiral Interpolation (G2, G3)
	4.3.3 Conical Spiral Interpolation (G2, G3)

	4.4 Equal Lead Thread Cutting (G33)
	4.5 Polar Coordinate Interpolation (G12.1, G13.1)
	4.6 Cylindrical Interpolation (G7.1)

	5 Coordinate Data
	5.1 Absolute and Incremental Programming (G90, G91)
	5.2 Inch/Metric Conversion (G20, G21)
	5.3 Programming in Diameter or Radius
	5.3.1 Switching between in Radius and in Diameter Programming (G10.9)

	5.4 Data Specification in Polar Coordinates (G15, G16)
	5.5 Specification and Accuracy of Coordinate Data
	5.6 Managing the Rotary Axis Roll-Over

	6 Feed
	6.1 Rapid Traverse
	6.2 Cutting Feed
	6.2.1 Feed per Minute (G94) and Feed per Revolution (G95)

	6.3 Feed Control Functions
	6.3.1 Exact Stop at the End of the Block (G9)
	6.3.2 Exact Stop Mode (G61)
	6.3.3 Continuous Cutting Mode (G64)
	6.3.4 Override and Stop Inhibition Mode (G63)
	6.3.5 Automatic Feed Override at Inner Corners (G62)

	6.4 Automatic Feed Override in the Cases of Inner Circle Arcs

	7 Acceleration
	7.1 Automatic Deceleration at Corners in the State G64
	7.2 Limiting the Normal Direction Accelerations
	7.3 Limiting the Acceleration Step Change (Jerk)

	8 Dwell (G4)
	9 Reference Point
	9.1 Automatic Reference Point Return (G28)
	9.2 Return to the 2nd, 3rd and 4th Reference Point (G30)

	10 Coordinate Systems and Plane Selection
	10.1 Machine Coordinate System
	10.1.1 Positioning in the Machine Coordinate System (G53)

	10.2 Workpiece Coordinate Systems
	10.2.1 Selecting the Workpiece Coordinate System (G54...G59)
	10.2.2 Selecting the Additional Workpiece Coordinate Systems (G54.1 P)
	10.2.3 Compensating the Angular Position of the Workpiece
	10.2.4 Setting the Offset of the Workpiece Coordinate Systems (G10 L2)
	10.2.5 Setting the Offset of the Additional Workpiece Coordinate Systems (G10 L20)
	10.2.6 Creating a New Work Coordinate System (G92)

	10.3 Local Coordinate System (G52)
	10.4 Plane Selection (G17, G18, G19)

	11 Spindle Functions
	11.1 Spindle Speed Command (Code S)
	11.1.1 Referring to Several Spindles. Extending the Address S
	11.1.2 Assigning Spindles to Channels

	11.2 Functions M Controlling the Spindle
	11.3 Managing the Speed Ranges
	11.4 Main Spindle. Selecting the Main Spindle
	11.5 Controlling the Constant Surface Speed
	11.5.1 Specifying the Constant Surface Speed Control (G96 S, G97 S)
	11.5.2 Clamping the Speed during Calculation of Constant Surface Speed (G92 S)
	11.5.3 Selecting an Axis for Constant Surface Speed Control (G96 P)

	11.6 Spindle Speed Fluctuation Detection
	11.7 Positioning the Spindles
	11.7.1 Spindle Orientation
	11.7.2 Stopping the Spindles and Closing the Position Control Loop
	11.7.3 Programming of the Positioning the Spindles
	11.7.4 Position-correct Synchronization of Two Spindles
	11.7.5 Turning the Position-controlled Operating Mode off

	11.8 Converting Spindle into Axis and Axis into Spindle

	12 Function T
	12.1 Programming the Tool Change

	13 Miscellaneous and Auxiliary Functions
	13.1 Miscellaneous Functions (Codes M)
	13.2 Auxiliary Functions (A, B, C, U, V or W)
	13.3 Buffer Emptying Functions

	14 Part Program Configuration
	14.1 Block Number (Address N)
	14.2 Conditional Block Skip (/ address)
	14.3 Writing Comments into the Part Program: (comment)
	14.4 Main Program and Subprogram
	14.4.1 Identification of Programs in Memory. The Program Number (O)
	14.4.2 Calling a Subprogram (M98)
	14.4.3 Return from a Subprogram (M99)
	14.4.4 Jump within the Main Program

	14.5 Functions M of Channel Synchronization

	15 Tool Compensation
	15.1 The Compensation Memory. Referring to Tool Compensation (T or D)
	15.2 The Second Geometry Compensation Memory
	15.3 Modifying the Tool Compensation Values from the Program (G10)
	15.4 Tool Length Compensation by Code T
	15.5 Tool Length Compensation by Code G (G43.7, G49)
	15.6 Tool Nose Radius Compensation (G40, G41, G42)
	15.6.1 Start up of the Tool Nose Radius Compensation. Moving to the Contour
	15.6.2 Calculation of Tool Nose Radius Compensation in Offset Mode
	15.6.3 Cancelling the Tool Nose Radius Compensation. Leaving the Contour
	15.6.4 Reversal in Calculation of Tool Nose Radius Compensation
	15.6.5 Programming Vector Preservation (G38)
	15.6.6 Programming Corner Arc (G39)
	15.6.7 Troubles in Tracking the Contour. Interference Check

	16 Special Transformations
	16.1 Rotating a Shape Around a Given Point (G68, G69)
	16.2 Scaling a Shape in Relation to a Given Point (G50, G51)
	16.3 Mirroring a Shape through One or More Straight Lines (G50.1, G51.1)
	16.4 Programming Rules for Specific Transformations

	17 Automatic Geometric Calculations
	17.1 Programming Chamfer and Corner Rounding
	17.2 Specification of a Straight Line Using its Angle of Inclination
	17.3 Calculations of Intersection Point in the Plane
	17.3.1 Linear-Linear Intersection
	17.3.2 Linear-Circular Intersection
	17.3.3 Circular-Linear Intersection
	17.3.4 Circular-Circular Intersection
	17.3.5 Chaining the Intersection Calculations

	18 Canned Cycles for Turning
	18.1 Single Cycles
	18.1.1 Longitudinal Turning Cycle (G77)
	18.1.2 Simple Thread Turning Cycle (G78)
	18.1.3 Face Turning Cycle (G79)
	18.1.4 Application of Single Cycles

	18.2 Multiple Repetitive Cycles
	18.2.1 Roughing Cycle (G71)
	18.2.2 Face Roughing Cycle (G72)
	18.2.3 Pattern Repeating Cycle (G73)
	18.2.4 Finishing Cycle (G70)
	18.2.5 Face Grooving Cycle (G74)
	18.2.6 Grooving Cycle (G75)
	18.2.7 Multiple Threading Cycle (G76)

	19 Canned Cycles for Drilling
	19.1 Detailed Description of the Drilling Cycles
	19.1.1 High-speed Peck Drilling Cycle (G83.1)
	19.1.2 Left-Handed Tapping Cycle Using Spring Tap (G84.1)
	19.1.3 Boring Cycle with Automatic Tool Shift (G86.1)
	19.1.4 Cancelling the Cycle State (G80)
	19.1.5 Drilling Cycle with Retraction at Rapid Traverse Rate (G81)
	19.1.6 Drilling Cycle with Dwell and with Retraction at Rapid Traverse (G82)
	19.1.7 Peck Drilling Cycle (G83)
	19.1.8 Right-Handed Tapping Cycle Using Spring Tap (G84)
	19.1.9 Rigid Tapping Cycle (G84.2, G84.3)
	19.1.10 Peck Rigid Tapping Cycle (G84.2, G84.3)
	19.1.11 Boring Cycle with Retraction at Feed Rate (G85)
	19.1.12 Boring Cycle with Retraction with Spindle in Standstill (G86)
	19.1.13 Manual Control/Back Boring Cycle (G87)
	19.1.14 Boring Cycle with Dwell and Manual Operation at the Bottom (G88)
	19.1.15 Boring Cycle with Dwell and with Retraction at Feed Rate (G89)

	19.2 Remarks on the Use of the Drilling Cycles

	20 Functions to Control Axes
	20.1 Polygonal Turning
	20.1.1 Principle of Poligonal Turning
	20.1.2 Programming the Polygonal Turning (G51.2, G50.2)

	20.2 Gear Hobbing (G81.8)
	20.3 Synchronous Control of Axes
	20.4 Interchanging of Axes
	20.5 Superimposed Control of Axes
	20.6 Changing the Axis Direction
	20.7 Managing Non-perpendicular Axes

	21 Measurement Functions
	21.1 Skip Function (G31)
	21.2 Torque Limit Skip (G31)
	21.3 Automatic Tool Length Measurement (G36, G37)

	22 Safety Functions
	22.1 Stroke End
	22.2 Working Area Limitation from Parameter/Program (G22, G23)
	22.3 The Area Forbidden Internally
	22.4 Monitoring the Forbidden Area Prior to Motion Start

	23 Custom Macro
	23.1 Variables of the Programming Language
	23.1.1 Referring to Variables
	23.1.2 Number Representation of Macro Variables
	23.1.3 Local Variables: #1 – #33
	23.1.4 Common Variables
	23.1.5 Notation Used in Description of System Variables
	23.1.6 Vacant Variable. Constants
	23.1.7 Variables Between the Part Program and the PLC Program
	23.1.8 Messages of the Part Program
	23.1.9 Clock, Timers and Part Counters
	23.1.10 Variables Influencing the Operation of the Automatic Mode
	23.1.11 Querying the Block Search and Test Statuses
	23.1.12 Status of Mirror Image
	23.1.13 Number of the Main Program
	23.1.14 Modal Information
	23.1.15 Position Information
	23.1.16 Value of the Actual Length Compensation
	23.1.17 Other Position Information
	23.1.18 Values of the Tool Compensation Memory
	23.1.19 Workpiece Zero Point Offsets
	23.1.20 Reading Data of Tools Being in Spindle and in Stand-by Magazines
	23.1.21 Reading the Data of the Pallet Being in the Working Space and in the Loading- Unloading Point

	23.2 Instructions of the Program Language
	23.2.1 Definition or Replacement
	23.2.2 Arithmetic Operations
	23.2.3 Logic Operations
	23.2.4 Functions
	23.2.5 Conversion Instruction
	23.2.6 Execution Sequence of Complex Arithmetic Operations
	23.2.7 Conditional Expressions
	23.2.8 Unconditional Branch:
	23.2.9 Conditional Branch
	23.2.10 Conditional Instruction
	23.2.11 Iteration
	23.2.12 Indirect Axis Address Specification
	23.2.13 Data Output Commands

	23.3 Calling the Macros, System Macros and System Subprograms
	23.3.1 Simple Macro Call (G65)
	23.3.2 Macro Modal Call after Each Motion Command (G66)
	23.3.3 Macro Modal Call from Each Block (G66.1)
	23.3.4 System Macro Call by Codes G Given in Parameter
	23.3.5 System Macro Call by Codes M Given in Parameter
	23.3.6 System Subprogram Call by the Code M Given in Parameter
	23.3.7 System Subprogram Call by Codes A, B, C, S, T Enabled in Parameter
	23.3.8 System Subprogram Call by Codes ASCII Given in Parameter
	23.3.9 Displaying the Blocks of Macros and Subprograms in Automatic Mode

	23.4 Interruption-type Macro
	23.5 NC and Macro Instructions. Execution of Macro Blocks
	23.6 Pocket Milling Macro Cycle

	24 Writing and Reading the Parameters
	24.1 Writing the Parameters from Part Program (G10 L52)
	24.2 Reading the Parameters from Part Program (PRM)

	Notes

